diff -r cd72eae05bdf -r 3c00344f49c9 lemon/cost_scaling.h --- a/lemon/cost_scaling.h Mon Jul 16 16:21:40 2018 +0200 +++ b/lemon/cost_scaling.h Wed Oct 17 19:14:07 2018 +0200 @@ -2,7 +2,7 @@ * * This file is a part of LEMON, a generic C++ optimization library. * - * Copyright (C) 2003-2010 + * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * @@ -91,11 +91,18 @@ /// /// \ref CostScaling implements a cost scaling algorithm that performs /// push/augment and relabel operations for finding a \ref min_cost_flow - /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, - /// \ref goldberg97efficient, \ref bunnagel98efficient. + /// "minimum cost flow" \cite amo93networkflows, + /// \cite goldberg90approximation, + /// \cite goldberg97efficient, \cite bunnagel98efficient. /// It is a highly efficient primal-dual solution method, which /// can be viewed as the generalization of the \ref Preflow /// "preflow push-relabel" algorithm for the maximum flow problem. + /// It is a polynomial algorithm, its running time complexity is + /// \f$O(n^2m\log(nK))\f$, where K denotes the maximum arc cost. + /// + /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest + /// implementations available in LEMON for solving this problem. + /// (For more information, see \ref min_cost_flow_algs "the module page".) /// /// Most of the parameters of the problem (except for the digraph) /// can be given using separate functions, and the algorithm can be @@ -113,10 +120,11 @@ /// In most cases, this parameter should not be set directly, /// consider to use the named template parameters instead. /// - /// \warning Both number types must be signed and all input data must + /// \warning Both \c V and \c C must be signed number types. + /// \warning All input data (capacities, supply values, and costs) must /// be integer. - /// \warning This algorithm does not support negative costs for such - /// arcs that have infinite upper bound. + /// \warning This algorithm does not support negative costs for + /// arcs having infinite upper bound. /// /// \note %CostScaling provides three different internal methods, /// from which the most efficient one is used by default. @@ -145,7 +153,8 @@ /// otherwise it is \c double. typedef typename TR::LargeCost LargeCost; - /// The \ref CostScalingDefaultTraits "traits class" of the algorithm + /// \brief The \ref lemon::CostScalingDefaultTraits "traits class" + /// of the algorithm typedef TR Traits; public: @@ -178,7 +187,7 @@ /// in their base operations, which are used in conjunction with the /// relabel operation. /// By default, the so called \ref PARTIAL_AUGMENT - /// "Partial Augment-Relabel" method is used, which proved to be + /// "Partial Augment-Relabel" method is used, which turned out to be /// the most efficient and the most robust on various test inputs. /// However, the other methods can be selected using the \ref run() /// function with the proper parameter. @@ -205,7 +214,8 @@ typedef std::vector CostVector; typedef std::vector LargeCostVector; typedef std::vector BoolVector; - // Note: vector is used instead of vector for efficiency reasons + // Note: vector is used instead of vector + // for efficiency reasons private: @@ -233,7 +243,6 @@ std::vector& _v; }; - typedef StaticVectorMap LargeCostNodeMap; typedef StaticVectorMap LargeCostArcMap; private: @@ -247,7 +256,7 @@ int _root; // Parameters of the problem - bool _have_lower; + bool _has_lower; Value _sum_supply; int _sup_node_num; @@ -284,14 +293,6 @@ IntVector _rank; int _max_rank; - // Data for a StaticDigraph structure - typedef std::pair IntPair; - StaticDigraph _sgr; - std::vector _arc_vec; - std::vector _cost_vec; - LargeCostArcMap _cost_map; - LargeCostNodeMap _pi_map; - public: /// \brief Constant for infinite upper bounds (capacities). @@ -338,7 +339,6 @@ /// \param graph The digraph the algorithm runs on. CostScaling(const GR& graph) : _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), - _cost_map(_cost_vec), _pi_map(_pi), INF(std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max()) @@ -372,10 +372,9 @@ /// \return (*this) template CostScaling& lowerMap(const LowerMap& map) { - _have_lower = true; + _has_lower = true; for (ArcIt a(_graph); a != INVALID; ++a) { _lower[_arc_idf[a]] = map[a]; - _lower[_arc_idb[a]] = map[a]; } return *this; } @@ -447,7 +446,7 @@ /// calling \ref run(), the supply of each node will be set to zero. /// /// Using this function has the same effect as using \ref supplyMap() - /// with such a map in which \c k is assigned to \c s, \c -k is + /// with a map in which \c k is assigned to \c s, \c -k is /// assigned to \c t and all other nodes have zero supply value. /// /// \param s The source node. @@ -493,7 +492,7 @@ /// /// \param method The internal method that will be used in the /// algorithm. For more information, see \ref Method. - /// \param factor The cost scaling factor. It must be larger than one. + /// \param factor The cost scaling factor. It must be at least two. /// /// \return \c INFEASIBLE if no feasible flow exists, /// \n \c OPTIMAL if the problem has optimal solution @@ -507,7 +506,8 @@ /// /// \see ProblemType, Method /// \see resetParams(), reset() - ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { + ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) { + LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2"); _alpha = factor; ProblemType pt = init(); if (pt != OPTIMAL) return pt; @@ -567,22 +567,29 @@ _scost[j] = 0; _scost[_reverse[j]] = 0; } - _have_lower = false; + _has_lower = false; return *this; } - /// \brief Reset all the parameters that have been given before. + /// \brief Reset the internal data structures and all the parameters + /// that have been given before. /// - /// This function resets all the paramaters that have been given - /// before using functions \ref lowerMap(), \ref upperMap(), - /// \ref costMap(), \ref supplyMap(), \ref stSupply(). + /// This function resets the internal data structures and all the + /// paramaters that have been given before using functions \ref lowerMap(), + /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). /// - /// It is useful for multiple run() calls. If this function is not - /// used, all the parameters given before are kept for the next - /// \ref run() call. - /// However, the underlying digraph must not be modified after this - /// class have been constructed, since it copies and extends the graph. + /// It is useful for multiple \ref run() calls. By default, all the given + /// parameters are kept for the next \ref run() call, unless + /// \ref resetParams() or \ref reset() is used. + /// If the underlying digraph was also modified after the construction + /// of the class or the last \ref reset() call, then the \ref reset() + /// function must be used, otherwise \ref resetParams() is sufficient. + /// + /// See \ref resetParams() for examples. + /// /// \return (*this) + /// + /// \see resetParams(), run() CostScaling& reset() { // Resize vectors _node_num = countNodes(_graph); @@ -608,9 +615,6 @@ _excess.resize(_res_node_num); _next_out.resize(_res_node_num); - _arc_vec.reserve(_res_arc_num); - _cost_vec.reserve(_res_arc_num); - // Copy the graph int i = 0, j = 0, k = 2 * _arc_num + _node_num; for (NodeIt n(_graph); n != INVALID; ++n, ++i) { @@ -667,7 +671,7 @@ /// \brief Return the total cost of the found flow. /// /// This function returns the total cost of the found flow. - /// Its complexity is O(e). + /// Its complexity is O(m). /// /// \note The return type of the function can be specified as a /// template parameter. For example, @@ -705,7 +709,8 @@ return _res_cap[_arc_idb[a]]; } - /// \brief Return the flow map (the primal solution). + /// \brief Copy the flow values (the primal solution) into the + /// given map. /// /// This function copies the flow value on each arc into the given /// map. The \c Value type of the algorithm must be convertible to @@ -729,7 +734,8 @@ return static_cast(_pi[_node_id[n]]); } - /// \brief Return the potential map (the dual solution). + /// \brief Copy the potential values (the dual solution) into the + /// given map. /// /// This function copies the potential (dual value) of each node /// into the given map. @@ -759,6 +765,10 @@ } if (_sum_supply > 0) return INFEASIBLE; + // Check lower and upper bounds + LEMON_DEBUG(checkBoundMaps(), + "Upper bounds must be greater or equal to the lower bounds"); + // Initialize vectors for (int i = 0; i != _res_node_num; ++i) { @@ -769,7 +779,7 @@ // Remove infinite upper bounds and check negative arcs const Value MAX = std::numeric_limits::max(); int last_out; - if (_have_lower) { + if (_has_lower) { for (int i = 0; i != _root; ++i) { last_out = _first_out[i+1]; for (int j = _first_out[i]; j != last_out; ++j) { @@ -826,7 +836,7 @@ for (NodeIt n(_graph); n != INVALID; ++n) { sup[n] = _supply[_node_id[n]]; } - if (_have_lower) { + if (_has_lower) { for (ArcIt a(_graph); a != INVALID; ++a) { int j = _arc_idf[a]; Value c = _lower[j]; @@ -886,14 +896,6 @@ } } - return OPTIMAL; - } - - // Execute the algorithm and transform the results - void start(Method method) { - // Maximum path length for partial augment - const int MAX_PATH_LENGTH = 4; - // Initialize data structures for buckets _max_rank = _alpha * _res_node_num; _buckets.resize(_max_rank); @@ -901,7 +903,22 @@ _bucket_prev.resize(_res_node_num + 1); _rank.resize(_res_node_num + 1); - // Execute the algorithm + return OPTIMAL; + } + + // Check if the upper bound is greater than or equal to the lower bound + // on each forward arc. + bool checkBoundMaps() { + for (int j = 0; j != _res_arc_num; ++j) { + if (_forward[j] && _upper[j] < _lower[j]) return false; + } + return true; + } + + // Execute the algorithm and transform the results + void start(Method method) { + const int MAX_PARTIAL_PATH_LENGTH = 4; + switch (method) { case PUSH: startPush(); @@ -910,32 +927,73 @@ startAugment(_res_node_num - 1); break; case PARTIAL_AUGMENT: - startAugment(MAX_PATH_LENGTH); + startAugment(MAX_PARTIAL_PATH_LENGTH); break; } - // Compute node potentials for the original costs - _arc_vec.clear(); - _cost_vec.clear(); - for (int j = 0; j != _res_arc_num; ++j) { - if (_res_cap[j] > 0) { - _arc_vec.push_back(IntPair(_source[j], _target[j])); - _cost_vec.push_back(_scost[j]); + // Compute node potentials (dual solution) + for (int i = 0; i != _res_node_num; ++i) { + _pi[i] = static_cast(_pi[i] / (_res_node_num * _alpha)); + } + bool optimal = true; + for (int i = 0; optimal && i != _res_node_num; ++i) { + LargeCost pi_i = _pi[i]; + int last_out = _first_out[i+1]; + for (int j = _first_out[i]; j != last_out; ++j) { + if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) { + optimal = false; + break; + } } } - _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); - typename BellmanFord - ::template SetDistMap::Create bf(_sgr, _cost_map); - bf.distMap(_pi_map); - bf.init(0); - bf.start(); + if (!optimal) { + // Compute node potentials for the original costs with BellmanFord + // (if it is necessary) + typedef std::pair IntPair; + StaticDigraph sgr; + std::vector arc_vec; + std::vector cost_vec; + LargeCostArcMap cost_map(cost_vec); + + arc_vec.clear(); + cost_vec.clear(); + for (int j = 0; j != _res_arc_num; ++j) { + if (_res_cap[j] > 0) { + int u = _source[j], v = _target[j]; + arc_vec.push_back(IntPair(u, v)); + cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]); + } + } + sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end()); + + typename BellmanFord::Create + bf(sgr, cost_map); + bf.init(0); + bf.start(); + + for (int i = 0; i != _res_node_num; ++i) { + _pi[i] += bf.dist(sgr.node(i)); + } + } + + // Shift potentials to meet the requirements of the GEQ type + // optimality conditions + LargeCost max_pot = _pi[_root]; + for (int i = 0; i != _res_node_num; ++i) { + if (_pi[i] > max_pot) max_pot = _pi[i]; + } + if (max_pot != 0) { + for (int i = 0; i != _res_node_num; ++i) { + _pi[i] -= max_pot; + } + } // Handle non-zero lower bounds - if (_have_lower) { + if (_has_lower) { int limit = _first_out[_root]; for (int j = 0; j != limit; ++j) { - if (!_forward[j]) _res_cap[j] += _lower[j]; + if (_forward[j]) _res_cap[_reverse[j]] += _lower[j]; } } } @@ -947,13 +1005,15 @@ int last_out = _first_out[u+1]; LargeCost pi_u = _pi[u]; for (int a = _first_out[u]; a != last_out; ++a) { - int v = _target[a]; - if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { - Value delta = _res_cap[a]; - _excess[u] -= delta; - _excess[v] += delta; - _res_cap[a] = 0; - _res_cap[_reverse[a]] += delta; + Value delta = _res_cap[a]; + if (delta > 0) { + int v = _target[a]; + if (_cost[a] + pi_u - _pi[v] < 0) { + _excess[u] -= delta; + _excess[v] += delta; + _res_cap[a] = 0; + _res_cap[_reverse[a]] += delta; + } } } } @@ -969,53 +1029,254 @@ } } - // Early termination heuristic - bool earlyTermination() { - const double EARLY_TERM_FACTOR = 3.0; + // Price (potential) refinement heuristic + bool priceRefinement() { - // Build a static residual graph - _arc_vec.clear(); - _cost_vec.clear(); - for (int j = 0; j != _res_arc_num; ++j) { - if (_res_cap[j] > 0) { - _arc_vec.push_back(IntPair(_source[j], _target[j])); - _cost_vec.push_back(_cost[j] + 1); + // Stack for stroing the topological order + IntVector stack(_res_node_num); + int stack_top; + + // Perform phases + while (topologicalSort(stack, stack_top)) { + + // Compute node ranks in the acyclic admissible network and + // store the nodes in buckets + for (int i = 0; i != _res_node_num; ++i) { + _rank[i] = 0; } + const int bucket_end = _root + 1; + for (int r = 0; r != _max_rank; ++r) { + _buckets[r] = bucket_end; + } + int top_rank = 0; + for ( ; stack_top >= 0; --stack_top) { + int u = stack[stack_top], v; + int rank_u = _rank[u]; + + LargeCost rc, pi_u = _pi[u]; + int last_out = _first_out[u+1]; + for (int a = _first_out[u]; a != last_out; ++a) { + if (_res_cap[a] > 0) { + v = _target[a]; + rc = _cost[a] + pi_u - _pi[v]; + if (rc < 0) { + LargeCost nrc = static_cast((-rc - 0.5) / _epsilon); + if (nrc < LargeCost(_max_rank)) { + int new_rank_v = rank_u + static_cast(nrc); + if (new_rank_v > _rank[v]) { + _rank[v] = new_rank_v; + } + } + } + } + } + + if (rank_u > 0) { + top_rank = std::max(top_rank, rank_u); + int bfirst = _buckets[rank_u]; + _bucket_next[u] = bfirst; + _bucket_prev[bfirst] = u; + _buckets[rank_u] = u; + } + } + + // Check if the current flow is epsilon-optimal + if (top_rank == 0) { + return true; + } + + // Process buckets in top-down order + for (int rank = top_rank; rank > 0; --rank) { + while (_buckets[rank] != bucket_end) { + // Remove the first node from the current bucket + int u = _buckets[rank]; + _buckets[rank] = _bucket_next[u]; + + // Search the outgoing arcs of u + LargeCost rc, pi_u = _pi[u]; + int last_out = _first_out[u+1]; + int v, old_rank_v, new_rank_v; + for (int a = _first_out[u]; a != last_out; ++a) { + if (_res_cap[a] > 0) { + v = _target[a]; + old_rank_v = _rank[v]; + + if (old_rank_v < rank) { + + // Compute the new rank of node v + rc = _cost[a] + pi_u - _pi[v]; + if (rc < 0) { + new_rank_v = rank; + } else { + LargeCost nrc = rc / _epsilon; + new_rank_v = 0; + if (nrc < LargeCost(_max_rank)) { + new_rank_v = rank - 1 - static_cast(nrc); + } + } + + // Change the rank of node v + if (new_rank_v > old_rank_v) { + _rank[v] = new_rank_v; + + // Remove v from its old bucket + if (old_rank_v > 0) { + if (_buckets[old_rank_v] == v) { + _buckets[old_rank_v] = _bucket_next[v]; + } else { + int pv = _bucket_prev[v], nv = _bucket_next[v]; + _bucket_next[pv] = nv; + _bucket_prev[nv] = pv; + } + } + + // Insert v into its new bucket + int nv = _buckets[new_rank_v]; + _bucket_next[v] = nv; + _bucket_prev[nv] = v; + _buckets[new_rank_v] = v; + } + } + } + } + + // Refine potential of node u + _pi[u] -= rank * _epsilon; + } + } + } - _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); - // Run Bellman-Ford algorithm to check if the current flow is optimal - BellmanFord bf(_sgr, _cost_map); - bf.init(0); - bool done = false; - int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); - for (int i = 0; i < K && !done; ++i) { - done = bf.processNextWeakRound(); + return false; + } + + // Find and cancel cycles in the admissible network and + // determine topological order using DFS + bool topologicalSort(IntVector &stack, int &stack_top) { + const int MAX_CYCLE_CANCEL = 1; + + BoolVector reached(_res_node_num, false); + BoolVector processed(_res_node_num, false); + IntVector pred(_res_node_num); + for (int i = 0; i != _res_node_num; ++i) { + _next_out[i] = _first_out[i]; } - return done; + stack_top = -1; + + int cycle_cnt = 0; + for (int start = 0; start != _res_node_num; ++start) { + if (reached[start]) continue; + + // Start DFS search from this start node + pred[start] = -1; + int tip = start, v; + while (true) { + // Check the outgoing arcs of the current tip node + reached[tip] = true; + LargeCost pi_tip = _pi[tip]; + int a, last_out = _first_out[tip+1]; + for (a = _next_out[tip]; a != last_out; ++a) { + if (_res_cap[a] > 0) { + v = _target[a]; + if (_cost[a] + pi_tip - _pi[v] < 0) { + if (!reached[v]) { + // A new node is reached + reached[v] = true; + pred[v] = tip; + _next_out[tip] = a; + tip = v; + a = _next_out[tip]; + last_out = _first_out[tip+1]; + break; + } + else if (!processed[v]) { + // A cycle is found + ++cycle_cnt; + _next_out[tip] = a; + + // Find the minimum residual capacity along the cycle + Value d, delta = _res_cap[a]; + int u, delta_node = tip; + for (u = tip; u != v; ) { + u = pred[u]; + d = _res_cap[_next_out[u]]; + if (d <= delta) { + delta = d; + delta_node = u; + } + } + + // Augment along the cycle + _res_cap[a] -= delta; + _res_cap[_reverse[a]] += delta; + for (u = tip; u != v; ) { + u = pred[u]; + int ca = _next_out[u]; + _res_cap[ca] -= delta; + _res_cap[_reverse[ca]] += delta; + } + + // Check the maximum number of cycle canceling + if (cycle_cnt >= MAX_CYCLE_CANCEL) { + return false; + } + + // Roll back search to delta_node + if (delta_node != tip) { + for (u = tip; u != delta_node; u = pred[u]) { + reached[u] = false; + } + tip = delta_node; + a = _next_out[tip] + 1; + last_out = _first_out[tip+1]; + break; + } + } + } + } + } + + // Step back to the previous node + if (a == last_out) { + processed[tip] = true; + stack[++stack_top] = tip; + tip = pred[tip]; + if (tip < 0) { + // Finish DFS from the current start node + break; + } + ++_next_out[tip]; + } + } + + } + + return (cycle_cnt == 0); } // Global potential update heuristic void globalUpdate() { - int bucket_end = _root + 1; + const int bucket_end = _root + 1; // Initialize buckets for (int r = 0; r != _max_rank; ++r) { _buckets[r] = bucket_end; } Value total_excess = 0; + int b0 = bucket_end; for (int i = 0; i != _res_node_num; ++i) { if (_excess[i] < 0) { _rank[i] = 0; - _bucket_next[i] = _buckets[0]; - _bucket_prev[_buckets[0]] = i; - _buckets[0] = i; + _bucket_next[i] = b0; + _bucket_prev[b0] = i; + b0 = i; } else { total_excess += _excess[i]; _rank[i] = _max_rank; } } if (total_excess == 0) return; + _buckets[0] = b0; // Search the buckets int r = 0; @@ -1025,7 +1286,7 @@ int u = _buckets[r]; _buckets[r] = _bucket_next[u]; - // Search the incomming arcs of u + // Search the incoming arcs of u LargeCost pi_u = _pi[u]; int last_out = _first_out[u+1]; for (int a = _first_out[u]; a != last_out; ++a) { @@ -1037,8 +1298,9 @@ // Compute the new rank of v LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; int new_rank_v = old_rank_v; - if (nrc < LargeCost(_max_rank)) - new_rank_v = r + 1 + int(nrc); + if (nrc < LargeCost(_max_rank)) { + new_rank_v = r + 1 + static_cast(nrc); + } // Change the rank of v if (new_rank_v < old_rank_v) { @@ -1050,14 +1312,16 @@ if (_buckets[old_rank_v] == v) { _buckets[old_rank_v] = _bucket_next[v]; } else { - _bucket_next[_bucket_prev[v]] = _bucket_next[v]; - _bucket_prev[_bucket_next[v]] = _bucket_prev[v]; + int pv = _bucket_prev[v], nv = _bucket_next[v]; + _bucket_next[pv] = nv; + _bucket_prev[nv] = pv; } } - // Insert v to its new bucket - _bucket_next[v] = _buckets[new_rank_v]; - _bucket_prev[_buckets[new_rank_v]] = v; + // Insert v into its new bucket + int nv = _buckets[new_rank_v]; + _bucket_next[v] = nv; + _bucket_prev[nv] = v; _buckets[new_rank_v] = v; } } @@ -1086,23 +1350,25 @@ /// Execute the algorithm performing augment and relabel operations void startAugment(int max_length) { // Paramters for heuristics - const int EARLY_TERM_EPSILON_LIMIT = 1000; - const double GLOBAL_UPDATE_FACTOR = 3.0; - - const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * + const int PRICE_REFINEMENT_LIMIT = 2; + const double GLOBAL_UPDATE_FACTOR = 1.0; + const int global_update_skip = static_cast(GLOBAL_UPDATE_FACTOR * (_res_node_num + _sup_node_num * _sup_node_num)); - int next_update_limit = global_update_freq; - - int relabel_cnt = 0; + int next_global_update_limit = global_update_skip; // Perform cost scaling phases - std::vector path; + IntVector path; + BoolVector path_arc(_res_arc_num, false); + int relabel_cnt = 0; + int eps_phase_cnt = 0; for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? 1 : _epsilon / _alpha ) { - // Early termination heuristic - if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { - if (earlyTermination()) break; + ++eps_phase_cnt; + + // Price refinement heuristic + if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) { + if (priceRefinement()) continue; } // Initialize current phase @@ -1119,32 +1385,45 @@ int start = _active_nodes.front(); // Find an augmenting path from the start node - path.clear(); int tip = start; - while (_excess[tip] >= 0 && int(path.size()) < max_length) { + while (int(path.size()) < max_length && _excess[tip] >= 0) { int u; - LargeCost min_red_cost, rc, pi_tip = _pi[tip]; + LargeCost rc, min_red_cost = std::numeric_limits::max(); + LargeCost pi_tip = _pi[tip]; int last_out = _first_out[tip+1]; for (int a = _next_out[tip]; a != last_out; ++a) { - u = _target[a]; - if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { - path.push_back(a); - _next_out[tip] = a; - tip = u; - goto next_step; + if (_res_cap[a] > 0) { + u = _target[a]; + rc = _cost[a] + pi_tip - _pi[u]; + if (rc < 0) { + path.push_back(a); + _next_out[tip] = a; + if (path_arc[a]) { + goto augment; // a cycle is found, stop path search + } + tip = u; + path_arc[a] = true; + goto next_step; + } + else if (rc < min_red_cost) { + min_red_cost = rc; + } } } // Relabel tip node - min_red_cost = std::numeric_limits::max(); if (tip != start) { int ra = _reverse[path.back()]; - min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; + min_red_cost = + std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]); } + last_out = _next_out[tip]; for (int a = _first_out[tip]; a != last_out; ++a) { - rc = _cost[a] + pi_tip - _pi[_target[a]]; - if (_res_cap[a] > 0 && rc < min_red_cost) { - min_red_cost = rc; + if (_res_cap[a] > 0) { + rc = _cost[a] + pi_tip - _pi[_target[a]]; + if (rc < min_red_cost) { + min_red_cost = rc; + } } } _pi[tip] -= min_red_cost + _epsilon; @@ -1153,7 +1432,9 @@ // Step back if (tip != start) { - tip = _source[path.back()]; + int pa = path.back(); + path_arc[pa] = false; + tip = _source[pa]; path.pop_back(); } @@ -1161,51 +1442,59 @@ } // Augment along the found path (as much flow as possible) + augment: Value delta; int pa, u, v = start; for (int i = 0; i != int(path.size()); ++i) { pa = path[i]; u = v; v = _target[pa]; + path_arc[pa] = false; delta = std::min(_res_cap[pa], _excess[u]); _res_cap[pa] -= delta; _res_cap[_reverse[pa]] += delta; _excess[u] -= delta; _excess[v] += delta; - if (_excess[v] > 0 && _excess[v] <= delta) + if (_excess[v] > 0 && _excess[v] <= delta) { _active_nodes.push_back(v); + } } + path.clear(); // Global update heuristic - if (relabel_cnt >= next_update_limit) { + if (relabel_cnt >= next_global_update_limit) { globalUpdate(); - next_update_limit += global_update_freq; + next_global_update_limit += global_update_skip; } } + } + } /// Execute the algorithm performing push and relabel operations void startPush() { // Paramters for heuristics - const int EARLY_TERM_EPSILON_LIMIT = 1000; + const int PRICE_REFINEMENT_LIMIT = 2; const double GLOBAL_UPDATE_FACTOR = 2.0; - const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * + const int global_update_skip = static_cast(GLOBAL_UPDATE_FACTOR * (_res_node_num + _sup_node_num * _sup_node_num)); - int next_update_limit = global_update_freq; - - int relabel_cnt = 0; + int next_global_update_limit = global_update_skip; // Perform cost scaling phases BoolVector hyper(_res_node_num, false); LargeCostVector hyper_cost(_res_node_num); + int relabel_cnt = 0; + int eps_phase_cnt = 0; for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? 1 : _epsilon / _alpha ) { - // Early termination heuristic - if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { - if (earlyTermination()) break; + ++eps_phase_cnt; + + // Price refinement heuristic + if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) { + if (priceRefinement()) continue; } // Initialize current phase @@ -1277,9 +1566,11 @@ min_red_cost = hyper[n] ? -hyper_cost[n] : std::numeric_limits::max(); for (int a = _first_out[n]; a != last_out; ++a) { - rc = _cost[a] + pi_n - _pi[_target[a]]; - if (_res_cap[a] > 0 && rc < min_red_cost) { - min_red_cost = rc; + if (_res_cap[a] > 0) { + rc = _cost[a] + pi_n - _pi[_target[a]]; + if (rc < min_red_cost) { + min_red_cost = rc; + } } } _pi[n] -= min_red_cost + _epsilon; @@ -1297,11 +1588,11 @@ } // Global update heuristic - if (relabel_cnt >= next_update_limit) { + if (relabel_cnt >= next_global_update_limit) { globalUpdate(); for (int u = 0; u != _res_node_num; ++u) hyper[u] = false; - next_update_limit += global_update_freq; + next_global_update_limit += global_update_skip; } } }