diff -r cd72eae05bdf -r 3c00344f49c9 lemon/list_graph.h --- a/lemon/list_graph.h Mon Jul 16 16:21:40 2018 +0200 +++ b/lemon/list_graph.h Wed Oct 17 19:14:07 2018 +0200 @@ -2,7 +2,7 @@ * * This file is a part of LEMON, a generic C++ optimization library. * - * Copyright (C) 2003-2010 + * Copyright (C) 2003-2013 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * @@ -445,7 +445,7 @@ ///\note The moved arcs are joined to node \c u using changeSource() ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are ///invalidated for the outgoing arcs of node \c v and \c InArcIt - ///iterators are invalidated for the incomming arcs of \c v. + ///iterators are invalidated for the incoming arcs of \c v. ///Moreover all iterators referencing node \c v or the removed ///loops are also invalidated. Other iterators remain valid. /// @@ -582,7 +582,7 @@ snapshot.addNode(node); } virtual void add(const std::vector& nodes) { - for (int i = nodes.size() - 1; i >= 0; ++i) { + for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } @@ -632,7 +632,7 @@ snapshot.addArc(arc); } virtual void add(const std::vector& arcs) { - for (int i = arcs.size() - 1; i >= 0; ++i) { + for (int i = arcs.size() - 1; i >= 0; --i) { snapshot.addArc(arcs[i]); } } @@ -1394,7 +1394,7 @@ snapshot.addNode(node); } virtual void add(const std::vector& nodes) { - for (int i = nodes.size() - 1; i >= 0; ++i) { + for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } @@ -1444,7 +1444,7 @@ snapshot.addEdge(edge); } virtual void add(const std::vector& edges) { - for (int i = edges.size() - 1; i >= 0; ++i) { + for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addEdge(edges[i]); } } @@ -1599,6 +1599,911 @@ }; /// @} + + class ListBpGraphBase { + + protected: + + struct NodeT { + int first_out; + int prev, next; + int partition_prev, partition_next; + int partition_index; + bool red; + }; + + struct ArcT { + int target; + int prev_out, next_out; + }; + + std::vector nodes; + + int first_node, first_red, first_blue; + int max_red, max_blue; + + int first_free_red, first_free_blue; + + std::vector arcs; + + int first_free_arc; + + public: + + typedef ListBpGraphBase BpGraph; + + class Node { + friend class ListBpGraphBase; + protected: + + int id; + explicit Node(int pid) { id = pid;} + + public: + Node() {} + Node (Invalid) { id = -1; } + bool operator==(const Node& node) const {return id == node.id;} + bool operator!=(const Node& node) const {return id != node.id;} + bool operator<(const Node& node) const {return id < node.id;} + }; + + class RedNode : public Node { + friend class ListBpGraphBase; + protected: + + explicit RedNode(int pid) : Node(pid) {} + + public: + RedNode() {} + RedNode(const RedNode& node) : Node(node) {} + RedNode(Invalid) : Node(INVALID){} + }; + + class BlueNode : public Node { + friend class ListBpGraphBase; + protected: + + explicit BlueNode(int pid) : Node(pid) {} + + public: + BlueNode() {} + BlueNode(const BlueNode& node) : Node(node) {} + BlueNode(Invalid) : Node(INVALID){} + }; + + class Edge { + friend class ListBpGraphBase; + protected: + + int id; + explicit Edge(int pid) { id = pid;} + + public: + Edge() {} + Edge (Invalid) { id = -1; } + bool operator==(const Edge& edge) const {return id == edge.id;} + bool operator!=(const Edge& edge) const {return id != edge.id;} + bool operator<(const Edge& edge) const {return id < edge.id;} + }; + + class Arc { + friend class ListBpGraphBase; + protected: + + int id; + explicit Arc(int pid) { id = pid;} + + public: + operator Edge() const { + return id != -1 ? edgeFromId(id / 2) : INVALID; + } + + Arc() {} + Arc (Invalid) { id = -1; } + bool operator==(const Arc& arc) const {return id == arc.id;} + bool operator!=(const Arc& arc) const {return id != arc.id;} + bool operator<(const Arc& arc) const {return id < arc.id;} + }; + + ListBpGraphBase() + : nodes(), first_node(-1), + first_red(-1), first_blue(-1), + max_red(-1), max_blue(-1), + first_free_red(-1), first_free_blue(-1), + arcs(), first_free_arc(-1) {} + + + bool red(Node n) const { return nodes[n.id].red; } + bool blue(Node n) const { return !nodes[n.id].red; } + + static RedNode asRedNodeUnsafe(Node n) { return RedNode(n.id); } + static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n.id); } + + int maxNodeId() const { return nodes.size()-1; } + int maxRedId() const { return max_red; } + int maxBlueId() const { return max_blue; } + int maxEdgeId() const { return arcs.size() / 2 - 1; } + int maxArcId() const { return arcs.size()-1; } + + Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } + Node target(Arc e) const { return Node(arcs[e.id].target); } + + RedNode redNode(Edge e) const { + return RedNode(arcs[2 * e.id].target); + } + BlueNode blueNode(Edge e) const { + return BlueNode(arcs[2 * e.id + 1].target); + } + + static bool direction(Arc e) { + return (e.id & 1) == 1; + } + + static Arc direct(Edge e, bool d) { + return Arc(e.id * 2 + (d ? 1 : 0)); + } + + void first(Node& node) const { + node.id = first_node; + } + + void next(Node& node) const { + node.id = nodes[node.id].next; + } + + void first(RedNode& node) const { + node.id = first_red; + } + + void next(RedNode& node) const { + node.id = nodes[node.id].partition_next; + } + + void first(BlueNode& node) const { + node.id = first_blue; + } + + void next(BlueNode& node) const { + node.id = nodes[node.id].partition_next; + } + + void first(Arc& e) const { + int n = first_node; + while (n != -1 && nodes[n].first_out == -1) { + n = nodes[n].next; + } + e.id = (n == -1) ? -1 : nodes[n].first_out; + } + + void next(Arc& e) const { + if (arcs[e.id].next_out != -1) { + e.id = arcs[e.id].next_out; + } else { + int n = nodes[arcs[e.id ^ 1].target].next; + while(n != -1 && nodes[n].first_out == -1) { + n = nodes[n].next; + } + e.id = (n == -1) ? -1 : nodes[n].first_out; + } + } + + void first(Edge& e) const { + int n = first_node; + while (n != -1) { + e.id = nodes[n].first_out; + while ((e.id & 1) != 1) { + e.id = arcs[e.id].next_out; + } + if (e.id != -1) { + e.id /= 2; + return; + } + n = nodes[n].next; + } + e.id = -1; + } + + void next(Edge& e) const { + int n = arcs[e.id * 2].target; + e.id = arcs[(e.id * 2) | 1].next_out; + while ((e.id & 1) != 1) { + e.id = arcs[e.id].next_out; + } + if (e.id != -1) { + e.id /= 2; + return; + } + n = nodes[n].next; + while (n != -1) { + e.id = nodes[n].first_out; + while ((e.id & 1) != 1) { + e.id = arcs[e.id].next_out; + } + if (e.id != -1) { + e.id /= 2; + return; + } + n = nodes[n].next; + } + e.id = -1; + } + + void firstOut(Arc &e, const Node& v) const { + e.id = nodes[v.id].first_out; + } + void nextOut(Arc &e) const { + e.id = arcs[e.id].next_out; + } + + void firstIn(Arc &e, const Node& v) const { + e.id = ((nodes[v.id].first_out) ^ 1); + if (e.id == -2) e.id = -1; + } + void nextIn(Arc &e) const { + e.id = ((arcs[e.id ^ 1].next_out) ^ 1); + if (e.id == -2) e.id = -1; + } + + void firstInc(Edge &e, bool& d, const Node& v) const { + int a = nodes[v.id].first_out; + if (a != -1 ) { + e.id = a / 2; + d = ((a & 1) == 1); + } else { + e.id = -1; + d = true; + } + } + void nextInc(Edge &e, bool& d) const { + int a = (arcs[(e.id * 2) | (d ? 1 : 0)].next_out); + if (a != -1 ) { + e.id = a / 2; + d = ((a & 1) == 1); + } else { + e.id = -1; + d = true; + } + } + + static int id(Node v) { return v.id; } + int id(RedNode v) const { return nodes[v.id].partition_index; } + int id(BlueNode v) const { return nodes[v.id].partition_index; } + static int id(Arc e) { return e.id; } + static int id(Edge e) { return e.id; } + + static Node nodeFromId(int id) { return Node(id);} + static Arc arcFromId(int id) { return Arc(id);} + static Edge edgeFromId(int id) { return Edge(id);} + + bool valid(Node n) const { + return n.id >= 0 && n.id < static_cast(nodes.size()) && + nodes[n.id].prev != -2; + } + + bool valid(Arc a) const { + return a.id >= 0 && a.id < static_cast(arcs.size()) && + arcs[a.id].prev_out != -2; + } + + bool valid(Edge e) const { + return e.id >= 0 && 2 * e.id < static_cast(arcs.size()) && + arcs[2 * e.id].prev_out != -2; + } + + RedNode addRedNode() { + int n; + + if(first_free_red==-1) { + n = nodes.size(); + nodes.push_back(NodeT()); + nodes[n].partition_index = ++max_red; + nodes[n].red = true; + } else { + n = first_free_red; + first_free_red = nodes[n].next; + } + + nodes[n].next = first_node; + if (first_node != -1) nodes[first_node].prev = n; + first_node = n; + nodes[n].prev = -1; + + nodes[n].partition_next = first_red; + if (first_red != -1) nodes[first_red].partition_prev = n; + first_red = n; + nodes[n].partition_prev = -1; + + nodes[n].first_out = -1; + + return RedNode(n); + } + + BlueNode addBlueNode() { + int n; + + if(first_free_blue==-1) { + n = nodes.size(); + nodes.push_back(NodeT()); + nodes[n].partition_index = ++max_blue; + nodes[n].red = false; + } else { + n = first_free_blue; + first_free_blue = nodes[n].next; + } + + nodes[n].next = first_node; + if (first_node != -1) nodes[first_node].prev = n; + first_node = n; + nodes[n].prev = -1; + + nodes[n].partition_next = first_blue; + if (first_blue != -1) nodes[first_blue].partition_prev = n; + first_blue = n; + nodes[n].partition_prev = -1; + + nodes[n].first_out = -1; + + return BlueNode(n); + } + + Edge addEdge(Node u, Node v) { + int n; + + if (first_free_arc == -1) { + n = arcs.size(); + arcs.push_back(ArcT()); + arcs.push_back(ArcT()); + } else { + n = first_free_arc; + first_free_arc = arcs[n].next_out; + } + + arcs[n].target = u.id; + arcs[n | 1].target = v.id; + + arcs[n].next_out = nodes[v.id].first_out; + if (nodes[v.id].first_out != -1) { + arcs[nodes[v.id].first_out].prev_out = n; + } + arcs[n].prev_out = -1; + nodes[v.id].first_out = n; + + arcs[n | 1].next_out = nodes[u.id].first_out; + if (nodes[u.id].first_out != -1) { + arcs[nodes[u.id].first_out].prev_out = (n | 1); + } + arcs[n | 1].prev_out = -1; + nodes[u.id].first_out = (n | 1); + + return Edge(n / 2); + } + + void erase(const Node& node) { + int n = node.id; + + if(nodes[n].next != -1) { + nodes[nodes[n].next].prev = nodes[n].prev; + } + + if(nodes[n].prev != -1) { + nodes[nodes[n].prev].next = nodes[n].next; + } else { + first_node = nodes[n].next; + } + + if (nodes[n].partition_next != -1) { + nodes[nodes[n].partition_next].partition_prev = nodes[n].partition_prev; + } + + if (nodes[n].partition_prev != -1) { + nodes[nodes[n].partition_prev].partition_next = nodes[n].partition_next; + } else { + if (nodes[n].red) { + first_red = nodes[n].partition_next; + } else { + first_blue = nodes[n].partition_next; + } + } + + if (nodes[n].red) { + nodes[n].next = first_free_red; + first_free_red = n; + } else { + nodes[n].next = first_free_blue; + first_free_blue = n; + } + nodes[n].prev = -2; + } + + void erase(const Edge& edge) { + int n = edge.id * 2; + + if (arcs[n].next_out != -1) { + arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; + } + + if (arcs[n].prev_out != -1) { + arcs[arcs[n].prev_out].next_out = arcs[n].next_out; + } else { + nodes[arcs[n | 1].target].first_out = arcs[n].next_out; + } + + if (arcs[n | 1].next_out != -1) { + arcs[arcs[n | 1].next_out].prev_out = arcs[n | 1].prev_out; + } + + if (arcs[n | 1].prev_out != -1) { + arcs[arcs[n | 1].prev_out].next_out = arcs[n | 1].next_out; + } else { + nodes[arcs[n].target].first_out = arcs[n | 1].next_out; + } + + arcs[n].next_out = first_free_arc; + first_free_arc = n; + arcs[n].prev_out = -2; + arcs[n | 1].prev_out = -2; + + } + + void clear() { + arcs.clear(); + nodes.clear(); + first_node = first_free_arc = first_red = first_blue = + max_red = max_blue = first_free_red = first_free_blue = -1; + } + + protected: + + void changeRed(Edge e, RedNode n) { + if(arcs[(2 * e.id) | 1].next_out != -1) { + arcs[arcs[(2 * e.id) | 1].next_out].prev_out = + arcs[(2 * e.id) | 1].prev_out; + } + if(arcs[(2 * e.id) | 1].prev_out != -1) { + arcs[arcs[(2 * e.id) | 1].prev_out].next_out = + arcs[(2 * e.id) | 1].next_out; + } else { + nodes[arcs[2 * e.id].target].first_out = + arcs[(2 * e.id) | 1].next_out; + } + + if (nodes[n.id].first_out != -1) { + arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); + } + arcs[2 * e.id].target = n.id; + arcs[(2 * e.id) | 1].prev_out = -1; + arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; + nodes[n.id].first_out = ((2 * e.id) | 1); + } + + void changeBlue(Edge e, BlueNode n) { + if(arcs[2 * e.id].next_out != -1) { + arcs[arcs[2 * e.id].next_out].prev_out = arcs[2 * e.id].prev_out; + } + if(arcs[2 * e.id].prev_out != -1) { + arcs[arcs[2 * e.id].prev_out].next_out = + arcs[2 * e.id].next_out; + } else { + nodes[arcs[(2 * e.id) | 1].target].first_out = + arcs[2 * e.id].next_out; + } + + if (nodes[n.id].first_out != -1) { + arcs[nodes[n.id].first_out].prev_out = 2 * e.id; + } + arcs[(2 * e.id) | 1].target = n.id; + arcs[2 * e.id].prev_out = -1; + arcs[2 * e.id].next_out = nodes[n.id].first_out; + nodes[n.id].first_out = 2 * e.id; + } + + }; + + typedef BpGraphExtender ExtendedListBpGraphBase; + + + /// \addtogroup graphs + /// @{ + + ///A general undirected graph structure. + + ///\ref ListBpGraph is a versatile and fast undirected graph + ///implementation based on linked lists that are stored in + ///\c std::vector structures. + /// + ///This type fully conforms to the \ref concepts::BpGraph "BpGraph concept" + ///and it also provides several useful additional functionalities. + ///Most of its member functions and nested classes are documented + ///only in the concept class. + /// + ///This class provides only linear time counting for nodes, edges and arcs. + /// + ///\sa concepts::BpGraph + ///\sa ListDigraph + class ListBpGraph : public ExtendedListBpGraphBase { + typedef ExtendedListBpGraphBase Parent; + + private: + /// BpGraphs are \e not copy constructible. Use BpGraphCopy instead. + ListBpGraph(const ListBpGraph &) :ExtendedListBpGraphBase() {}; + /// \brief Assignment of a graph to another one is \e not allowed. + /// Use BpGraphCopy instead. + void operator=(const ListBpGraph &) {} + public: + /// Constructor + + /// Constructor. + /// + ListBpGraph() {} + + typedef Parent::OutArcIt IncEdgeIt; + + /// \brief Add a new red node to the graph. + /// + /// This function adds a red new node to the graph. + /// \return The new node. + RedNode addRedNode() { return Parent::addRedNode(); } + + /// \brief Add a new blue node to the graph. + /// + /// This function adds a blue new node to the graph. + /// \return The new node. + BlueNode addBlueNode() { return Parent::addBlueNode(); } + + /// \brief Add a new edge to the graph. + /// + /// This function adds a new edge to the graph between nodes + /// \c u and \c v with inherent orientation from node \c u to + /// node \c v. + /// \return The new edge. + Edge addEdge(RedNode u, BlueNode v) { + return Parent::addEdge(u, v); + } + Edge addEdge(BlueNode v, RedNode u) { + return Parent::addEdge(u, v); + } + + ///\brief Erase a node from the graph. + /// + /// This function erases the given node along with its incident arcs + /// from the graph. + /// + /// \note All iterators referencing the removed node or the incident + /// edges are invalidated, of course. + void erase(Node n) { Parent::erase(n); } + + ///\brief Erase an edge from the graph. + /// + /// This function erases the given edge from the graph. + /// + /// \note All iterators referencing the removed edge are invalidated, + /// of course. + void erase(Edge e) { Parent::erase(e); } + /// Node validity check + + /// This function gives back \c true if the given node is valid, + /// i.e. it is a real node of the graph. + /// + /// \warning A removed node could become valid again if new nodes are + /// added to the graph. + bool valid(Node n) const { return Parent::valid(n); } + /// Edge validity check + + /// This function gives back \c true if the given edge is valid, + /// i.e. it is a real edge of the graph. + /// + /// \warning A removed edge could become valid again if new edges are + /// added to the graph. + bool valid(Edge e) const { return Parent::valid(e); } + /// Arc validity check + + /// This function gives back \c true if the given arc is valid, + /// i.e. it is a real arc of the graph. + /// + /// \warning A removed arc could become valid again if new edges are + /// added to the graph. + bool valid(Arc a) const { return Parent::valid(a); } + + /// \brief Change the red node of an edge. + /// + /// This function changes the red node of the given edge \c e to \c n. + /// + ///\note \c EdgeIt and \c ArcIt iterators referencing the + ///changed edge are invalidated and all other iterators whose + ///base node is the changed node are also invalidated. + /// + ///\warning This functionality cannot be used together with the + ///Snapshot feature. + void changeRed(Edge e, RedNode n) { + Parent::changeRed(e, n); + } + /// \brief Change the blue node of an edge. + /// + /// This function changes the blue node of the given edge \c e to \c n. + /// + ///\note \c EdgeIt iterators referencing the changed edge remain + ///valid, but \c ArcIt iterators referencing the changed edge and + ///all other iterators whose base node is the changed node are also + ///invalidated. + /// + ///\warning This functionality cannot be used together with the + ///Snapshot feature. + void changeBlue(Edge e, BlueNode n) { + Parent::changeBlue(e, n); + } + + ///Clear the graph. + + ///This function erases all nodes and arcs from the graph. + /// + ///\note All iterators of the graph are invalidated, of course. + void clear() { + Parent::clear(); + } + + /// Reserve memory for nodes. + + /// Using this function, it is possible to avoid superfluous memory + /// allocation: if you know that the graph you want to build will + /// be large (e.g. it will contain millions of nodes and/or edges), + /// then it is worth reserving space for this amount before starting + /// to build the graph. + /// \sa reserveEdge() + void reserveNode(int n) { nodes.reserve(n); }; + + /// Reserve memory for edges. + + /// Using this function, it is possible to avoid superfluous memory + /// allocation: if you know that the graph you want to build will + /// be large (e.g. it will contain millions of nodes and/or edges), + /// then it is worth reserving space for this amount before starting + /// to build the graph. + /// \sa reserveNode() + void reserveEdge(int m) { arcs.reserve(2 * m); }; + + /// \brief Class to make a snapshot of the graph and restore + /// it later. + /// + /// Class to make a snapshot of the graph and restore it later. + /// + /// The newly added nodes and edges can be removed + /// using the restore() function. + /// + /// \note After a state is restored, you cannot restore a later state, + /// i.e. you cannot add the removed nodes and edges again using + /// another Snapshot instance. + /// + /// \warning Node and edge deletions and other modifications + /// (e.g. changing the end-nodes of edges or contracting nodes) + /// cannot be restored. These events invalidate the snapshot. + /// However, the edges and nodes that were added to the graph after + /// making the current snapshot can be removed without invalidating it. + class Snapshot { + protected: + + typedef Parent::NodeNotifier NodeNotifier; + + class NodeObserverProxy : public NodeNotifier::ObserverBase { + public: + + NodeObserverProxy(Snapshot& _snapshot) + : snapshot(_snapshot) {} + + using NodeNotifier::ObserverBase::attach; + using NodeNotifier::ObserverBase::detach; + using NodeNotifier::ObserverBase::attached; + + protected: + + virtual void add(const Node& node) { + snapshot.addNode(node); + } + virtual void add(const std::vector& nodes) { + for (int i = nodes.size() - 1; i >= 0; --i) { + snapshot.addNode(nodes[i]); + } + } + virtual void erase(const Node& node) { + snapshot.eraseNode(node); + } + virtual void erase(const std::vector& nodes) { + for (int i = 0; i < int(nodes.size()); ++i) { + snapshot.eraseNode(nodes[i]); + } + } + virtual void build() { + Node node; + std::vector nodes; + for (notifier()->first(node); node != INVALID; + notifier()->next(node)) { + nodes.push_back(node); + } + for (int i = nodes.size() - 1; i >= 0; --i) { + snapshot.addNode(nodes[i]); + } + } + virtual void clear() { + Node node; + for (notifier()->first(node); node != INVALID; + notifier()->next(node)) { + snapshot.eraseNode(node); + } + } + + Snapshot& snapshot; + }; + + class EdgeObserverProxy : public EdgeNotifier::ObserverBase { + public: + + EdgeObserverProxy(Snapshot& _snapshot) + : snapshot(_snapshot) {} + + using EdgeNotifier::ObserverBase::attach; + using EdgeNotifier::ObserverBase::detach; + using EdgeNotifier::ObserverBase::attached; + + protected: + + virtual void add(const Edge& edge) { + snapshot.addEdge(edge); + } + virtual void add(const std::vector& edges) { + for (int i = edges.size() - 1; i >= 0; --i) { + snapshot.addEdge(edges[i]); + } + } + virtual void erase(const Edge& edge) { + snapshot.eraseEdge(edge); + } + virtual void erase(const std::vector& edges) { + for (int i = 0; i < int(edges.size()); ++i) { + snapshot.eraseEdge(edges[i]); + } + } + virtual void build() { + Edge edge; + std::vector edges; + for (notifier()->first(edge); edge != INVALID; + notifier()->next(edge)) { + edges.push_back(edge); + } + for (int i = edges.size() - 1; i >= 0; --i) { + snapshot.addEdge(edges[i]); + } + } + virtual void clear() { + Edge edge; + for (notifier()->first(edge); edge != INVALID; + notifier()->next(edge)) { + snapshot.eraseEdge(edge); + } + } + + Snapshot& snapshot; + }; + + ListBpGraph *graph; + + NodeObserverProxy node_observer_proxy; + EdgeObserverProxy edge_observer_proxy; + + std::list added_nodes; + std::list added_edges; + + + void addNode(const Node& node) { + added_nodes.push_front(node); + } + void eraseNode(const Node& node) { + std::list::iterator it = + std::find(added_nodes.begin(), added_nodes.end(), node); + if (it == added_nodes.end()) { + clear(); + edge_observer_proxy.detach(); + throw NodeNotifier::ImmediateDetach(); + } else { + added_nodes.erase(it); + } + } + + void addEdge(const Edge& edge) { + added_edges.push_front(edge); + } + void eraseEdge(const Edge& edge) { + std::list::iterator it = + std::find(added_edges.begin(), added_edges.end(), edge); + if (it == added_edges.end()) { + clear(); + node_observer_proxy.detach(); + throw EdgeNotifier::ImmediateDetach(); + } else { + added_edges.erase(it); + } + } + + void attach(ListBpGraph &_graph) { + graph = &_graph; + node_observer_proxy.attach(graph->notifier(Node())); + edge_observer_proxy.attach(graph->notifier(Edge())); + } + + void detach() { + node_observer_proxy.detach(); + edge_observer_proxy.detach(); + } + + bool attached() const { + return node_observer_proxy.attached(); + } + + void clear() { + added_nodes.clear(); + added_edges.clear(); + } + + public: + + /// \brief Default constructor. + /// + /// Default constructor. + /// You have to call save() to actually make a snapshot. + Snapshot() + : graph(0), node_observer_proxy(*this), + edge_observer_proxy(*this) {} + + /// \brief Constructor that immediately makes a snapshot. + /// + /// This constructor immediately makes a snapshot of the given graph. + Snapshot(ListBpGraph &gr) + : node_observer_proxy(*this), + edge_observer_proxy(*this) { + attach(gr); + } + + /// \brief Make a snapshot. + /// + /// This function makes a snapshot of the given graph. + /// It can be called more than once. In case of a repeated + /// call, the previous snapshot gets lost. + void save(ListBpGraph &gr) { + if (attached()) { + detach(); + clear(); + } + attach(gr); + } + + /// \brief Undo the changes until the last snapshot. + /// + /// This function undos the changes until the last snapshot + /// created by save() or Snapshot(ListBpGraph&). + /// + /// \warning This method invalidates the snapshot, i.e. repeated + /// restoring is not supported unless you call save() again. + void restore() { + detach(); + for(std::list::iterator it = added_edges.begin(); + it != added_edges.end(); ++it) { + graph->erase(*it); + } + for(std::list::iterator it = added_nodes.begin(); + it != added_nodes.end(); ++it) { + graph->erase(*it); + } + clear(); + } + + /// \brief Returns \c true if the snapshot is valid. + /// + /// This function returns \c true if the snapshot is valid. + bool valid() const { + return attached(); + } + }; + }; + + /// @} } //namespace lemon