diff -r 0ba8dfce7259 -r 85cb3aa71cce test/min_cost_flow_test.cc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/min_cost_flow_test.cc Tue Apr 21 15:18:54 2009 +0100 @@ -0,0 +1,339 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#include +#include + +#include +#include + +#include + +#include +#include + +#include "test_tools.h" + +using namespace lemon; + +char test_lgf[] = + "@nodes\n" + "label sup1 sup2 sup3 sup4 sup5\n" + " 1 20 27 0 20 30\n" + " 2 -4 0 0 -8 -3\n" + " 3 0 0 0 0 0\n" + " 4 0 0 0 0 0\n" + " 5 9 0 0 6 11\n" + " 6 -6 0 0 -5 -6\n" + " 7 0 0 0 0 0\n" + " 8 0 0 0 0 3\n" + " 9 3 0 0 0 0\n" + " 10 -2 0 0 -7 -2\n" + " 11 0 0 0 -10 0\n" + " 12 -20 -27 0 -30 -20\n" + "\n" + "@arcs\n" + " cost cap low1 low2\n" + " 1 2 70 11 0 8\n" + " 1 3 150 3 0 1\n" + " 1 4 80 15 0 2\n" + " 2 8 80 12 0 0\n" + " 3 5 140 5 0 3\n" + " 4 6 60 10 0 1\n" + " 4 7 80 2 0 0\n" + " 4 8 110 3 0 0\n" + " 5 7 60 14 0 0\n" + " 5 11 120 12 0 0\n" + " 6 3 0 3 0 0\n" + " 6 9 140 4 0 0\n" + " 6 10 90 8 0 0\n" + " 7 1 30 5 0 0\n" + " 8 12 60 16 0 4\n" + " 9 12 50 6 0 0\n" + "10 12 70 13 0 5\n" + "10 2 100 7 0 0\n" + "10 7 60 10 0 0\n" + "11 10 20 14 0 6\n" + "12 11 30 10 0 0\n" + "\n" + "@attributes\n" + "source 1\n" + "target 12\n"; + + +enum ProblemType { + EQ, + GEQ, + LEQ +}; + +// Check the interface of an MCF algorithm +template +class McfClassConcept +{ +public: + + template + struct Constraints { + void constraints() { + checkConcept(); + + MCF mcf(g); + + b = mcf.reset() + .lowerMap(lower) + .upperMap(upper) + .capacityMap(upper) + .boundMaps(lower, upper) + .costMap(cost) + .supplyMap(sup) + .stSupply(n, n, k) + .flowMap(flow) + .potentialMap(pot) + .run(); + + const MCF& const_mcf = mcf; + + const typename MCF::FlowMap &fm = const_mcf.flowMap(); + const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); + + v = const_mcf.totalCost(); + double x = const_mcf.template totalCost(); + v = const_mcf.flow(a); + v = const_mcf.potential(n); + + ignore_unused_variable_warning(fm); + ignore_unused_variable_warning(pm); + ignore_unused_variable_warning(x); + } + + typedef typename GR::Node Node; + typedef typename GR::Arc Arc; + typedef concepts::ReadMap NM; + typedef concepts::ReadMap FAM; + typedef concepts::ReadMap CAM; + + const GR &g; + const FAM &lower; + const FAM &upper; + const CAM &cost; + const NM ⊃ + const Node &n; + const Arc &a; + const Flow &k; + Flow v; + bool b; + + typename MCF::FlowMap &flow; + typename MCF::PotentialMap &pot; + }; + +}; + + +// Check the feasibility of the given flow (primal soluiton) +template < typename GR, typename LM, typename UM, + typename SM, typename FM > +bool checkFlow( const GR& gr, const LM& lower, const UM& upper, + const SM& supply, const FM& flow, + ProblemType type = EQ ) +{ + TEMPLATE_DIGRAPH_TYPEDEFS(GR); + + for (ArcIt e(gr); e != INVALID; ++e) { + if (flow[e] < lower[e] || flow[e] > upper[e]) return false; + } + + for (NodeIt n(gr); n != INVALID; ++n) { + typename SM::Value sum = 0; + for (OutArcIt e(gr, n); e != INVALID; ++e) + sum += flow[e]; + for (InArcIt e(gr, n); e != INVALID; ++e) + sum -= flow[e]; + bool b = (type == EQ && sum == supply[n]) || + (type == GEQ && sum >= supply[n]) || + (type == LEQ && sum <= supply[n]); + if (!b) return false; + } + + return true; +} + +// Check the feasibility of the given potentials (dual soluiton) +// using the "Complementary Slackness" optimality condition +template < typename GR, typename LM, typename UM, + typename CM, typename SM, typename FM, typename PM > +bool checkPotential( const GR& gr, const LM& lower, const UM& upper, + const CM& cost, const SM& supply, const FM& flow, + const PM& pi ) +{ + TEMPLATE_DIGRAPH_TYPEDEFS(GR); + + bool opt = true; + for (ArcIt e(gr); opt && e != INVALID; ++e) { + typename CM::Value red_cost = + cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; + opt = red_cost == 0 || + (red_cost > 0 && flow[e] == lower[e]) || + (red_cost < 0 && flow[e] == upper[e]); + } + + for (NodeIt n(gr); opt && n != INVALID; ++n) { + typename SM::Value sum = 0; + for (OutArcIt e(gr, n); e != INVALID; ++e) + sum += flow[e]; + for (InArcIt e(gr, n); e != INVALID; ++e) + sum -= flow[e]; + opt = (sum == supply[n]) || (pi[n] == 0); + } + + return opt; +} + +// Run a minimum cost flow algorithm and check the results +template < typename MCF, typename GR, + typename LM, typename UM, + typename CM, typename SM > +void checkMcf( const MCF& mcf, bool mcf_result, + const GR& gr, const LM& lower, const UM& upper, + const CM& cost, const SM& supply, + bool result, typename CM::Value total, + const std::string &test_id = "", + ProblemType type = EQ ) +{ + check(mcf_result == result, "Wrong result " + test_id); + if (result) { + check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), + "The flow is not feasible " + test_id); + check(mcf.totalCost() == total, "The flow is not optimal " + test_id); + check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), + mcf.potentialMap()), + "Wrong potentials " + test_id); + } +} + +int main() +{ + // Check the interfaces + { + typedef int Flow; + typedef int Cost; + // TODO: This typedef should be enabled if the standard maps are + // reference maps in the graph concepts (See #190). +/**/ + //typedef concepts::Digraph GR; + typedef ListDigraph GR; +/**/ + checkConcept< McfClassConcept, + NetworkSimplex >(); + } + + // Run various MCF tests + typedef ListDigraph Digraph; + DIGRAPH_TYPEDEFS(ListDigraph); + + // Read the test digraph + Digraph gr; + Digraph::ArcMap c(gr), l1(gr), l2(gr), u(gr); + Digraph::NodeMap s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); + ConstMap cc(1), cu(std::numeric_limits::max()); + Node v, w; + + std::istringstream input(test_lgf); + DigraphReader(gr, input) + .arcMap("cost", c) + .arcMap("cap", u) + .arcMap("low1", l1) + .arcMap("low2", l2) + .nodeMap("sup1", s1) + .nodeMap("sup2", s2) + .nodeMap("sup3", s3) + .nodeMap("sup4", s4) + .nodeMap("sup5", s5) + .node("source", v) + .node("target", w) + .run(); + + // A. Test NetworkSimplex with the default pivot rule + { + NetworkSimplex mcf(gr); + + // Check the equality form + mcf.upperMap(u).costMap(c); + checkMcf(mcf, mcf.supplyMap(s1).run(), + gr, l1, u, c, s1, true, 5240, "#A1"); + checkMcf(mcf, mcf.stSupply(v, w, 27).run(), + gr, l1, u, c, s2, true, 7620, "#A2"); + mcf.lowerMap(l2); + checkMcf(mcf, mcf.supplyMap(s1).run(), + gr, l2, u, c, s1, true, 5970, "#A3"); + checkMcf(mcf, mcf.stSupply(v, w, 27).run(), + gr, l2, u, c, s2, true, 8010, "#A4"); + mcf.reset(); + checkMcf(mcf, mcf.supplyMap(s1).run(), + gr, l1, cu, cc, s1, true, 74, "#A5"); + checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), + gr, l2, cu, cc, s2, true, 94, "#A6"); + mcf.reset(); + checkMcf(mcf, mcf.run(), + gr, l1, cu, cc, s3, true, 0, "#A7"); + checkMcf(mcf, mcf.boundMaps(l2, u).run(), + gr, l2, u, cc, s3, false, 0, "#A8"); + + // Check the GEQ form + mcf.reset().upperMap(u).costMap(c).supplyMap(s4); + checkMcf(mcf, mcf.run(), + gr, l1, u, c, s4, true, 3530, "#A9", GEQ); + mcf.problemType(mcf.GEQ); + checkMcf(mcf, mcf.lowerMap(l2).run(), + gr, l2, u, c, s4, true, 4540, "#A10", GEQ); + mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); + checkMcf(mcf, mcf.run(), + gr, l2, u, c, s5, false, 0, "#A11", GEQ); + + // Check the LEQ form + mcf.reset().problemType(mcf.LEQ); + mcf.upperMap(u).costMap(c).supplyMap(s5); + checkMcf(mcf, mcf.run(), + gr, l1, u, c, s5, true, 5080, "#A12", LEQ); + checkMcf(mcf, mcf.lowerMap(l2).run(), + gr, l2, u, c, s5, true, 5930, "#A13", LEQ); + mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); + checkMcf(mcf, mcf.run(), + gr, l2, u, c, s4, false, 0, "#A14", LEQ); + } + + // B. Test NetworkSimplex with each pivot rule + { + NetworkSimplex mcf(gr); + mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); + + checkMcf(mcf, mcf.run(NetworkSimplex::FIRST_ELIGIBLE), + gr, l2, u, c, s1, true, 5970, "#B1"); + checkMcf(mcf, mcf.run(NetworkSimplex::BEST_ELIGIBLE), + gr, l2, u, c, s1, true, 5970, "#B2"); + checkMcf(mcf, mcf.run(NetworkSimplex::BLOCK_SEARCH), + gr, l2, u, c, s1, true, 5970, "#B3"); + checkMcf(mcf, mcf.run(NetworkSimplex::CANDIDATE_LIST), + gr, l2, u, c, s1, true, 5970, "#B4"); + checkMcf(mcf, mcf.run(NetworkSimplex::ALTERING_LIST), + gr, l2, u, c, s1, true, 5970, "#B5"); + } + + return 0; +}