diff -r cd72eae05bdf -r 3c00344f49c9 lemon/concepts/bpgraph.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/concepts/bpgraph.h Wed Oct 17 19:14:07 2018 +0200 @@ -0,0 +1,1029 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2013 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +///\ingroup graph_concepts +///\file +///\brief The concept of undirected graphs. + +#ifndef LEMON_CONCEPTS_BPGRAPH_H +#define LEMON_CONCEPTS_BPGRAPH_H + +#include +#include +#include +#include + +namespace lemon { + namespace concepts { + + /// \ingroup graph_concepts + /// + /// \brief Class describing the concept of undirected bipartite graphs. + /// + /// This class describes the common interface of all undirected + /// bipartite graphs. + /// + /// Like all concept classes, it only provides an interface + /// without any sensible implementation. So any general algorithm for + /// undirected bipartite graphs should compile with this class, + /// but it will not run properly, of course. + /// An actual graph implementation like \ref ListBpGraph or + /// \ref SmartBpGraph may have additional functionality. + /// + /// The bipartite graphs also fulfill the concept of \ref Graph + /// "undirected graphs". Bipartite graphs provide a bipartition of + /// the node set, namely a red and blue set of the nodes. The + /// nodes can be iterated with the RedNodeIt and BlueNodeIt in the + /// two node sets. With RedNodeMap and BlueNodeMap values can be + /// assigned to the nodes in the two sets. + /// + /// The edges of the graph cannot connect two nodes of the same + /// set. The edges inherent orientation is from the red nodes to + /// the blue nodes. + /// + /// \sa Graph + class BpGraph { + private: + /// BpGraphs are \e not copy constructible. Use bpGraphCopy instead. + BpGraph(const BpGraph&) {} + /// \brief Assignment of a graph to another one is \e not allowed. + /// Use bpGraphCopy instead. + void operator=(const BpGraph&) {} + + public: + /// Default constructor. + BpGraph() {} + + /// \brief Undirected graphs should be tagged with \c UndirectedTag. + /// + /// Undirected graphs should be tagged with \c UndirectedTag. + /// + /// This tag helps the \c enable_if technics to make compile time + /// specializations for undirected graphs. + typedef True UndirectedTag; + + /// The node type of the graph + + /// This class identifies a node of the graph. It also serves + /// as a base class of the node iterators, + /// thus they convert to this type. + class Node { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the object to an undefined value. + Node() { } + /// Copy constructor. + + /// Copy constructor. + /// + Node(const Node&) { } + + /// %Invalid constructor \& conversion. + + /// Initializes the object to be invalid. + /// \sa Invalid for more details. + Node(Invalid) { } + /// Equality operator + + /// Equality operator. + /// + /// Two iterators are equal if and only if they point to the + /// same object or both are \c INVALID. + bool operator==(Node) const { return true; } + + /// Inequality operator + + /// Inequality operator. + bool operator!=(Node) const { return true; } + + /// Artificial ordering operator. + + /// Artificial ordering operator. + /// + /// \note This operator only has to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Node) const { return false; } + + }; + + /// Class to represent red nodes. + + /// This class represents the red nodes of the graph. It does + /// not supposed to be used directly, because the nodes can be + /// represented as Node instances. This class can be used as + /// template parameter for special map classes. + class RedNode : public Node { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the object to an undefined value. + RedNode() { } + /// Copy constructor. + + /// Copy constructor. + /// + RedNode(const RedNode&) : Node() { } + + /// %Invalid constructor \& conversion. + + /// Initializes the object to be invalid. + /// \sa Invalid for more details. + RedNode(Invalid) { } + + }; + + /// Class to represent blue nodes. + + /// This class represents the blue nodes of the graph. It does + /// not supposed to be used directly, because the nodes can be + /// represented as Node instances. This class can be used as + /// template parameter for special map classes. + class BlueNode : public Node { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the object to an undefined value. + BlueNode() { } + /// Copy constructor. + + /// Copy constructor. + /// + BlueNode(const BlueNode&) : Node() { } + + /// %Invalid constructor \& conversion. + + /// Initializes the object to be invalid. + /// \sa Invalid for more details. + BlueNode(Invalid) { } + + }; + + /// Iterator class for the red nodes. + + /// This iterator goes through each red node of the graph. + /// Its usage is quite simple, for example, you can count the number + /// of red nodes in a graph \c g of type \c %BpGraph like this: + ///\code + /// int count=0; + /// for (BpGraph::RedNodeIt n(g); n!=INVALID; ++n) ++count; + ///\endcode + class RedNodeIt : public RedNode { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + RedNodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + RedNodeIt(const RedNodeIt& n) : RedNode(n) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + RedNodeIt(Invalid) { } + /// Sets the iterator to the first red node. + + /// Sets the iterator to the first red node of the given + /// digraph. + explicit RedNodeIt(const BpGraph&) { } + /// Sets the iterator to the given red node. + + /// Sets the iterator to the given red node of the given + /// digraph. + RedNodeIt(const BpGraph&, const RedNode&) { } + /// Next node. + + /// Assign the iterator to the next red node. + /// + RedNodeIt& operator++() { return *this; } + }; + + /// Iterator class for the blue nodes. + + /// This iterator goes through each blue node of the graph. + /// Its usage is quite simple, for example, you can count the number + /// of blue nodes in a graph \c g of type \c %BpGraph like this: + ///\code + /// int count=0; + /// for (BpGraph::BlueNodeIt n(g); n!=INVALID; ++n) ++count; + ///\endcode + class BlueNodeIt : public BlueNode { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + BlueNodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + BlueNodeIt(const BlueNodeIt& n) : BlueNode(n) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + BlueNodeIt(Invalid) { } + /// Sets the iterator to the first blue node. + + /// Sets the iterator to the first blue node of the given + /// digraph. + explicit BlueNodeIt(const BpGraph&) { } + /// Sets the iterator to the given blue node. + + /// Sets the iterator to the given blue node of the given + /// digraph. + BlueNodeIt(const BpGraph&, const BlueNode&) { } + /// Next node. + + /// Assign the iterator to the next blue node. + /// + BlueNodeIt& operator++() { return *this; } + }; + + /// Iterator class for the nodes. + + /// This iterator goes through each node of the graph. + /// Its usage is quite simple, for example, you can count the number + /// of nodes in a graph \c g of type \c %BpGraph like this: + ///\code + /// int count=0; + /// for (BpGraph::NodeIt n(g); n!=INVALID; ++n) ++count; + ///\endcode + class NodeIt : public Node { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + NodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + NodeIt(const NodeIt& n) : Node(n) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + NodeIt(Invalid) { } + /// Sets the iterator to the first node. + + /// Sets the iterator to the first node of the given digraph. + /// + explicit NodeIt(const BpGraph&) { } + /// Sets the iterator to the given node. + + /// Sets the iterator to the given node of the given digraph. + /// + NodeIt(const BpGraph&, const Node&) { } + /// Next node. + + /// Assign the iterator to the next node. + /// + NodeIt& operator++() { return *this; } + }; + + + /// The edge type of the graph + + /// This class identifies an edge of the graph. It also serves + /// as a base class of the edge iterators, + /// thus they will convert to this type. + class Edge { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the object to an undefined value. + Edge() { } + /// Copy constructor. + + /// Copy constructor. + /// + Edge(const Edge&) { } + /// %Invalid constructor \& conversion. + + /// Initializes the object to be invalid. + /// \sa Invalid for more details. + Edge(Invalid) { } + /// Equality operator + + /// Equality operator. + /// + /// Two iterators are equal if and only if they point to the + /// same object or both are \c INVALID. + bool operator==(Edge) const { return true; } + /// Inequality operator + + /// Inequality operator. + bool operator!=(Edge) const { return true; } + + /// Artificial ordering operator. + + /// Artificial ordering operator. + /// + /// \note This operator only has to define some strict ordering of + /// the edges; this order has nothing to do with the iteration + /// ordering of the edges. + bool operator<(Edge) const { return false; } + }; + + /// Iterator class for the edges. + + /// This iterator goes through each edge of the graph. + /// Its usage is quite simple, for example, you can count the number + /// of edges in a graph \c g of type \c %BpGraph as follows: + ///\code + /// int count=0; + /// for(BpGraph::EdgeIt e(g); e!=INVALID; ++e) ++count; + ///\endcode + class EdgeIt : public Edge { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + EdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + EdgeIt(const EdgeIt& e) : Edge(e) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + EdgeIt(Invalid) { } + /// Sets the iterator to the first edge. + + /// Sets the iterator to the first edge of the given graph. + /// + explicit EdgeIt(const BpGraph&) { } + /// Sets the iterator to the given edge. + + /// Sets the iterator to the given edge of the given graph. + /// + EdgeIt(const BpGraph&, const Edge&) { } + /// Next edge + + /// Assign the iterator to the next edge. + /// + EdgeIt& operator++() { return *this; } + }; + + /// Iterator class for the incident edges of a node. + + /// This iterator goes trough the incident undirected edges + /// of a certain node of a graph. + /// Its usage is quite simple, for example, you can compute the + /// degree (i.e. the number of incident edges) of a node \c n + /// in a graph \c g of type \c %BpGraph as follows. + /// + ///\code + /// int count=0; + /// for(BpGraph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; + ///\endcode + /// + /// \warning Loop edges will be iterated twice. + class IncEdgeIt : public Edge { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + IncEdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + IncEdgeIt(const IncEdgeIt& e) : Edge(e) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + IncEdgeIt(Invalid) { } + /// Sets the iterator to the first incident edge. + + /// Sets the iterator to the first incident edge of the given node. + /// + IncEdgeIt(const BpGraph&, const Node&) { } + /// Sets the iterator to the given edge. + + /// Sets the iterator to the given edge of the given graph. + /// + IncEdgeIt(const BpGraph&, const Edge&) { } + /// Next incident edge + + /// Assign the iterator to the next incident edge + /// of the corresponding node. + IncEdgeIt& operator++() { return *this; } + }; + + /// The arc type of the graph + + /// This class identifies a directed arc of the graph. It also serves + /// as a base class of the arc iterators, + /// thus they will convert to this type. + class Arc { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the object to an undefined value. + Arc() { } + /// Copy constructor. + + /// Copy constructor. + /// + Arc(const Arc&) { } + /// %Invalid constructor \& conversion. + + /// Initializes the object to be invalid. + /// \sa Invalid for more details. + Arc(Invalid) { } + /// Equality operator + + /// Equality operator. + /// + /// Two iterators are equal if and only if they point to the + /// same object or both are \c INVALID. + bool operator==(Arc) const { return true; } + /// Inequality operator + + /// Inequality operator. + bool operator!=(Arc) const { return true; } + + /// Artificial ordering operator. + + /// Artificial ordering operator. + /// + /// \note This operator only has to define some strict ordering of + /// the arcs; this order has nothing to do with the iteration + /// ordering of the arcs. + bool operator<(Arc) const { return false; } + + /// Converison to \c Edge + + /// Converison to \c Edge. + /// + operator Edge() const { return Edge(); } + }; + + /// Iterator class for the arcs. + + /// This iterator goes through each directed arc of the graph. + /// Its usage is quite simple, for example, you can count the number + /// of arcs in a graph \c g of type \c %BpGraph as follows: + ///\code + /// int count=0; + /// for(BpGraph::ArcIt a(g); a!=INVALID; ++a) ++count; + ///\endcode + class ArcIt : public Arc { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + ArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + ArcIt(const ArcIt& e) : Arc(e) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + ArcIt(Invalid) { } + /// Sets the iterator to the first arc. + + /// Sets the iterator to the first arc of the given graph. + /// + explicit ArcIt(const BpGraph &g) + { + ::lemon::ignore_unused_variable_warning(g); + } + /// Sets the iterator to the given arc. + + /// Sets the iterator to the given arc of the given graph. + /// + ArcIt(const BpGraph&, const Arc&) { } + /// Next arc + + /// Assign the iterator to the next arc. + /// + ArcIt& operator++() { return *this; } + }; + + /// Iterator class for the outgoing arcs of a node. + + /// This iterator goes trough the \e outgoing directed arcs of a + /// certain node of a graph. + /// Its usage is quite simple, for example, you can count the number + /// of outgoing arcs of a node \c n + /// in a graph \c g of type \c %BpGraph as follows. + ///\code + /// int count=0; + /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; + ///\endcode + class OutArcIt : public Arc { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + OutArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + OutArcIt(const OutArcIt& e) : Arc(e) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + OutArcIt(Invalid) { } + /// Sets the iterator to the first outgoing arc. + + /// Sets the iterator to the first outgoing arc of the given node. + /// + OutArcIt(const BpGraph& n, const Node& g) { + ::lemon::ignore_unused_variable_warning(n); + ::lemon::ignore_unused_variable_warning(g); + } + /// Sets the iterator to the given arc. + + /// Sets the iterator to the given arc of the given graph. + /// + OutArcIt(const BpGraph&, const Arc&) { } + /// Next outgoing arc + + /// Assign the iterator to the next + /// outgoing arc of the corresponding node. + OutArcIt& operator++() { return *this; } + }; + + /// Iterator class for the incoming arcs of a node. + + /// This iterator goes trough the \e incoming directed arcs of a + /// certain node of a graph. + /// Its usage is quite simple, for example, you can count the number + /// of incoming arcs of a node \c n + /// in a graph \c g of type \c %BpGraph as follows. + ///\code + /// int count=0; + /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; + ///\endcode + class InArcIt : public Arc { + public: + /// Default constructor + + /// Default constructor. + /// \warning It sets the iterator to an undefined value. + InArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + InArcIt(const InArcIt& e) : Arc(e) { } + /// %Invalid constructor \& conversion. + + /// Initializes the iterator to be invalid. + /// \sa Invalid for more details. + InArcIt(Invalid) { } + /// Sets the iterator to the first incoming arc. + + /// Sets the iterator to the first incoming arc of the given node. + /// + InArcIt(const BpGraph& g, const Node& n) { + ::lemon::ignore_unused_variable_warning(n); + ::lemon::ignore_unused_variable_warning(g); + } + /// Sets the iterator to the given arc. + + /// Sets the iterator to the given arc of the given graph. + /// + InArcIt(const BpGraph&, const Arc&) { } + /// Next incoming arc + + /// Assign the iterator to the next + /// incoming arc of the corresponding node. + InArcIt& operator++() { return *this; } + }; + + /// \brief Standard graph map type for the nodes. + /// + /// Standard graph map type for the nodes. + /// It conforms to the ReferenceMap concept. + template + class NodeMap : public ReferenceMap + { + public: + + /// Constructor + explicit NodeMap(const BpGraph&) { } + /// Constructor with given initial value + NodeMap(const BpGraph&, T) { } + + private: + ///Copy constructor + NodeMap(const NodeMap& nm) : + ReferenceMap(nm) { } + ///Assignment operator + template + NodeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Standard graph map type for the red nodes. + /// + /// Standard graph map type for the red nodes. + /// It conforms to the ReferenceMap concept. + template + class RedNodeMap : public ReferenceMap + { + public: + + /// Constructor + explicit RedNodeMap(const BpGraph&) { } + /// Constructor with given initial value + RedNodeMap(const BpGraph&, T) { } + + private: + ///Copy constructor + RedNodeMap(const RedNodeMap& nm) : + ReferenceMap(nm) { } + ///Assignment operator + template + RedNodeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Standard graph map type for the blue nodes. + /// + /// Standard graph map type for the blue nodes. + /// It conforms to the ReferenceMap concept. + template + class BlueNodeMap : public ReferenceMap + { + public: + + /// Constructor + explicit BlueNodeMap(const BpGraph&) { } + /// Constructor with given initial value + BlueNodeMap(const BpGraph&, T) { } + + private: + ///Copy constructor + BlueNodeMap(const BlueNodeMap& nm) : + ReferenceMap(nm) { } + ///Assignment operator + template + BlueNodeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Standard graph map type for the arcs. + /// + /// Standard graph map type for the arcs. + /// It conforms to the ReferenceMap concept. + template + class ArcMap : public ReferenceMap + { + public: + + /// Constructor + explicit ArcMap(const BpGraph&) { } + /// Constructor with given initial value + ArcMap(const BpGraph&, T) { } + + private: + ///Copy constructor + ArcMap(const ArcMap& em) : + ReferenceMap(em) { } + ///Assignment operator + template + ArcMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Standard graph map type for the edges. + /// + /// Standard graph map type for the edges. + /// It conforms to the ReferenceMap concept. + template + class EdgeMap : public ReferenceMap + { + public: + + /// Constructor + explicit EdgeMap(const BpGraph&) { } + /// Constructor with given initial value + EdgeMap(const BpGraph&, T) { } + + private: + ///Copy constructor + EdgeMap(const EdgeMap& em) : + ReferenceMap(em) {} + ///Assignment operator + template + EdgeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Gives back %true for red nodes. + /// + /// Gives back %true for red nodes. + bool red(const Node&) const { return true; } + + /// \brief Gives back %true for blue nodes. + /// + /// Gives back %true for blue nodes. + bool blue(const Node&) const { return true; } + + /// \brief Converts the node to red node object. + /// + /// This function converts unsafely the node to red node + /// object. It should be called only if the node is from the red + /// partition or INVALID. + RedNode asRedNodeUnsafe(const Node&) const { return RedNode(); } + + /// \brief Converts the node to blue node object. + /// + /// This function converts unsafely the node to blue node + /// object. It should be called only if the node is from the red + /// partition or INVALID. + BlueNode asBlueNodeUnsafe(const Node&) const { return BlueNode(); } + + /// \brief Converts the node to red node object. + /// + /// This function converts safely the node to red node + /// object. If the node is not from the red partition, then it + /// returns INVALID. + RedNode asRedNode(const Node&) const { return RedNode(); } + + /// \brief Converts the node to blue node object. + /// + /// This function converts unsafely the node to blue node + /// object. If the node is not from the blue partition, then it + /// returns INVALID. + BlueNode asBlueNode(const Node&) const { return BlueNode(); } + + /// \brief Gives back the red end node of the edge. + /// + /// Gives back the red end node of the edge. + RedNode redNode(const Edge&) const { return RedNode(); } + + /// \brief Gives back the blue end node of the edge. + /// + /// Gives back the blue end node of the edge. + BlueNode blueNode(const Edge&) const { return BlueNode(); } + + /// \brief The first node of the edge. + /// + /// It is a synonim for the \c redNode(). + Node u(Edge) const { return INVALID; } + + /// \brief The second node of the edge. + /// + /// It is a synonim for the \c blueNode(). + Node v(Edge) const { return INVALID; } + + /// \brief The source node of the arc. + /// + /// Returns the source node of the given arc. + Node source(Arc) const { return INVALID; } + + /// \brief The target node of the arc. + /// + /// Returns the target node of the given arc. + Node target(Arc) const { return INVALID; } + + /// \brief The ID of the node. + /// + /// Returns the ID of the given node. + int id(Node) const { return -1; } + + /// \brief The red ID of the node. + /// + /// Returns the red ID of the given node. + int id(RedNode) const { return -1; } + + /// \brief The blue ID of the node. + /// + /// Returns the blue ID of the given node. + int id(BlueNode) const { return -1; } + + /// \brief The ID of the edge. + /// + /// Returns the ID of the given edge. + int id(Edge) const { return -1; } + + /// \brief The ID of the arc. + /// + /// Returns the ID of the given arc. + int id(Arc) const { return -1; } + + /// \brief The node with the given ID. + /// + /// Returns the node with the given ID. + /// \pre The argument should be a valid node ID in the graph. + Node nodeFromId(int) const { return INVALID; } + + /// \brief The edge with the given ID. + /// + /// Returns the edge with the given ID. + /// \pre The argument should be a valid edge ID in the graph. + Edge edgeFromId(int) const { return INVALID; } + + /// \brief The arc with the given ID. + /// + /// Returns the arc with the given ID. + /// \pre The argument should be a valid arc ID in the graph. + Arc arcFromId(int) const { return INVALID; } + + /// \brief An upper bound on the node IDs. + /// + /// Returns an upper bound on the node IDs. + int maxNodeId() const { return -1; } + + /// \brief An upper bound on the red IDs. + /// + /// Returns an upper bound on the red IDs. + int maxRedId() const { return -1; } + + /// \brief An upper bound on the blue IDs. + /// + /// Returns an upper bound on the blue IDs. + int maxBlueId() const { return -1; } + + /// \brief An upper bound on the edge IDs. + /// + /// Returns an upper bound on the edge IDs. + int maxEdgeId() const { return -1; } + + /// \brief An upper bound on the arc IDs. + /// + /// Returns an upper bound on the arc IDs. + int maxArcId() const { return -1; } + + /// \brief The direction of the arc. + /// + /// Returns \c true if the given arc goes from a red node to a blue node. + bool direction(Arc) const { return true; } + + /// \brief Direct the edge. + /// + /// Direct the given edge. The returned arc + /// represents the given edge and its direction comes + /// from the bool parameter. If it is \c true, then the source of the node + /// will be a red node. + Arc direct(Edge, bool) const { + return INVALID; + } + + /// \brief Direct the edge. + /// + /// Direct the given edge. The returned arc represents the given + /// edge and its source node is the given node. + Arc direct(Edge, Node) const { + return INVALID; + } + + /// \brief The oppositely directed arc. + /// + /// Returns the oppositely directed arc representing the same edge. + Arc oppositeArc(Arc) const { return INVALID; } + + /// \brief The opposite node on the edge. + /// + /// Returns the opposite node on the given edge. + Node oppositeNode(Node, Edge) const { return INVALID; } + + void first(Node&) const {} + void next(Node&) const {} + + void firstRed(RedNode&) const {} + void nextRed(RedNode&) const {} + + void firstBlue(BlueNode&) const {} + void nextBlue(BlueNode&) const {} + + void first(Edge&) const {} + void next(Edge&) const {} + + void first(Arc&) const {} + void next(Arc&) const {} + + void firstOut(Arc&, Node) const {} + void nextOut(Arc&) const {} + + void firstIn(Arc&, Node) const {} + void nextIn(Arc&) const {} + + void firstInc(Edge &, bool &, const Node &) const {} + void nextInc(Edge &, bool &) const {} + + // The second parameter is dummy. + Node fromId(int, Node) const { return INVALID; } + // The second parameter is dummy. + Edge fromId(int, Edge) const { return INVALID; } + // The second parameter is dummy. + Arc fromId(int, Arc) const { return INVALID; } + + // Dummy parameter. + int maxId(Node) const { return -1; } + // Dummy parameter. + int maxId(RedNode) const { return -1; } + // Dummy parameter. + int maxId(BlueNode) const { return -1; } + // Dummy parameter. + int maxId(Edge) const { return -1; } + // Dummy parameter. + int maxId(Arc) const { return -1; } + + /// \brief The base node of the iterator. + /// + /// Returns the base node of the given incident edge iterator. + Node baseNode(IncEdgeIt) const { return INVALID; } + + /// \brief The running node of the iterator. + /// + /// Returns the running node of the given incident edge iterator. + Node runningNode(IncEdgeIt) const { return INVALID; } + + /// \brief The base node of the iterator. + /// + /// Returns the base node of the given outgoing arc iterator + /// (i.e. the source node of the corresponding arc). + Node baseNode(OutArcIt) const { return INVALID; } + + /// \brief The running node of the iterator. + /// + /// Returns the running node of the given outgoing arc iterator + /// (i.e. the target node of the corresponding arc). + Node runningNode(OutArcIt) const { return INVALID; } + + /// \brief The base node of the iterator. + /// + /// Returns the base node of the given incoming arc iterator + /// (i.e. the target node of the corresponding arc). + Node baseNode(InArcIt) const { return INVALID; } + + /// \brief The running node of the iterator. + /// + /// Returns the running node of the given incoming arc iterator + /// (i.e. the source node of the corresponding arc). + Node runningNode(InArcIt) const { return INVALID; } + + template + struct Constraints { + void constraints() { + checkConcept(); + checkConcept, _BpGraph>(); + checkConcept, _BpGraph>(); + checkConcept, _BpGraph>(); + } + }; + + }; + + } + +} + +#endif