diff -r cd72eae05bdf -r 3c00344f49c9 lemon/christofides_tsp.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/christofides_tsp.h Wed Oct 17 19:14:07 2018 +0200 @@ -0,0 +1,254 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2013 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_CHRISTOFIDES_TSP_H +#define LEMON_CHRISTOFIDES_TSP_H + +/// \ingroup tsp +/// \file +/// \brief Christofides algorithm for symmetric TSP + +#include +#include +#include +#include +#include + +namespace lemon { + + /// \ingroup tsp + /// + /// \brief Christofides algorithm for symmetric TSP. + /// + /// ChristofidesTsp implements Christofides' heuristic for solving + /// symmetric \ref tsp "TSP". + /// + /// This a well-known approximation method for the TSP problem with + /// metric cost function. + /// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour + /// whose total cost is at most 3/2 of the optimum), but it usually + /// provides better solutions in practice. + /// This implementation runs in O(n3log(n)) time. + /// + /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and + /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching" + /// in the subgraph induced by the nodes that have odd degree in the + /// spanning tree. + /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal" + /// of the union of the spanning tree and the matching. + /// During this last step, the algorithm simply skips the visited nodes + /// (i.e. creates shortcuts) assuming that the triangle inequality holds + /// for the cost function. + /// + /// \tparam CM Type of the cost map. + /// + /// \warning CM::Value must be a signed number type. + template + class ChristofidesTsp + { + public: + + /// Type of the cost map + typedef CM CostMap; + /// Type of the edge costs + typedef typename CM::Value Cost; + + private: + + GRAPH_TYPEDEFS(FullGraph); + + const FullGraph &_gr; + const CostMap &_cost; + std::vector _path; + Cost _sum; + + public: + + /// \brief Constructor + /// + /// Constructor. + /// \param gr The \ref FullGraph "full graph" the algorithm runs on. + /// \param cost The cost map. + ChristofidesTsp(const FullGraph &gr, const CostMap &cost) + : _gr(gr), _cost(cost) {} + + /// \name Execution Control + /// @{ + + /// \brief Runs the algorithm. + /// + /// This function runs the algorithm. + /// + /// \return The total cost of the found tour. + Cost run() { + _path.clear(); + + if (_gr.nodeNum() == 0) return _sum = 0; + else if (_gr.nodeNum() == 1) { + _path.push_back(_gr(0)); + return _sum = 0; + } + else if (_gr.nodeNum() == 2) { + _path.push_back(_gr(0)); + _path.push_back(_gr(1)); + return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))]; + } + + // Compute min. cost spanning tree + std::vector tree; + kruskal(_gr, _cost, std::back_inserter(tree)); + + FullGraph::NodeMap deg(_gr, 0); + for (int i = 0; i != int(tree.size()); ++i) { + Edge e = tree[i]; + ++deg[_gr.u(e)]; + ++deg[_gr.v(e)]; + } + + // Copy the induced subgraph of odd nodes + std::vector odd_nodes; + for (NodeIt u(_gr); u != INVALID; ++u) { + if (deg[u] % 2 == 1) odd_nodes.push_back(u); + } + + SmartGraph sgr; + SmartGraph::EdgeMap scost(sgr); + for (int i = 0; i != int(odd_nodes.size()); ++i) { + sgr.addNode(); + } + for (int i = 0; i != int(odd_nodes.size()); ++i) { + for (int j = 0; j != int(odd_nodes.size()); ++j) { + if (j == i) continue; + SmartGraph::Edge e = + sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j)); + scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])]; + } + } + + // Compute min. cost perfect matching + MaxWeightedPerfectMatching > + mwpm(sgr, scost); + mwpm.run(); + + for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) { + if (mwpm.matching(e)) { + tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))], + odd_nodes[sgr.id(sgr.v(e))]) ); + } + } + + // Join the spanning tree and the matching + sgr.clear(); + for (int i = 0; i != _gr.nodeNum(); ++i) { + sgr.addNode(); + } + for (int i = 0; i != int(tree.size()); ++i) { + int ui = _gr.id(_gr.u(tree[i])), + vi = _gr.id(_gr.v(tree[i])); + sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi)); + } + + // Compute the tour from the Euler traversal + SmartGraph::NodeMap visited(sgr, false); + for (EulerIt e(sgr); e != INVALID; ++e) { + SmartGraph::Node n = sgr.target(e); + if (!visited[n]) { + _path.push_back(_gr(sgr.id(n))); + visited[n] = true; + } + } + + _sum = _cost[_gr.edge(_path.back(), _path.front())]; + for (int i = 0; i < int(_path.size())-1; ++i) { + _sum += _cost[_gr.edge(_path[i], _path[i+1])]; + } + + return _sum; + } + + /// @} + + /// \name Query Functions + /// @{ + + /// \brief The total cost of the found tour. + /// + /// This function returns the total cost of the found tour. + /// + /// \pre run() must be called before using this function. + Cost tourCost() const { + return _sum; + } + + /// \brief Returns a const reference to the node sequence of the + /// found tour. + /// + /// This function returns a const reference to a vector + /// that stores the node sequence of the found tour. + /// + /// \pre run() must be called before using this function. + const std::vector& tourNodes() const { + return _path; + } + + /// \brief Gives back the node sequence of the found tour. + /// + /// This function copies the node sequence of the found tour into + /// an STL container through the given output iterator. The + /// value_type of the container must be FullGraph::Node. + /// For example, + /// \code + /// std::vector nodes(countNodes(graph)); + /// tsp.tourNodes(nodes.begin()); + /// \endcode + /// or + /// \code + /// std::list nodes; + /// tsp.tourNodes(std::back_inserter(nodes)); + /// \endcode + /// + /// \pre run() must be called before using this function. + template + void tourNodes(Iterator out) const { + std::copy(_path.begin(), _path.end(), out); + } + + /// \brief Gives back the found tour as a path. + /// + /// This function copies the found tour as a list of arcs/edges into + /// the given \ref lemon::concepts::Path "path structure". + /// + /// \pre run() must be called before using this function. + template + void tour(Path &path) const { + path.clear(); + for (int i = 0; i < int(_path.size()) - 1; ++i) { + path.addBack(_gr.arc(_path[i], _path[i+1])); + } + if (int(_path.size()) >= 2) { + path.addBack(_gr.arc(_path.back(), _path.front())); + } + } + + /// @} + + }; + +}; // namespace lemon + +#endif