diff -r 9f529abcaebf -r d1a9224f1e30 lemon/pairing_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/pairing_heap.h Thu Jul 09 02:38:01 2009 +0200 @@ -0,0 +1,469 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_PAIRING_HEAP_H +#define LEMON_PAIRING_HEAP_H + +///\file +///\ingroup auxdat +///\brief Pairing Heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup auxdat + /// + ///\brief Pairing Heap. + /// + ///This class implements the \e Pairing \e heap data structure. A \e heap + ///is a data structure for storing items with specified values called \e + ///priorities in such a way that finding the item with minimum priority is + ///efficient. \c Compare specifies the ordering of the priorities. In a heap + ///one can change the priority of an item, add or erase an item, etc. + /// + ///The methods \ref increase and \ref erase are not efficient in a Pairing + ///heap. In case of many calls to these operations, it is better to use a + ///\ref BinHeap "binary heap". + /// + ///\param _Prio Type of the priority of the items. + ///\param _ItemIntMap A read and writable Item int map, used internally + ///to handle the cross references. + ///\param _Compare A class for the ordering of the priorities. The + ///default is \c std::less<_Prio>. + /// + ///\sa BinHeap + ///\sa Dijkstra + ///\author Dorian Batha + +#ifdef DOXYGEN + template +#else + template > +#endif + class PairingHeap { + public: + typedef _ItemIntMap ItemIntMap; + typedef _Prio Prio; + typedef typename ItemIntMap::Key Item; + typedef std::pair Pair; + typedef _Compare Compare; + + private: + class store; + + std::vector container; + int minimum; + ItemIntMap &iimap; + Compare comp; + int num_items; + + public: + ///Status of the nodes + enum State { + ///The node is in the heap + IN_HEAP = 0, + ///The node has never been in the heap + PRE_HEAP = -1, + ///The node was in the heap but it got out of it + POST_HEAP = -2 + }; + + /// \brief The constructor + /// + /// \c _iimap should be given to the constructor, since it is + /// used internally to handle the cross references. + explicit PairingHeap(ItemIntMap &_iimap) + : minimum(0), iimap(_iimap), num_items(0) {} + + /// \brief The constructor + /// + /// \c _iimap should be given to the constructor, since it is used + /// internally to handle the cross references. \c _comp is an + /// object for ordering of the priorities. + PairingHeap(ItemIntMap &_iimap, const Compare &_comp) + : minimum(0), iimap(_iimap), comp(_comp), num_items(0) {} + + /// \brief The number of items stored in the heap. + /// + /// Returns the number of items stored in the heap. + int size() const { return num_items; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return num_items==0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + container.clear(); + minimum = 0; + num_items = 0; + } + + /// \brief \c item gets to the heap with priority \c value independently + /// if \c item was already there. + /// + /// This method calls \ref push(\c item, \c value) if \c item is not + /// stored in the heap and it calls \ref decrease(\c item, \c value) or + /// \ref increase(\c item, \c value) otherwise. + void set (const Item& item, const Prio& value) { + int i=iimap[item]; + if ( i>=0 && container[i].in ) { + if ( comp(value, container[i].prio) ) decrease(item, value); + if ( comp(container[i].prio, value) ) increase(item, value); + } else push(item, value); + } + + /// \brief Adds \c item to the heap with priority \c value. + /// + /// Adds \c item to the heap with priority \c value. + /// \pre \c item must not be stored in the heap. + void push (const Item& item, const Prio& value) { + int i=iimap[item]; + if( i<0 ) { + int s=container.size(); + iimap.set(item, s); + store st; + st.name=item; + container.push_back(st); + i=s; + } else { + container[i].parent=container[i].child=-1; + container[i].left_child=false; + container[i].degree=0; + container[i].in=true; + } + + container[i].prio=value; + + if ( num_items!=0 ) { + if ( comp( value, container[minimum].prio) ) { + fuse(i,minimum); + minimum=i; + } + else fuse(minimum,i); + } + else minimum=i; + + ++num_items; + } + + /// \brief Returns the item with minimum priority relative to \c Compare. + /// + /// This method returns the item with minimum priority relative to \c + /// Compare. + /// \pre The heap must be nonempty. + Item top() const { return container[minimum].name; } + + /// \brief Returns the minimum priority relative to \c Compare. + /// + /// It returns the minimum priority relative to \c Compare. + /// \pre The heap must be nonempty. + const Prio& prio() const { return container[minimum].prio; } + + /// \brief Returns the priority of \c item. + /// + /// It returns the priority of \c item. + /// \pre \c item must be in the heap. + const Prio& operator[](const Item& item) const { + return container[iimap[item]].prio; + } + + /// \brief Deletes the item with minimum priority relative to \c Compare. + /// + /// This method deletes the item with minimum priority relative to \c + /// Compare from the heap. + /// \pre The heap must be non-empty. + void pop() { + int TreeArray[num_items]; + int i=0, num_child=0, child_right = 0; + container[minimum].in=false; + + if( -1!=container[minimum].child ) { + i=container[minimum].child; + TreeArray[num_child] = i; + container[i].parent = -1; + container[minimum].child = -1; + + ++num_child; + int ch=-1; + while( container[i].child!=-1 ) { + ch=container[i].child; + if( container[ch].left_child && i==container[ch].parent ) { + i=ch; + //break; + } else { + if( container[ch].left_child ) { + child_right=container[ch].parent; + container[ch].parent = i; + --container[i].degree; + } + else { + child_right=ch; + container[i].child=-1; + container[i].degree=0; + } + container[child_right].parent = -1; + TreeArray[num_child] = child_right; + i = child_right; + ++num_child; + } + } + + int other; + for( i=0; i=2) { + if ( comp(container[TreeArray[i]].prio, + container[TreeArray[i-2]].prio) ) { + other=TreeArray[i]; + TreeArray[i]=TreeArray[i-2]; + TreeArray[i-2]=other; + } + fuse( TreeArray[i-2], TreeArray[i] ); + i-=2; + } + minimum = TreeArray[0]; + } + + if ( 0==num_child ) { + minimum = container[minimum].child; + } + + --num_items; + } + + /// \brief Deletes \c item from the heap. + /// + /// This method deletes \c item from the heap, if \c item was already + /// stored in the heap. It is quite inefficient in Pairing heaps. + void erase (const Item& item) { + int i=iimap[item]; + if ( i>=0 && container[i].in ) { + decrease( item, container[minimum].prio-1 ); + pop(); + } + } + + /// \brief Decreases the priority of \c item to \c value. + /// + /// This method decreases the priority of \c item to \c value. + /// \pre \c item must be stored in the heap with priority at least \c + /// value relative to \c Compare. + void decrease (Item item, const Prio& value) { + int i=iimap[item]; + container[i].prio=value; + int p=container[i].parent; + + if( container[i].left_child && i!=container[p].child ) { + p=container[p].parent; + } + + if ( p!=-1 && comp(value,container[p].prio) ) { + cut(i,p); + if ( comp(container[minimum].prio,value) ) { + fuse(minimum,i); + } else { + fuse(i,minimum); + minimum=i; + } + } + } + + /// \brief Increases the priority of \c item to \c value. + /// + /// This method sets the priority of \c item to \c value. Though + /// there is no precondition on the priority of \c item, this + /// method should be used only if it is indeed necessary to increase + /// (relative to \c Compare) the priority of \c item, because this + /// method is inefficient. + void increase (Item item, const Prio& value) { + erase(item); + push(item,value); + } + + /// \brief Returns if \c item is in, has already been in, or has never + /// been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + State state(const Item &item) const { + int i=iimap[item]; + if( i>=0 ) { + if( container[i].in ) i=0; + else i=-2; + } + return State(i); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) erase(i); + iimap[i]=st; + break; + case IN_HEAP: + break; + } + } + + private: + + void cut(int a, int b) { + int child_a; + switch (container[a].degree) { + case 2: + child_a = container[container[a].child].parent; + if( container[a].left_child ) { + container[child_a].left_child=true; + container[b].child=child_a; + container[child_a].parent=container[a].parent; + } + else { + container[child_a].left_child=false; + container[child_a].parent=b; + if( a!=container[b].child ) + container[container[b].child].parent=child_a; + else + container[b].child=child_a; + } + --container[a].degree; + container[container[a].child].parent=a; + break; + + case 1: + child_a = container[a].child; + if( !container[child_a].left_child ) { + --container[a].degree; + if( container[a].left_child ) { + container[child_a].left_child=true; + container[child_a].parent=container[a].parent; + container[b].child=child_a; + } + else { + container[child_a].left_child=false; + container[child_a].parent=b; + if( a!=container[b].child ) + container[container[b].child].parent=child_a; + else + container[b].child=child_a; + } + container[a].child=-1; + } + else { + --container[b].degree; + if( container[a].left_child ) { + container[b].child = + (1==container[b].degree) ? container[a].parent : -1; + } else { + if (1==container[b].degree) + container[container[b].child].parent=b; + else + container[b].child=-1; + } + } + break; + + case 0: + --container[b].degree; + if( container[a].left_child ) { + container[b].child = + (0!=container[b].degree) ? container[a].parent : -1; + } else { + if( 0!=container[b].degree ) + container[container[b].child].parent=b; + else + container[b].child=-1; + } + break; + } + container[a].parent=-1; + container[a].left_child=false; + } + + void fuse(int a, int b) { + int child_a = container[a].child; + int child_b = container[b].child; + container[a].child=b; + container[b].parent=a; + container[b].left_child=true; + + if( -1!=child_a ) { + container[b].child=child_a; + container[child_a].parent=b; + container[child_a].left_child=false; + ++container[b].degree; + + if( -1!=child_b ) { + container[b].child=child_b; + container[child_b].parent=child_a; + } + } + else { ++container[a].degree; } + } + + class store { + friend class PairingHeap; + + Item name; + int parent; + int child; + bool left_child; + int degree; + bool in; + Prio prio; + + store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} + }; + }; + +} //namespace lemon + +#endif //LEMON_PAIRING_HEAP_H +