diff -r c6acc34f98dc -r 1a7fe3bef514 lemon/hao_orlin.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/hao_orlin.h Thu Nov 05 15:50:01 2009 +0100 @@ -0,0 +1,988 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_HAO_ORLIN_H +#define LEMON_HAO_ORLIN_H + +#include +#include +#include + +#include +#include +#include + +/// \file +/// \ingroup min_cut +/// \brief Implementation of the Hao-Orlin algorithm. +/// +/// Implementation of the Hao-Orlin algorithm for finding a minimum cut +/// in a digraph. + +namespace lemon { + + /// \ingroup min_cut + /// + /// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. + /// + /// This class implements the Hao-Orlin algorithm for finding a minimum + /// value cut in a directed graph \f$D=(V,A)\f$. + /// It takes a fixed node \f$ source \in V \f$ and + /// consists of two phases: in the first phase it determines a + /// minimum cut with \f$ source \f$ on the source-side (i.e. a set + /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing + /// capacity) and in the second phase it determines a minimum cut + /// with \f$ source \f$ on the sink-side (i.e. a set + /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing + /// capacity). Obviously, the smaller of these two cuts will be a + /// minimum cut of \f$ D \f$. The algorithm is a modified + /// preflow push-relabel algorithm. Our implementation calculates + /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the + /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The + /// purpose of such algorithm is e.g. testing network reliability. + /// + /// For an undirected graph you can run just the first phase of the + /// algorithm or you can use the algorithm of Nagamochi and Ibaraki, + /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ + /// time. It is implemented in the NagamochiIbaraki algorithm class. + /// + /// \tparam GR The type of the digraph the algorithm runs on. + /// \tparam CAP The type of the arc map containing the capacities, + /// which can be any numreric type. The default map type is + /// \ref concepts::Digraph::ArcMap "GR::ArcMap". + /// \tparam TOL Tolerance class for handling inexact computations. The + /// default tolerance type is \ref Tolerance "Tolerance". +#ifdef DOXYGEN + template +#else + template , + typename TOL = Tolerance > +#endif + class HaoOrlin { + public: + + /// The digraph type of the algorithm + typedef GR Digraph; + /// The capacity map type of the algorithm + typedef CAP CapacityMap; + /// The tolerance type of the algorithm + typedef TOL Tolerance; + + private: + + typedef typename CapacityMap::Value Value; + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + const Digraph& _graph; + const CapacityMap* _capacity; + + typedef typename Digraph::template ArcMap FlowMap; + FlowMap* _flow; + + Node _source; + + int _node_num; + + // Bucketing structure + std::vector _first, _last; + typename Digraph::template NodeMap* _next; + typename Digraph::template NodeMap* _prev; + typename Digraph::template NodeMap* _active; + typename Digraph::template NodeMap* _bucket; + + std::vector _dormant; + + std::list > _sets; + std::list::iterator _highest; + + typedef typename Digraph::template NodeMap ExcessMap; + ExcessMap* _excess; + + typedef typename Digraph::template NodeMap SourceSetMap; + SourceSetMap* _source_set; + + Value _min_cut; + + typedef typename Digraph::template NodeMap MinCutMap; + MinCutMap* _min_cut_map; + + Tolerance _tolerance; + + public: + + /// \brief Constructor + /// + /// Constructor of the algorithm class. + HaoOrlin(const Digraph& graph, const CapacityMap& capacity, + const Tolerance& tolerance = Tolerance()) : + _graph(graph), _capacity(&capacity), _flow(0), _source(), + _node_num(), _first(), _last(), _next(0), _prev(0), + _active(0), _bucket(0), _dormant(), _sets(), _highest(), + _excess(0), _source_set(0), _min_cut(), _min_cut_map(0), + _tolerance(tolerance) {} + + ~HaoOrlin() { + if (_min_cut_map) { + delete _min_cut_map; + } + if (_source_set) { + delete _source_set; + } + if (_excess) { + delete _excess; + } + if (_next) { + delete _next; + } + if (_prev) { + delete _prev; + } + if (_active) { + delete _active; + } + if (_bucket) { + delete _bucket; + } + if (_flow) { + delete _flow; + } + } + + private: + + void activate(const Node& i) { + (*_active)[i] = true; + + int bucket = (*_bucket)[i]; + + if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return; + //unlace + (*_next)[(*_prev)[i]] = (*_next)[i]; + if ((*_next)[i] != INVALID) { + (*_prev)[(*_next)[i]] = (*_prev)[i]; + } else { + _last[bucket] = (*_prev)[i]; + } + //lace + (*_next)[i] = _first[bucket]; + (*_prev)[_first[bucket]] = i; + (*_prev)[i] = INVALID; + _first[bucket] = i; + } + + void deactivate(const Node& i) { + (*_active)[i] = false; + int bucket = (*_bucket)[i]; + + if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return; + + //unlace + (*_prev)[(*_next)[i]] = (*_prev)[i]; + if ((*_prev)[i] != INVALID) { + (*_next)[(*_prev)[i]] = (*_next)[i]; + } else { + _first[bucket] = (*_next)[i]; + } + //lace + (*_prev)[i] = _last[bucket]; + (*_next)[_last[bucket]] = i; + (*_next)[i] = INVALID; + _last[bucket] = i; + } + + void addItem(const Node& i, int bucket) { + (*_bucket)[i] = bucket; + if (_last[bucket] != INVALID) { + (*_prev)[i] = _last[bucket]; + (*_next)[_last[bucket]] = i; + (*_next)[i] = INVALID; + _last[bucket] = i; + } else { + (*_prev)[i] = INVALID; + _first[bucket] = i; + (*_next)[i] = INVALID; + _last[bucket] = i; + } + } + + void findMinCutOut() { + + for (NodeIt n(_graph); n != INVALID; ++n) { + (*_excess)[n] = 0; + (*_source_set)[n] = false; + } + + for (ArcIt a(_graph); a != INVALID; ++a) { + (*_flow)[a] = 0; + } + + int bucket_num = 0; + std::vector queue(_node_num); + int qfirst = 0, qlast = 0, qsep = 0; + + { + typename Digraph::template NodeMap reached(_graph, false); + + reached[_source] = true; + bool first_set = true; + + for (NodeIt t(_graph); t != INVALID; ++t) { + if (reached[t]) continue; + _sets.push_front(std::list()); + + queue[qlast++] = t; + reached[t] = true; + + while (qfirst != qlast) { + if (qsep == qfirst) { + ++bucket_num; + _sets.front().push_front(bucket_num); + _dormant[bucket_num] = !first_set; + _first[bucket_num] = _last[bucket_num] = INVALID; + qsep = qlast; + } + + Node n = queue[qfirst++]; + addItem(n, bucket_num); + + for (InArcIt a(_graph, n); a != INVALID; ++a) { + Node u = _graph.source(a); + if (!reached[u] && _tolerance.positive((*_capacity)[a])) { + reached[u] = true; + queue[qlast++] = u; + } + } + } + first_set = false; + } + + ++bucket_num; + (*_bucket)[_source] = 0; + _dormant[0] = true; + } + (*_source_set)[_source] = true; + + Node target = _last[_sets.back().back()]; + { + for (OutArcIt a(_graph, _source); a != INVALID; ++a) { + if (_tolerance.positive((*_capacity)[a])) { + Node u = _graph.target(a); + (*_flow)[a] = (*_capacity)[a]; + (*_excess)[u] += (*_capacity)[a]; + if (!(*_active)[u] && u != _source) { + activate(u); + } + } + } + + if ((*_active)[target]) { + deactivate(target); + } + + _highest = _sets.back().begin(); + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } + + while (true) { + while (_highest != _sets.back().end()) { + Node n = _first[*_highest]; + Value excess = (*_excess)[n]; + int next_bucket = _node_num; + + int under_bucket; + if (++std::list::iterator(_highest) == _sets.back().end()) { + under_bucket = -1; + } else { + under_bucket = *(++std::list::iterator(_highest)); + } + + for (OutArcIt a(_graph, n); a != INVALID; ++a) { + Node v = _graph.target(a); + if (_dormant[(*_bucket)[v]]) continue; + Value rem = (*_capacity)[a] - (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + if ((*_bucket)[v] == under_bucket) { + if (!(*_active)[v] && v != target) { + activate(v); + } + if (!_tolerance.less(rem, excess)) { + (*_flow)[a] += excess; + (*_excess)[v] += excess; + excess = 0; + goto no_more_push; + } else { + excess -= rem; + (*_excess)[v] += rem; + (*_flow)[a] = (*_capacity)[a]; + } + } else if (next_bucket > (*_bucket)[v]) { + next_bucket = (*_bucket)[v]; + } + } + + for (InArcIt a(_graph, n); a != INVALID; ++a) { + Node v = _graph.source(a); + if (_dormant[(*_bucket)[v]]) continue; + Value rem = (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + if ((*_bucket)[v] == under_bucket) { + if (!(*_active)[v] && v != target) { + activate(v); + } + if (!_tolerance.less(rem, excess)) { + (*_flow)[a] -= excess; + (*_excess)[v] += excess; + excess = 0; + goto no_more_push; + } else { + excess -= rem; + (*_excess)[v] += rem; + (*_flow)[a] = 0; + } + } else if (next_bucket > (*_bucket)[v]) { + next_bucket = (*_bucket)[v]; + } + } + + no_more_push: + + (*_excess)[n] = excess; + + if (excess != 0) { + if ((*_next)[n] == INVALID) { + typename std::list >::iterator new_set = + _sets.insert(--_sets.end(), std::list()); + new_set->splice(new_set->end(), _sets.back(), + _sets.back().begin(), ++_highest); + for (std::list::iterator it = new_set->begin(); + it != new_set->end(); ++it) { + _dormant[*it] = true; + } + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } else if (next_bucket == _node_num) { + _first[(*_bucket)[n]] = (*_next)[n]; + (*_prev)[(*_next)[n]] = INVALID; + + std::list >::iterator new_set = + _sets.insert(--_sets.end(), std::list()); + + new_set->push_front(bucket_num); + (*_bucket)[n] = bucket_num; + _first[bucket_num] = _last[bucket_num] = n; + (*_next)[n] = INVALID; + (*_prev)[n] = INVALID; + _dormant[bucket_num] = true; + ++bucket_num; + + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } else { + _first[*_highest] = (*_next)[n]; + (*_prev)[(*_next)[n]] = INVALID; + + while (next_bucket != *_highest) { + --_highest; + } + + if (_highest == _sets.back().begin()) { + _sets.back().push_front(bucket_num); + _dormant[bucket_num] = false; + _first[bucket_num] = _last[bucket_num] = INVALID; + ++bucket_num; + } + --_highest; + + (*_bucket)[n] = *_highest; + (*_next)[n] = _first[*_highest]; + if (_first[*_highest] != INVALID) { + (*_prev)[_first[*_highest]] = n; + } else { + _last[*_highest] = n; + } + _first[*_highest] = n; + } + } else { + + deactivate(n); + if (!(*_active)[_first[*_highest]]) { + ++_highest; + if (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + _highest = _sets.back().end(); + } + } + } + } + + if ((*_excess)[target] < _min_cut) { + _min_cut = (*_excess)[target]; + for (NodeIt i(_graph); i != INVALID; ++i) { + (*_min_cut_map)[i] = true; + } + for (std::list::iterator it = _sets.back().begin(); + it != _sets.back().end(); ++it) { + Node n = _first[*it]; + while (n != INVALID) { + (*_min_cut_map)[n] = false; + n = (*_next)[n]; + } + } + } + + { + Node new_target; + if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { + if ((*_next)[target] == INVALID) { + _last[(*_bucket)[target]] = (*_prev)[target]; + new_target = (*_prev)[target]; + } else { + (*_prev)[(*_next)[target]] = (*_prev)[target]; + new_target = (*_next)[target]; + } + if ((*_prev)[target] == INVALID) { + _first[(*_bucket)[target]] = (*_next)[target]; + } else { + (*_next)[(*_prev)[target]] = (*_next)[target]; + } + } else { + _sets.back().pop_back(); + if (_sets.back().empty()) { + _sets.pop_back(); + if (_sets.empty()) + break; + for (std::list::iterator it = _sets.back().begin(); + it != _sets.back().end(); ++it) { + _dormant[*it] = false; + } + } + new_target = _last[_sets.back().back()]; + } + + (*_bucket)[target] = 0; + + (*_source_set)[target] = true; + for (OutArcIt a(_graph, target); a != INVALID; ++a) { + Value rem = (*_capacity)[a] - (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + Node v = _graph.target(a); + if (!(*_active)[v] && !(*_source_set)[v]) { + activate(v); + } + (*_excess)[v] += rem; + (*_flow)[a] = (*_capacity)[a]; + } + + for (InArcIt a(_graph, target); a != INVALID; ++a) { + Value rem = (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + Node v = _graph.source(a); + if (!(*_active)[v] && !(*_source_set)[v]) { + activate(v); + } + (*_excess)[v] += rem; + (*_flow)[a] = 0; + } + + target = new_target; + if ((*_active)[target]) { + deactivate(target); + } + + _highest = _sets.back().begin(); + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } + } + } + + void findMinCutIn() { + + for (NodeIt n(_graph); n != INVALID; ++n) { + (*_excess)[n] = 0; + (*_source_set)[n] = false; + } + + for (ArcIt a(_graph); a != INVALID; ++a) { + (*_flow)[a] = 0; + } + + int bucket_num = 0; + std::vector queue(_node_num); + int qfirst = 0, qlast = 0, qsep = 0; + + { + typename Digraph::template NodeMap reached(_graph, false); + + reached[_source] = true; + + bool first_set = true; + + for (NodeIt t(_graph); t != INVALID; ++t) { + if (reached[t]) continue; + _sets.push_front(std::list()); + + queue[qlast++] = t; + reached[t] = true; + + while (qfirst != qlast) { + if (qsep == qfirst) { + ++bucket_num; + _sets.front().push_front(bucket_num); + _dormant[bucket_num] = !first_set; + _first[bucket_num] = _last[bucket_num] = INVALID; + qsep = qlast; + } + + Node n = queue[qfirst++]; + addItem(n, bucket_num); + + for (OutArcIt a(_graph, n); a != INVALID; ++a) { + Node u = _graph.target(a); + if (!reached[u] && _tolerance.positive((*_capacity)[a])) { + reached[u] = true; + queue[qlast++] = u; + } + } + } + first_set = false; + } + + ++bucket_num; + (*_bucket)[_source] = 0; + _dormant[0] = true; + } + (*_source_set)[_source] = true; + + Node target = _last[_sets.back().back()]; + { + for (InArcIt a(_graph, _source); a != INVALID; ++a) { + if (_tolerance.positive((*_capacity)[a])) { + Node u = _graph.source(a); + (*_flow)[a] = (*_capacity)[a]; + (*_excess)[u] += (*_capacity)[a]; + if (!(*_active)[u] && u != _source) { + activate(u); + } + } + } + if ((*_active)[target]) { + deactivate(target); + } + + _highest = _sets.back().begin(); + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } + + + while (true) { + while (_highest != _sets.back().end()) { + Node n = _first[*_highest]; + Value excess = (*_excess)[n]; + int next_bucket = _node_num; + + int under_bucket; + if (++std::list::iterator(_highest) == _sets.back().end()) { + under_bucket = -1; + } else { + under_bucket = *(++std::list::iterator(_highest)); + } + + for (InArcIt a(_graph, n); a != INVALID; ++a) { + Node v = _graph.source(a); + if (_dormant[(*_bucket)[v]]) continue; + Value rem = (*_capacity)[a] - (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + if ((*_bucket)[v] == under_bucket) { + if (!(*_active)[v] && v != target) { + activate(v); + } + if (!_tolerance.less(rem, excess)) { + (*_flow)[a] += excess; + (*_excess)[v] += excess; + excess = 0; + goto no_more_push; + } else { + excess -= rem; + (*_excess)[v] += rem; + (*_flow)[a] = (*_capacity)[a]; + } + } else if (next_bucket > (*_bucket)[v]) { + next_bucket = (*_bucket)[v]; + } + } + + for (OutArcIt a(_graph, n); a != INVALID; ++a) { + Node v = _graph.target(a); + if (_dormant[(*_bucket)[v]]) continue; + Value rem = (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + if ((*_bucket)[v] == under_bucket) { + if (!(*_active)[v] && v != target) { + activate(v); + } + if (!_tolerance.less(rem, excess)) { + (*_flow)[a] -= excess; + (*_excess)[v] += excess; + excess = 0; + goto no_more_push; + } else { + excess -= rem; + (*_excess)[v] += rem; + (*_flow)[a] = 0; + } + } else if (next_bucket > (*_bucket)[v]) { + next_bucket = (*_bucket)[v]; + } + } + + no_more_push: + + (*_excess)[n] = excess; + + if (excess != 0) { + if ((*_next)[n] == INVALID) { + typename std::list >::iterator new_set = + _sets.insert(--_sets.end(), std::list()); + new_set->splice(new_set->end(), _sets.back(), + _sets.back().begin(), ++_highest); + for (std::list::iterator it = new_set->begin(); + it != new_set->end(); ++it) { + _dormant[*it] = true; + } + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } else if (next_bucket == _node_num) { + _first[(*_bucket)[n]] = (*_next)[n]; + (*_prev)[(*_next)[n]] = INVALID; + + std::list >::iterator new_set = + _sets.insert(--_sets.end(), std::list()); + + new_set->push_front(bucket_num); + (*_bucket)[n] = bucket_num; + _first[bucket_num] = _last[bucket_num] = n; + (*_next)[n] = INVALID; + (*_prev)[n] = INVALID; + _dormant[bucket_num] = true; + ++bucket_num; + + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } else { + _first[*_highest] = (*_next)[n]; + (*_prev)[(*_next)[n]] = INVALID; + + while (next_bucket != *_highest) { + --_highest; + } + if (_highest == _sets.back().begin()) { + _sets.back().push_front(bucket_num); + _dormant[bucket_num] = false; + _first[bucket_num] = _last[bucket_num] = INVALID; + ++bucket_num; + } + --_highest; + + (*_bucket)[n] = *_highest; + (*_next)[n] = _first[*_highest]; + if (_first[*_highest] != INVALID) { + (*_prev)[_first[*_highest]] = n; + } else { + _last[*_highest] = n; + } + _first[*_highest] = n; + } + } else { + + deactivate(n); + if (!(*_active)[_first[*_highest]]) { + ++_highest; + if (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + _highest = _sets.back().end(); + } + } + } + } + + if ((*_excess)[target] < _min_cut) { + _min_cut = (*_excess)[target]; + for (NodeIt i(_graph); i != INVALID; ++i) { + (*_min_cut_map)[i] = false; + } + for (std::list::iterator it = _sets.back().begin(); + it != _sets.back().end(); ++it) { + Node n = _first[*it]; + while (n != INVALID) { + (*_min_cut_map)[n] = true; + n = (*_next)[n]; + } + } + } + + { + Node new_target; + if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) { + if ((*_next)[target] == INVALID) { + _last[(*_bucket)[target]] = (*_prev)[target]; + new_target = (*_prev)[target]; + } else { + (*_prev)[(*_next)[target]] = (*_prev)[target]; + new_target = (*_next)[target]; + } + if ((*_prev)[target] == INVALID) { + _first[(*_bucket)[target]] = (*_next)[target]; + } else { + (*_next)[(*_prev)[target]] = (*_next)[target]; + } + } else { + _sets.back().pop_back(); + if (_sets.back().empty()) { + _sets.pop_back(); + if (_sets.empty()) + break; + for (std::list::iterator it = _sets.back().begin(); + it != _sets.back().end(); ++it) { + _dormant[*it] = false; + } + } + new_target = _last[_sets.back().back()]; + } + + (*_bucket)[target] = 0; + + (*_source_set)[target] = true; + for (InArcIt a(_graph, target); a != INVALID; ++a) { + Value rem = (*_capacity)[a] - (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + Node v = _graph.source(a); + if (!(*_active)[v] && !(*_source_set)[v]) { + activate(v); + } + (*_excess)[v] += rem; + (*_flow)[a] = (*_capacity)[a]; + } + + for (OutArcIt a(_graph, target); a != INVALID; ++a) { + Value rem = (*_flow)[a]; + if (!_tolerance.positive(rem)) continue; + Node v = _graph.target(a); + if (!(*_active)[v] && !(*_source_set)[v]) { + activate(v); + } + (*_excess)[v] += rem; + (*_flow)[a] = 0; + } + + target = new_target; + if ((*_active)[target]) { + deactivate(target); + } + + _highest = _sets.back().begin(); + while (_highest != _sets.back().end() && + !(*_active)[_first[*_highest]]) { + ++_highest; + } + } + } + } + + public: + + /// \name Execution Control + /// The simplest way to execute the algorithm is to use + /// one of the member functions called \ref run(). + /// \n + /// If you need better control on the execution, + /// you have to call one of the \ref init() functions first, then + /// \ref calculateOut() and/or \ref calculateIn(). + + /// @{ + + /// \brief Initialize the internal data structures. + /// + /// This function initializes the internal data structures. It creates + /// the maps and some bucket structures for the algorithm. + /// The first node is used as the source node for the push-relabel + /// algorithm. + void init() { + init(NodeIt(_graph)); + } + + /// \brief Initialize the internal data structures. + /// + /// This function initializes the internal data structures. It creates + /// the maps and some bucket structures for the algorithm. + /// The given node is used as the source node for the push-relabel + /// algorithm. + void init(const Node& source) { + _source = source; + + _node_num = countNodes(_graph); + + _first.resize(_node_num); + _last.resize(_node_num); + + _dormant.resize(_node_num); + + if (!_flow) { + _flow = new FlowMap(_graph); + } + if (!_next) { + _next = new typename Digraph::template NodeMap(_graph); + } + if (!_prev) { + _prev = new typename Digraph::template NodeMap(_graph); + } + if (!_active) { + _active = new typename Digraph::template NodeMap(_graph); + } + if (!_bucket) { + _bucket = new typename Digraph::template NodeMap(_graph); + } + if (!_excess) { + _excess = new ExcessMap(_graph); + } + if (!_source_set) { + _source_set = new SourceSetMap(_graph); + } + if (!_min_cut_map) { + _min_cut_map = new MinCutMap(_graph); + } + + _min_cut = std::numeric_limits::max(); + } + + + /// \brief Calculate a minimum cut with \f$ source \f$ on the + /// source-side. + /// + /// This function calculates a minimum cut with \f$ source \f$ on the + /// source-side (i.e. a set \f$ X\subsetneq V \f$ with + /// \f$ source \in X \f$ and minimal outgoing capacity). + /// + /// \pre \ref init() must be called before using this function. + void calculateOut() { + findMinCutOut(); + } + + /// \brief Calculate a minimum cut with \f$ source \f$ on the + /// sink-side. + /// + /// This function calculates a minimum cut with \f$ source \f$ on the + /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with + /// \f$ source \notin X \f$ and minimal outgoing capacity). + /// + /// \pre \ref init() must be called before using this function. + void calculateIn() { + findMinCutIn(); + } + + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. It finds nodes \c source and + /// \c target arbitrarily and then calls \ref init(), \ref calculateOut() + /// and \ref calculateIn(). + void run() { + init(); + calculateOut(); + calculateIn(); + } + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. It uses the given \c source node, + /// finds a proper \c target node and then calls the \ref init(), + /// \ref calculateOut() and \ref calculateIn(). + void run(const Node& s) { + init(s); + calculateOut(); + calculateIn(); + } + + /// @} + + /// \name Query Functions + /// The result of the %HaoOrlin algorithm + /// can be obtained using these functions.\n + /// \ref run(), \ref calculateOut() or \ref calculateIn() + /// should be called before using them. + + /// @{ + + /// \brief Return the value of the minimum cut. + /// + /// This function returns the value of the minimum cut. + /// + /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() + /// must be called before using this function. + Value minCutValue() const { + return _min_cut; + } + + + /// \brief Return a minimum cut. + /// + /// This function sets \c cutMap to the characteristic vector of a + /// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ + /// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly + /// for the nodes of \f$ X \f$). + /// + /// \param cutMap A \ref concepts::WriteMap "writable" node map with + /// \c bool (or convertible) value type. + /// + /// \return The value of the minimum cut. + /// + /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() + /// must be called before using this function. + template + Value minCutMap(CutMap& cutMap) const { + for (NodeIt it(_graph); it != INVALID; ++it) { + cutMap.set(it, (*_min_cut_map)[it]); + } + return _min_cut; + } + + /// @} + + }; //class HaoOrlin + +} //namespace lemon + +#endif //LEMON_HAO_ORLIN_H