diff -r fc6c7aab4b8d -r d59dcc933e59 lemon/gomory_hu.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/gomory_hu.h Wed Mar 04 14:09:45 2009 +0000 @@ -0,0 +1,551 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_GOMORY_HU_TREE_H +#define LEMON_GOMORY_HU_TREE_H + +#include + +#include +#include +#include +#include + +/// \ingroup min_cut +/// \file +/// \brief Gomory-Hu cut tree in graphs. + +namespace lemon { + + /// \ingroup min_cut + /// + /// \brief Gomory-Hu cut tree algorithm + /// + /// The Gomory-Hu tree is a tree on the node set of a given graph, but it + /// may contain edges which are not in the original graph. It has the + /// property that the minimum capacity edge of the path between two nodes + /// in this tree has the same weight as the minimum cut in the graph + /// between these nodes. Moreover the components obtained by removing + /// this edge from the tree determine the corresponding minimum cut. + /// + /// Therefore once this tree is computed, the minimum cut between any pair + /// of nodes can easily be obtained. + /// + /// The algorithm calculates \e n-1 distinct minimum cuts (currently with + /// the \ref Preflow algorithm), therefore the algorithm has + /// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a + /// rooted Gomory-Hu tree, its structure and the weights can be obtained + /// by \c predNode(), \c predValue() and \c rootDist(). + /// + /// The members \c minCutMap() and \c minCutValue() calculate + /// the minimum cut and the minimum cut value between any two nodes + /// in the graph. You can also list (iterate on) the nodes and the + /// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. + /// + /// \tparam GR The type of the undirected graph the algorithm runs on. + /// \tparam CAP The type of the edge map describing the edge capacities. + /// It is \ref concepts::Graph::EdgeMap "GR::EdgeMap" by default. +#ifdef DOXYGEN + template +#else + template > +#endif + class GomoryHu { + public: + + /// The graph type + typedef GR Graph; + /// The type of the edge capacity map + typedef CAP Capacity; + /// The value type of capacities + typedef typename Capacity::Value Value; + + private: + + TEMPLATE_GRAPH_TYPEDEFS(Graph); + + const Graph& _graph; + const Capacity& _capacity; + + Node _root; + typename Graph::template NodeMap* _pred; + typename Graph::template NodeMap* _weight; + typename Graph::template NodeMap* _order; + + void createStructures() { + if (!_pred) { + _pred = new typename Graph::template NodeMap(_graph); + } + if (!_weight) { + _weight = new typename Graph::template NodeMap(_graph); + } + if (!_order) { + _order = new typename Graph::template NodeMap(_graph); + } + } + + void destroyStructures() { + if (_pred) { + delete _pred; + } + if (_weight) { + delete _weight; + } + if (_order) { + delete _order; + } + } + + public: + + /// \brief Constructor + /// + /// Constructor + /// \param graph The undirected graph the algorithm runs on. + /// \param capacity The edge capacity map. + GomoryHu(const Graph& graph, const Capacity& capacity) + : _graph(graph), _capacity(capacity), + _pred(0), _weight(0), _order(0) + { + checkConcept, Capacity>(); + } + + + /// \brief Destructor + /// + /// Destructor + ~GomoryHu() { + destroyStructures(); + } + + private: + + // Initialize the internal data structures + void init() { + createStructures(); + + _root = NodeIt(_graph); + for (NodeIt n(_graph); n != INVALID; ++n) { + _pred->set(n, _root); + _order->set(n, -1); + } + _pred->set(_root, INVALID); + _weight->set(_root, std::numeric_limits::max()); + } + + + // Start the algorithm + void start() { + Preflow fa(_graph, _capacity, _root, INVALID); + + for (NodeIt n(_graph); n != INVALID; ++n) { + if (n == _root) continue; + + Node pn = (*_pred)[n]; + fa.source(n); + fa.target(pn); + + fa.runMinCut(); + + _weight->set(n, fa.flowValue()); + + for (NodeIt nn(_graph); nn != INVALID; ++nn) { + if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { + _pred->set(nn, n); + } + } + if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { + _pred->set(n, (*_pred)[pn]); + _pred->set(pn, n); + _weight->set(n, (*_weight)[pn]); + _weight->set(pn, fa.flowValue()); + } + } + + _order->set(_root, 0); + int index = 1; + + for (NodeIt n(_graph); n != INVALID; ++n) { + std::vector st; + Node nn = n; + while ((*_order)[nn] == -1) { + st.push_back(nn); + nn = (*_pred)[nn]; + } + while (!st.empty()) { + _order->set(st.back(), index++); + st.pop_back(); + } + } + } + + public: + + ///\name Execution Control + + ///@{ + + /// \brief Run the Gomory-Hu algorithm. + /// + /// This function runs the Gomory-Hu algorithm. + void run() { + init(); + start(); + } + + /// @} + + ///\name Query Functions + ///The results of the algorithm can be obtained using these + ///functions.\n + ///\ref run() "run()" should be called before using them.\n + ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. + + ///@{ + + /// \brief Return the predecessor node in the Gomory-Hu tree. + /// + /// This function returns the predecessor node in the Gomory-Hu tree. + /// If the node is + /// the root of the Gomory-Hu tree, then it returns \c INVALID. + Node predNode(const Node& node) { + return (*_pred)[node]; + } + + /// \brief Return the distance from the root node in the Gomory-Hu tree. + /// + /// This function returns the distance of \c node from the root node + /// in the Gomory-Hu tree. + int rootDist(const Node& node) { + return (*_order)[node]; + } + + /// \brief Return the weight of the predecessor edge in the + /// Gomory-Hu tree. + /// + /// This function returns the weight of the predecessor edge in the + /// Gomory-Hu tree. If the node is the root, the result is undefined. + Value predValue(const Node& node) { + return (*_weight)[node]; + } + + /// \brief Return the minimum cut value between two nodes + /// + /// This function returns the minimum cut value between two nodes. The + /// algorithm finds the nearest common ancestor in the Gomory-Hu + /// tree and calculates the minimum weight edge on the paths to + /// the ancestor. + Value minCutValue(const Node& s, const Node& t) const { + Node sn = s, tn = t; + Value value = std::numeric_limits::max(); + + while (sn != tn) { + if ((*_order)[sn] < (*_order)[tn]) { + if ((*_weight)[tn] <= value) value = (*_weight)[tn]; + tn = (*_pred)[tn]; + } else { + if ((*_weight)[sn] <= value) value = (*_weight)[sn]; + sn = (*_pred)[sn]; + } + } + return value; + } + + /// \brief Return the minimum cut between two nodes + /// + /// This function returns the minimum cut between the nodes \c s and \c t + /// in the \c cutMap parameter by setting the nodes in the component of + /// \c s to \c true and the other nodes to \c false. + /// + /// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt. + template + Value minCutMap(const Node& s, ///< The base node. + const Node& t, + ///< The node you want to separate from node \c s. + CutMap& cutMap + ///< The cut will be returned in this map. + /// It must be a \c bool (or convertible) + /// \ref concepts::ReadWriteMap "ReadWriteMap" + /// on the graph nodes. + ) const { + Node sn = s, tn = t; + bool s_root=false; + Node rn = INVALID; + Value value = std::numeric_limits::max(); + + while (sn != tn) { + if ((*_order)[sn] < (*_order)[tn]) { + if ((*_weight)[tn] <= value) { + rn = tn; + s_root = false; + value = (*_weight)[tn]; + } + tn = (*_pred)[tn]; + } else { + if ((*_weight)[sn] <= value) { + rn = sn; + s_root = true; + value = (*_weight)[sn]; + } + sn = (*_pred)[sn]; + } + } + + typename Graph::template NodeMap reached(_graph, false); + reached.set(_root, true); + cutMap.set(_root, !s_root); + reached.set(rn, true); + cutMap.set(rn, s_root); + + std::vector st; + for (NodeIt n(_graph); n != INVALID; ++n) { + st.clear(); + Node nn = n; + while (!reached[nn]) { + st.push_back(nn); + nn = (*_pred)[nn]; + } + while (!st.empty()) { + cutMap.set(st.back(), cutMap[nn]); + st.pop_back(); + } + } + + return value; + } + + ///@} + + friend class MinCutNodeIt; + + /// Iterate on the nodes of a minimum cut + + /// This iterator class lists the nodes of a minimum cut found by + /// GomoryHu. Before using it, you must allocate a GomoryHu class, + /// and call its \ref GomoryHu::run() "run()" method. + /// + /// This example counts the nodes in the minimum cut separating \c s from + /// \c t. + /// \code + /// GomoruHu gom(g, capacities); + /// gom.run(); + /// int cnt=0; + /// for(GomoruHu::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; + /// \endcode + class MinCutNodeIt + { + bool _side; + typename Graph::NodeIt _node_it; + typename Graph::template NodeMap _cut; + public: + /// Constructor + + /// Constructor. + /// + MinCutNodeIt(GomoryHu const &gomory, + ///< The GomoryHu class. You must call its + /// run() method + /// before initializing this iterator. + const Node& s, ///< The base node. + const Node& t, + ///< The node you want to separate from node \c s. + bool side=true + ///< If it is \c true (default) then the iterator lists + /// the nodes of the component containing \c s, + /// otherwise it lists the other component. + /// \note As the minimum cut is not always unique, + /// \code + /// MinCutNodeIt(gomory, s, t, true); + /// \endcode + /// and + /// \code + /// MinCutNodeIt(gomory, t, s, false); + /// \endcode + /// does not necessarily give the same set of nodes. + /// However it is ensured that + /// \code + /// MinCutNodeIt(gomory, s, t, true); + /// \endcode + /// and + /// \code + /// MinCutNodeIt(gomory, s, t, false); + /// \endcode + /// together list each node exactly once. + ) + : _side(side), _cut(gomory._graph) + { + gomory.minCutMap(s,t,_cut); + for(_node_it=typename Graph::NodeIt(gomory._graph); + _node_it!=INVALID && _cut[_node_it]!=_side; + ++_node_it) {} + } + /// Conversion to \c Node + + /// Conversion to \c Node. + /// + operator typename Graph::Node() const + { + return _node_it; + } + bool operator==(Invalid) { return _node_it==INVALID; } + bool operator!=(Invalid) { return _node_it!=INVALID; } + /// Next node + + /// Next node. + /// + MinCutNodeIt &operator++() + { + for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} + return *this; + } + /// Postfix incrementation + + /// Postfix incrementation. + /// + /// \warning This incrementation + /// returns a \c Node, not a \c MinCutNodeIt, as one may + /// expect. + typename Graph::Node operator++(int) + { + typename Graph::Node n=*this; + ++(*this); + return n; + } + }; + + friend class MinCutEdgeIt; + + /// Iterate on the edges of a minimum cut + + /// This iterator class lists the edges of a minimum cut found by + /// GomoryHu. Before using it, you must allocate a GomoryHu class, + /// and call its \ref GomoryHu::run() "run()" method. + /// + /// This example computes the value of the minimum cut separating \c s from + /// \c t. + /// \code + /// GomoruHu gom(g, capacities); + /// gom.run(); + /// int value=0; + /// for(GomoruHu::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) + /// value+=capacities[e]; + /// \endcode + /// the result will be the same as it is returned by + /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)" + class MinCutEdgeIt + { + bool _side; + const Graph &_graph; + typename Graph::NodeIt _node_it; + typename Graph::OutArcIt _arc_it; + typename Graph::template NodeMap _cut; + void step() + { + ++_arc_it; + while(_node_it!=INVALID && _arc_it==INVALID) + { + for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} + if(_node_it!=INVALID) + _arc_it=typename Graph::OutArcIt(_graph,_node_it); + } + } + + public: + MinCutEdgeIt(GomoryHu const &gomory, + ///< The GomoryHu class. You must call its + /// run() method + /// before initializing this iterator. + const Node& s, ///< The base node. + const Node& t, + ///< The node you want to separate from node \c s. + bool side=true + ///< If it is \c true (default) then the listed arcs + /// will be oriented from the + /// the nodes of the component containing \c s, + /// otherwise they will be oriented in the opposite + /// direction. + ) + : _graph(gomory._graph), _cut(_graph) + { + gomory.minCutMap(s,t,_cut); + if(!side) + for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) + _cut[n]=!_cut[n]; + + for(_node_it=typename Graph::NodeIt(_graph); + _node_it!=INVALID && !_cut[_node_it]; + ++_node_it) {} + _arc_it = _node_it!=INVALID ? + typename Graph::OutArcIt(_graph,_node_it) : INVALID; + while(_node_it!=INVALID && _arc_it == INVALID) + { + for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {} + if(_node_it!=INVALID) + _arc_it= typename Graph::OutArcIt(_graph,_node_it); + } + while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); + } + /// Conversion to \c Arc + + /// Conversion to \c Arc. + /// + operator typename Graph::Arc() const + { + return _arc_it; + } + /// Conversion to \c Edge + + /// Conversion to \c Edge. + /// + operator typename Graph::Edge() const + { + return _arc_it; + } + bool operator==(Invalid) { return _node_it==INVALID; } + bool operator!=(Invalid) { return _node_it!=INVALID; } + /// Next edge + + /// Next edge. + /// + MinCutEdgeIt &operator++() + { + step(); + while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); + return *this; + } + /// Postfix incrementation + + /// Postfix incrementation. + /// + /// \warning This incrementation + /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. + typename Graph::Arc operator++(int) + { + typename Graph::Arc e=*this; + ++(*this); + return e; + } + }; + + }; + +} + +#endif