# HG changeset patch # User Balazs Dezso # Date 1228067838 -3600 # Node ID 05357da973cebdeb7b6b072d79639d636ba66860 # Parent 0c5dd7ceda033c6e2292d1c220c15b38291476fd Port graph adaptors from svn -r3498 (#67) diff -r 0c5dd7ceda03 -r 05357da973ce lemon/Makefile.am --- a/lemon/Makefile.am Sun Nov 30 09:39:34 2008 +0000 +++ b/lemon/Makefile.am Sun Nov 30 18:57:18 2008 +0100 @@ -58,10 +58,12 @@ lemon/bits/bezier.h \ lemon/bits/default_map.h \ lemon/bits/enable_if.h \ + lemon/bits/graph_adaptor_extender.h \ lemon/bits/graph_extender.h \ lemon/bits/map_extender.h \ lemon/bits/path_dump.h \ lemon/bits/traits.h \ + lemon/bits/variant.h \ lemon/bits/vector_map.h concept_HEADERS += \ diff -r 0c5dd7ceda03 -r 05357da973ce lemon/bits/graph_adaptor_extender.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/bits/graph_adaptor_extender.h Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,444 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H +#define LEMON_BITS_GRAPH_ADAPTOR_EXTENDER_H + +#include +#include + +#include + + +///\ingroup digraphbits +///\file +///\brief Extenders for the digraph adaptor types +namespace lemon { + + /// \ingroup digraphbits + /// + /// \brief Extender for the DigraphAdaptors + template + class DigraphAdaptorExtender : public _Digraph { + public: + + typedef _Digraph Parent; + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender Adaptor; + + // Base extensions + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + int maxId(Node) const { + return Parent::maxNodeId(); + } + + int maxId(Arc) const { + return Parent::maxArcId(); + } + + Node fromId(int id, Node) const { + return Parent::nodeFromId(id); + } + + Arc fromId(int id, Arc) const { + return Parent::arcFromId(id); + } + + Node oppositeNode(const Node &n, const Arc &e) const { + if (n == Parent::source(e)) + return Parent::target(e); + else if(n==Parent::target(e)) + return Parent::source(e); + else + return INVALID; + } + + class NodeIt : public Node { + const Adaptor* _adaptor; + public: + + NodeIt() {} + + NodeIt(Invalid i) : Node(i) { } + + explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { + _adaptor->first(static_cast(*this)); + } + + NodeIt(const Adaptor& adaptor, const Node& node) + : Node(node), _adaptor(&adaptor) {} + + NodeIt& operator++() { + _adaptor->next(*this); + return *this; + } + + }; + + + class ArcIt : public Arc { + const Adaptor* _adaptor; + public: + + ArcIt() { } + + ArcIt(Invalid i) : Arc(i) { } + + explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { + _adaptor->first(static_cast(*this)); + } + + ArcIt(const Adaptor& adaptor, const Arc& e) : + Arc(e), _adaptor(&adaptor) { } + + ArcIt& operator++() { + _adaptor->next(*this); + return *this; + } + + }; + + + class OutArcIt : public Arc { + const Adaptor* _adaptor; + public: + + OutArcIt() { } + + OutArcIt(Invalid i) : Arc(i) { } + + OutArcIt(const Adaptor& adaptor, const Node& node) + : _adaptor(&adaptor) { + _adaptor->firstOut(*this, node); + } + + OutArcIt(const Adaptor& adaptor, const Arc& arc) + : Arc(arc), _adaptor(&adaptor) {} + + OutArcIt& operator++() { + _adaptor->nextOut(*this); + return *this; + } + + }; + + + class InArcIt : public Arc { + const Adaptor* _adaptor; + public: + + InArcIt() { } + + InArcIt(Invalid i) : Arc(i) { } + + InArcIt(const Adaptor& adaptor, const Node& node) + : _adaptor(&adaptor) { + _adaptor->firstIn(*this, node); + } + + InArcIt(const Adaptor& adaptor, const Arc& arc) : + Arc(arc), _adaptor(&adaptor) {} + + InArcIt& operator++() { + _adaptor->nextIn(*this); + return *this; + } + + }; + + /// \brief Base node of the iterator + /// + /// Returns the base node (ie. the source in this case) of the iterator + Node baseNode(const OutArcIt &e) const { + return Parent::source(e); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (ie. the target in this case) of the + /// iterator + Node runningNode(const OutArcIt &e) const { + return Parent::target(e); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node (ie. the target in this case) of the iterator + Node baseNode(const InArcIt &e) const { + return Parent::target(e); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (ie. the source in this case) of the + /// iterator + Node runningNode(const InArcIt &e) const { + return Parent::source(e); + } + + }; + + + /// \ingroup digraphbits + /// + /// \brief Extender for the GraphAdaptors + template + class GraphAdaptorExtender : public _Graph { + public: + + typedef _Graph Parent; + typedef _Graph Graph; + typedef GraphAdaptorExtender Adaptor; + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + // Graph extension + + int maxId(Node) const { + return Parent::maxNodeId(); + } + + int maxId(Arc) const { + return Parent::maxArcId(); + } + + int maxId(Edge) const { + return Parent::maxEdgeId(); + } + + Node fromId(int id, Node) const { + return Parent::nodeFromId(id); + } + + Arc fromId(int id, Arc) const { + return Parent::arcFromId(id); + } + + Edge fromId(int id, Edge) const { + return Parent::edgeFromId(id); + } + + Node oppositeNode(const Node &n, const Edge &e) const { + if( n == Parent::u(e)) + return Parent::v(e); + else if( n == Parent::v(e)) + return Parent::u(e); + else + return INVALID; + } + + Arc oppositeArc(const Arc &a) const { + return Parent::direct(a, !Parent::direction(a)); + } + + using Parent::direct; + Arc direct(const Edge &e, const Node &s) const { + return Parent::direct(e, Parent::u(e) == s); + } + + + class NodeIt : public Node { + const Adaptor* _adaptor; + public: + + NodeIt() {} + + NodeIt(Invalid i) : Node(i) { } + + explicit NodeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { + _adaptor->first(static_cast(*this)); + } + + NodeIt(const Adaptor& adaptor, const Node& node) + : Node(node), _adaptor(&adaptor) {} + + NodeIt& operator++() { + _adaptor->next(*this); + return *this; + } + + }; + + + class ArcIt : public Arc { + const Adaptor* _adaptor; + public: + + ArcIt() { } + + ArcIt(Invalid i) : Arc(i) { } + + explicit ArcIt(const Adaptor& adaptor) : _adaptor(&adaptor) { + _adaptor->first(static_cast(*this)); + } + + ArcIt(const Adaptor& adaptor, const Arc& e) : + Arc(e), _adaptor(&adaptor) { } + + ArcIt& operator++() { + _adaptor->next(*this); + return *this; + } + + }; + + + class OutArcIt : public Arc { + const Adaptor* _adaptor; + public: + + OutArcIt() { } + + OutArcIt(Invalid i) : Arc(i) { } + + OutArcIt(const Adaptor& adaptor, const Node& node) + : _adaptor(&adaptor) { + _adaptor->firstOut(*this, node); + } + + OutArcIt(const Adaptor& adaptor, const Arc& arc) + : Arc(arc), _adaptor(&adaptor) {} + + OutArcIt& operator++() { + _adaptor->nextOut(*this); + return *this; + } + + }; + + + class InArcIt : public Arc { + const Adaptor* _adaptor; + public: + + InArcIt() { } + + InArcIt(Invalid i) : Arc(i) { } + + InArcIt(const Adaptor& adaptor, const Node& node) + : _adaptor(&adaptor) { + _adaptor->firstIn(*this, node); + } + + InArcIt(const Adaptor& adaptor, const Arc& arc) : + Arc(arc), _adaptor(&adaptor) {} + + InArcIt& operator++() { + _adaptor->nextIn(*this); + return *this; + } + + }; + + class EdgeIt : public Parent::Edge { + const Adaptor* _adaptor; + public: + + EdgeIt() { } + + EdgeIt(Invalid i) : Edge(i) { } + + explicit EdgeIt(const Adaptor& adaptor) : _adaptor(&adaptor) { + _adaptor->first(static_cast(*this)); + } + + EdgeIt(const Adaptor& adaptor, const Edge& e) : + Edge(e), _adaptor(&adaptor) { } + + EdgeIt& operator++() { + _adaptor->next(*this); + return *this; + } + + }; + + class IncEdgeIt : public Edge { + friend class GraphAdaptorExtender; + const Adaptor* _adaptor; + bool direction; + public: + + IncEdgeIt() { } + + IncEdgeIt(Invalid i) : Edge(i), direction(false) { } + + IncEdgeIt(const Adaptor& adaptor, const Node &n) : _adaptor(&adaptor) { + _adaptor->firstInc(static_cast(*this), direction, n); + } + + IncEdgeIt(const Adaptor& adaptor, const Edge &e, const Node &n) + : _adaptor(&adaptor), Edge(e) { + direction = (_adaptor->u(e) == n); + } + + IncEdgeIt& operator++() { + _adaptor->nextInc(*this, direction); + return *this; + } + }; + + /// \brief Base node of the iterator + /// + /// Returns the base node (ie. the source in this case) of the iterator + Node baseNode(const OutArcIt &a) const { + return Parent::source(a); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (ie. the target in this case) of the + /// iterator + Node runningNode(const OutArcIt &a) const { + return Parent::target(a); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node (ie. the target in this case) of the iterator + Node baseNode(const InArcIt &a) const { + return Parent::target(a); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (ie. the source in this case) of the + /// iterator + Node runningNode(const InArcIt &a) const { + return Parent::source(a); + } + + /// Base node of the iterator + /// + /// Returns the base node of the iterator + Node baseNode(const IncEdgeIt &e) const { + return e.direction ? Parent::u(e) : Parent::v(e); + } + /// Running node of the iterator + /// + /// Returns the running node of the iterator + Node runningNode(const IncEdgeIt &e) const { + return e.direction ? Parent::v(e) : Parent::u(e); + } + + }; + +} + + +#endif diff -r 0c5dd7ceda03 -r 05357da973ce lemon/bits/variant.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/bits/variant.h Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,494 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BITS_VARIANT_H +#define LEMON_BITS_VARIANT_H + +#include + +/// \file +/// \brief Variant types + +namespace lemon { + + namespace _variant_bits { + + template + struct CTMax { + static const int value = left < right ? right : left; + }; + + } + + + /// \brief Simple Variant type for two types + /// + /// Simple Variant type for two types. The Variant type is a type + /// safe union. The C++ has strong limitations for using unions, by + /// example we can not store type with non default constructor or + /// destructor in an union. This class always knowns the current + /// state of the variant and it cares for the proper construction + /// and destruction. + template + class BiVariant { + public: + + /// \brief The \c First type. + typedef _First First; + /// \brief The \c Second type. + typedef _Second Second; + + /// \brief Constructor + /// + /// This constructor initalizes to the default value of the \c First + /// type. + BiVariant() { + flag = true; + new(reinterpret_cast(data)) First(); + } + + /// \brief Constructor + /// + /// This constructor initalizes to the given value of the \c First + /// type. + BiVariant(const First& f) { + flag = true; + new(reinterpret_cast(data)) First(f); + } + + /// \brief Constructor + /// + /// This constructor initalizes to the given value of the \c + /// Second type. + BiVariant(const Second& s) { + flag = false; + new(reinterpret_cast(data)) Second(s); + } + + /// \brief Copy constructor + /// + /// Copy constructor + BiVariant(const BiVariant& bivariant) { + flag = bivariant.flag; + if (flag) { + new(reinterpret_cast(data)) First(bivariant.first()); + } else { + new(reinterpret_cast(data)) Second(bivariant.second()); + } + } + + /// \brief Destrcutor + /// + /// Destructor + ~BiVariant() { + destroy(); + } + + /// \brief Set to the default value of the \c First type. + /// + /// This function sets the variant to the default value of the \c + /// First type. + BiVariant& setFirst() { + destroy(); + flag = true; + new(reinterpret_cast(data)) First(); + return *this; + } + + /// \brief Set to the given value of the \c First type. + /// + /// This function sets the variant to the given value of the \c + /// First type. + BiVariant& setFirst(const First& f) { + destroy(); + flag = true; + new(reinterpret_cast(data)) First(f); + return *this; + } + + /// \brief Set to the default value of the \c Second type. + /// + /// This function sets the variant to the default value of the \c + /// Second type. + BiVariant& setSecond() { + destroy(); + flag = false; + new(reinterpret_cast(data)) Second(); + return *this; + } + + /// \brief Set to the given value of the \c Second type. + /// + /// This function sets the variant to the given value of the \c + /// Second type. + BiVariant& setSecond(const Second& s) { + destroy(); + flag = false; + new(reinterpret_cast(data)) Second(s); + return *this; + } + + /// \brief Operator form of the \c setFirst() + BiVariant& operator=(const First& f) { + return setFirst(f); + } + + /// \brief Operator form of the \c setSecond() + BiVariant& operator=(const Second& s) { + return setSecond(s); + } + + /// \brief Assign operator + BiVariant& operator=(const BiVariant& bivariant) { + if (this == &bivariant) return *this; + destroy(); + flag = bivariant.flag; + if (flag) { + new(reinterpret_cast(data)) First(bivariant.first()); + } else { + new(reinterpret_cast(data)) Second(bivariant.second()); + } + return *this; + } + + /// \brief Reference to the value + /// + /// Reference to the value of the \c First type. + /// \pre The BiVariant should store value of \c First type. + First& first() { + LEMON_DEBUG(flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + /// \brief Const reference to the value + /// + /// Const reference to the value of the \c First type. + /// \pre The BiVariant should store value of \c First type. + const First& first() const { + LEMON_DEBUG(flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + /// \brief Operator form of the \c first() + operator First&() { return first(); } + /// \brief Operator form of the const \c first() + operator const First&() const { return first(); } + + /// \brief Reference to the value + /// + /// Reference to the value of the \c Second type. + /// \pre The BiVariant should store value of \c Second type. + Second& second() { + LEMON_DEBUG(!flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + /// \brief Const reference to the value + /// + /// Const reference to the value of the \c Second type. + /// \pre The BiVariant should store value of \c Second type. + const Second& second() const { + LEMON_DEBUG(!flag, "Variant wrong state"); + return *reinterpret_cast(data); + } + + /// \brief Operator form of the \c second() + operator Second&() { return second(); } + /// \brief Operator form of the const \c second() + operator const Second&() const { return second(); } + + /// \brief %True when the variant is in the first state + /// + /// %True when the variant stores value of the \c First type. + bool firstState() const { return flag; } + + /// \brief %True when the variant is in the second state + /// + /// %True when the variant stores value of the \c Second type. + bool secondState() const { return !flag; } + + private: + + void destroy() { + if (flag) { + reinterpret_cast(data)->~First(); + } else { + reinterpret_cast(data)->~Second(); + } + } + + char data[_variant_bits::CTMax::value]; + bool flag; + }; + + namespace _variant_bits { + + template + struct Memory { + + typedef typename _TypeMap::template Map<_idx>::Type Current; + + static void destroy(int index, char* place) { + if (index == _idx) { + reinterpret_cast(place)->~Current(); + } else { + Memory<_idx - 1, _TypeMap>::destroy(index, place); + } + } + + static void copy(int index, char* to, const char* from) { + if (index == _idx) { + new (reinterpret_cast(to)) + Current(reinterpret_cast(from)); + } else { + Memory<_idx - 1, _TypeMap>::copy(index, to, from); + } + } + + }; + + template + struct Memory<-1, _TypeMap> { + + static void destroy(int, char*) { + LEMON_DEBUG(false, "Variant wrong index."); + } + + static void copy(int, char*, const char*) { + LEMON_DEBUG(false, "Variant wrong index."); + } + }; + + template + struct Size { + static const int value = + CTMax::Type), + Size<_idx - 1, _TypeMap>::value>::value; + }; + + template + struct Size<0, _TypeMap> { + static const int value = + sizeof(typename _TypeMap::template Map<0>::Type); + }; + + } + + /// \brief Variant type + /// + /// Simple Variant type. The Variant type is a type safe union. The + /// C++ has strong limitations for using unions, for example we + /// cannot store type with non default constructor or destructor in + /// a union. This class always knowns the current state of the + /// variant and it cares for the proper construction and + /// destruction. + /// + /// \param _num The number of the types which can be stored in the + /// variant type. + /// \param _TypeMap This class describes the types of the Variant. The + /// _TypeMap::Map::Type should be a valid type for each index + /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper + /// class to define such type mappings up to 10 types. + /// + /// And the usage of the class: + ///\code + /// typedef Variant<3, VariantTypeMap > MyVariant; + /// MyVariant var; + /// var.set<0>(12); + /// std::cout << var.get<0>() << std::endl; + /// var.set<1>("alpha"); + /// std::cout << var.get<1>() << std::endl; + /// var.set<2>(0.75); + /// std::cout << var.get<2>() << std::endl; + ///\endcode + /// + /// The result of course: + ///\code + /// 12 + /// alpha + /// 0.75 + ///\endcode + template + class Variant { + public: + + static const int num = _num; + + typedef _TypeMap TypeMap; + + /// \brief Constructor + /// + /// This constructor initalizes to the default value of the \c type + /// with 0 index. + Variant() { + flag = 0; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<0>::Type(); + } + + + /// \brief Copy constructor + /// + /// Copy constructor + Variant(const Variant& variant) { + flag = variant.flag; + _variant_bits::Memory::copy(flag, data, variant.data); + } + + /// \brief Assign operator + /// + /// Assign operator + Variant& operator=(const Variant& variant) { + if (this == &variant) return *this; + _variant_bits::Memory:: + destroy(flag, data); + flag = variant.flag; + _variant_bits::Memory:: + copy(flag, data, variant.data); + return *this; + } + + /// \brief Destrcutor + /// + /// Destructor + ~Variant() { + _variant_bits::Memory::destroy(flag, data); + } + + /// \brief Set to the default value of the type with \c _idx index. + /// + /// This function sets the variant to the default value of the + /// type with \c _idx index. + template + Variant& set() { + _variant_bits::Memory::destroy(flag, data); + flag = _idx; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<_idx>::Type(); + return *this; + } + + /// \brief Set to the given value of the type with \c _idx index. + /// + /// This function sets the variant to the given value of the type + /// with \c _idx index. + template + Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) { + _variant_bits::Memory::destroy(flag, data); + flag = _idx; + new(reinterpret_cast::Type*>(data)) + typename TypeMap::template Map<_idx>::Type(init); + return *this; + } + + /// \brief Gets the current value of the type with \c _idx index. + /// + /// Gets the current value of the type with \c _idx index. + template + const typename TypeMap::template Map<_idx>::Type& get() const { + LEMON_DEBUG(_idx == flag, "Variant wrong index"); + return *reinterpret_cast::Type*>(data); + } + + /// \brief Gets the current value of the type with \c _idx index. + /// + /// Gets the current value of the type with \c _idx index. + template + typename _TypeMap::template Map<_idx>::Type& get() { + LEMON_DEBUG(_idx == flag, "Variant wrong index"); + return *reinterpret_cast::Type*> + (data); + } + + /// \brief Returns the current state of the variant. + /// + /// Returns the current state of the variant. + int state() const { + return flag; + } + + private: + + char data[_variant_bits::Size::value]; + int flag; + }; + + namespace _variant_bits { + + template + struct Get { + typedef typename Get<_index - 1, typename _List::Next>::Type Type; + }; + + template + struct Get<0, _List> { + typedef typename _List::Type Type; + }; + + struct List {}; + + template + struct Insert { + typedef _List Next; + typedef _Type Type; + }; + + template + struct Mapper { + typedef List L10; + typedef Insert<_T9, L10> L9; + typedef Insert<_T8, L9> L8; + typedef Insert<_T7, L8> L7; + typedef Insert<_T6, L7> L6; + typedef Insert<_T5, L6> L5; + typedef Insert<_T4, L5> L4; + typedef Insert<_T3, L4> L3; + typedef Insert<_T2, L3> L2; + typedef Insert<_T1, L2> L1; + typedef Insert<_T0, L1> L0; + typedef typename Get<_idx, L0>::Type Type; + }; + + } + + /// \brief Helper class for Variant + /// + /// Helper class to define type mappings for Variant. This class + /// converts the template parameters to be mappable by integer. + /// \see Variant + template < + typename _T0, + typename _T1 = void, typename _T2 = void, typename _T3 = void, + typename _T5 = void, typename _T4 = void, typename _T6 = void, + typename _T7 = void, typename _T8 = void, typename _T9 = void> + struct VariantTypeMap { + template + struct Map { + typedef typename _variant_bits:: + Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type + Type; + }; + }; + +} + + +#endif diff -r 0c5dd7ceda03 -r 05357da973ce lemon/digraph_adaptor.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/digraph_adaptor.h Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,2530 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_DIGRAPH_ADAPTOR_H +#define LEMON_DIGRAPH_ADAPTOR_H + +///\ingroup graph_adaptors +///\file +///\brief Several digraph adaptors. +/// +///This file contains several useful digraph adaptor functions. + +#include +#include +#include + +#include +#include +#include +#include + +#include + +namespace lemon { + + ///\brief Base type for the Digraph Adaptors + /// + ///Base type for the Digraph Adaptors + /// + ///This is the base type for most of LEMON digraph adaptors. This + ///class implements a trivial digraph adaptor i.e. it only wraps the + ///functions and types of the digraph. The purpose of this class is + ///to make easier implementing digraph adaptors. E.g. if an adaptor + ///is considered which differs from the wrapped digraph only in some + ///of its functions or types, then it can be derived from + ///DigraphAdaptor, and only the differences should be implemented. + template + class DigraphAdaptorBase { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Adaptor; + typedef Digraph ParentDigraph; + + protected: + Digraph* _digraph; + DigraphAdaptorBase() : _digraph(0) { } + void setDigraph(Digraph& digraph) { _digraph = &digraph; } + + public: + DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { } + + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + + void first(Node& i) const { _digraph->first(i); } + void first(Arc& i) const { _digraph->first(i); } + void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } + void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } + + void next(Node& i) const { _digraph->next(i); } + void next(Arc& i) const { _digraph->next(i); } + void nextIn(Arc& i) const { _digraph->nextIn(i); } + void nextOut(Arc& i) const { _digraph->nextOut(i); } + + Node source(const Arc& a) const { return _digraph->source(a); } + Node target(const Arc& a) const { return _digraph->target(a); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _digraph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { + return _digraph->findArc(u, v, prev); + } + + Node addNode() { return _digraph->addNode(); } + Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } + + void erase(const Node& n) const { _digraph->erase(n); } + void erase(const Arc& a) const { _digraph->erase(a); } + + void clear() const { _digraph->clear(); } + + int id(const Node& n) const { return _digraph->id(n); } + int id(const Arc& a) const { return _digraph->id(a); } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return _digraph->maxArcId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef typename Digraph::template NodeMap<_Value> Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public Digraph::template ArcMap<_Value> { + public: + + typedef typename Digraph::template ArcMap<_Value> Parent; + + explicit ArcMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + ArcMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + }; + + ///\ingroup graph_adaptors + /// + ///\brief Trivial Digraph Adaptor + /// + /// This class is an adaptor which does not change the adapted + /// digraph. It can be used only to test the digraph adaptors. + template + class DigraphAdaptor : + public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender > Parent; + protected: + DigraphAdaptor() : Parent() { } + + public: + explicit DigraphAdaptor(Digraph& digraph) { setDigraph(digraph); } + }; + + /// \brief Just gives back a digraph adaptor + /// + /// Just gives back a digraph adaptor which + /// should be provide original digraph + template + DigraphAdaptor + digraphAdaptor(const Digraph& digraph) { + return DigraphAdaptor(digraph); + } + + + template + class RevDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + RevDigraphAdaptorBase() : Parent() { } + public: + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } + void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } + + void nextIn(Arc& a) const { Parent::nextOut(a); } + void nextOut(Arc& a) const { Parent::nextIn(a); } + + Node source(const Arc& a) const { return Parent::target(a); } + Node target(const Arc& a) const { return Parent::source(a); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + return Parent::findArc(v, u, prev); + } + + }; + + + ///\ingroup graph_adaptors + /// + ///\brief A digraph adaptor which reverses the orientation of the arcs. + /// + /// If \c g is defined as + ///\code + /// ListDigraph g; + ///\endcode + /// then + ///\code + /// RevDigraphAdaptor ga(g); + ///\endcode + /// implements the digraph obtained from \c g by + /// reversing the orientation of its arcs. + /// + /// A good example of using RevDigraphAdaptor is to decide that the + /// directed graph is wheter strongly connected or not. If from one + /// node each node is reachable and from each node is reachable this + /// node then and just then the digraph is strongly + /// connected. Instead of this condition we use a little bit + /// different. From one node each node ahould be reachable in the + /// digraph and in the reversed digraph. Now this condition can be + /// checked with the Dfs algorithm class and the RevDigraphAdaptor + /// algorithm class. + /// + /// And look at the code: + /// + ///\code + /// bool stronglyConnected(const Digraph& digraph) { + /// if (NodeIt(digraph) == INVALID) return true; + /// Dfs dfs(digraph); + /// dfs.run(NodeIt(digraph)); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!dfs.reached(it)) { + /// return false; + /// } + /// } + /// typedef RevDigraphAdaptor RDigraph; + /// RDigraph rdigraph(digraph); + /// DfsVisit rdfs(rdigraph); + /// rdfs.run(NodeIt(digraph)); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!rdfs.reached(it)) { + /// return false; + /// } + /// } + /// return true; + /// } + ///\endcode + template + class RevDigraphAdaptor : + public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender< + RevDigraphAdaptorBase<_Digraph> > Parent; + protected: + RevDigraphAdaptor() { } + public: + explicit RevDigraphAdaptor(Digraph& digraph) { + Parent::setDigraph(digraph); + } + }; + + /// \brief Just gives back a reverse digraph adaptor + /// + /// Just gives back a reverse digraph adaptor + template + RevDigraphAdaptor + revDigraphAdaptor(const Digraph& digraph) { + return RevDigraphAdaptor(digraph); + } + + template + class SubDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptorBase Adaptor; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphAdaptorBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void next(Arc& i) const { + Parent::next(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) Parent::next(i); + } + + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); + } + + ///\e + + /// This function hides \c n in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter->set(n, false); } + + ///\e + + /// This function hides \c a in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c a + /// to be false in the corresponding arc-map. + void hide(const Arc& a) const { _arc_filter->set(a, false); } + + ///\e + + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter->set(n, true); } + + ///\e + + /// The value of \c a is set to be true in the arc-map which stores + /// hide information. If \c a was hidden previuosly, then it is shown + /// again + void unHide(const Arc& a) const { _arc_filter->set(a, true); } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + + /// Returns true if \c a is hidden. + + ///\e + /// + bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + template + class SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> + : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptorBase Adaptor; + typedef DigraphAdaptorBase Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphAdaptorBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + ///\e + + /// This function hides \c n in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter->set(n, false); } + + ///\e + + /// This function hides \c e in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding arc-map. + void hide(const Arc& e) const { _arc_filter->set(e, false); } + + ///\e + + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter->set(n, true); } + + ///\e + + /// The value of \c e is set to be true in the arc-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Arc& e) const { _arc_filter->set(e, true); } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief A digraph adaptor for hiding nodes and arcs from a digraph. + /// + /// SubDigraphAdaptor shows the digraph with filtered node-set and + /// arc-set. If the \c checked parameter is true then it filters the arcset + /// to do not get invalid arcs without source or target. + /// Let \f$ G=(V, A) \f$ be a directed digraph + /// and suppose that the digraph instance \c g of type ListDigraph + /// implements \f$ G \f$. + /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp. + /// on the node-set and arc-set. + /// SubDigraphAdaptor<...>::NodeIt iterates + /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and + /// SubDigraphAdaptor<...>::ArcIt iterates + /// on the arc-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, + /// SubDigraphAdaptor<...>::OutArcIt and + /// SubDigraphAdaptor<...>::InArcIt iterates + /// only on arcs leaving and entering a specific node which have true value. + /// + /// If the \c checked template parameter is false then we have to + /// note that the node-iterator cares only the filter on the + /// node-set, and the arc-iterator cares only the filter on the + /// arc-set. This way the arc-map should filter all arcs which's + /// source or target is filtered by the node-filter. + ///\code + /// typedef ListDigraph Digraph; + /// DIGRAPH_TYPEDEFS(Digraph); + /// Digraph g; + /// Node u=g.addNode(); //node of id 0 + /// Node v=g.addNode(); //node of id 1 + /// Arc a=g.addArc(u, v); //arc of id 0 + /// Arc f=g.addArc(v, u); //arc of id 1 + /// BoolNodeMap nm(g, true); + /// nm.set(u, false); + /// BoolArcMap am(g, true); + /// am.set(a, false); + /// typedef SubDigraphAdaptor SubGA; + /// SubGA ga(g, nm, am); + /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) + /// std::cout << g.id(n) << std::endl; + /// std::cout << ":-)" << std::endl; + /// for (SubGA::ArcIt a(ga); a!=INVALID; ++a) + /// std::cout << g.id(a) << std::endl; + ///\endcode + /// The output of the above code is the following. + ///\code + /// 1 + /// :-) + /// 1 + ///\endcode + /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to + /// \c Digraph::Node that is why \c g.id(n) can be applied. + /// + /// For other examples see also the documentation of + /// NodeSubDigraphAdaptor and ArcSubDigraphAdaptor. + template, + typename _ArcFilterMap = typename _Digraph::template ArcMap, + bool checked = true> + class SubDigraphAdaptor : + public DigraphAdaptorExtender< + SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, checked> > { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef DigraphAdaptorExtender< + SubDigraphAdaptorBase > + Parent; + + protected: + SubDigraphAdaptor() { } + public: + + SubDigraphAdaptor(Digraph& digraph, NodeFilterMap& node_filter, + ArcFilterMap& arc_filter) { + setDigraph(digraph); + setNodeFilterMap(node_filter); + setArcFilterMap(arc_filter); + } + + }; + + /// \brief Just gives back a sub digraph adaptor + /// + /// Just gives back a sub digraph adaptor + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor(digraph, nfm, afm); + } + + + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for hiding nodes from a digraph. + /// + ///An adaptor for hiding nodes from a digraph. This adaptor + ///specializes SubDigraphAdaptor in the way that only the node-set + ///can be filtered. In usual case the checked parameter is true, we + ///get the induced subgraph. But if the checked parameter is false + ///then we can filter only isolated nodes. + template, + bool checked = true> + class NodeSubDigraphAdaptor : + public SubDigraphAdaptor<_Digraph, _NodeFilterMap, + ConstMap, checked> { + public: + + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + + typedef SubDigraphAdaptor, checked> + Parent; + + protected: + ConstMap const_true_map; + + NodeSubDigraphAdaptor() : const_true_map(true) { + Parent::setArcFilterMap(const_true_map); + } + + public: + + NodeSubDigraphAdaptor(Digraph& _digraph, NodeFilterMap& node_filter) : + Parent(), const_true_map(true) { + Parent::setDigraph(_digraph); + Parent::setNodeFilterMap(node_filter); + Parent::setArcFilterMap(const_true_map); + } + + }; + + + /// \brief Just gives back a \c NodeSubDigraphAdaptor + /// + /// Just gives back a \c NodeSubDigraphAdaptor + template + NodeSubDigraphAdaptor + nodeSubDigraphAdaptor(const Digraph& digraph, NodeFilterMap& nfm) { + return NodeSubDigraphAdaptor(digraph, nfm); + } + + template + NodeSubDigraphAdaptor + nodeSubDigraphAdaptor(const Digraph& digraph, const NodeFilterMap& nfm) { + return NodeSubDigraphAdaptor + (digraph, nfm); + } + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for hiding arcs from a digraph. + /// + ///An adaptor for hiding arcs from a digraph. This adaptor + ///specializes SubDigraphAdaptor in the way that only the arc-set + ///can be filtered. The usefulness of this adaptor is demonstrated + ///in the problem of searching a maximum number of arc-disjoint + ///shortest paths between two nodes \c s and \c t. Shortest here + ///means being shortest w.r.t. non-negative arc-lengths. Note that + ///the comprehension of the presented solution need's some + ///elementary knowlarc from combinatorial optimization. + /// + ///If a single shortest path is to be searched between \c s and \c + ///t, then this can be done easily by applying the Dijkstra + ///algorithm. What happens, if a maximum number of arc-disjoint + ///shortest paths is to be computed. It can be proved that an arc + ///can be in a shortest path if and only if it is tight with respect + ///to the potential function computed by Dijkstra. Moreover, any + ///path containing only such arcs is a shortest one. Thus we have + ///to compute a maximum number of arc-disjoint paths between \c s + ///and \c t in the digraph which has arc-set all the tight arcs. The + ///computation will be demonstrated on the following digraph, which + ///is read from the dimacs file \c sub_digraph_adaptor_demo.dim. + ///The full source code is available in \ref + ///sub_digraph_adaptor_demo.cc. If you are interested in more demo + ///programs, you can use \ref dim_to_dot.cc to generate .dot files + ///from dimacs files. The .dot file of the following figure was + ///generated by the demo program \ref dim_to_dot.cc. + /// + ///\dot + ///didigraph lemon_dot_example { + ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; + ///n0 [ label="0 (s)" ]; + ///n1 [ label="1" ]; + ///n2 [ label="2" ]; + ///n3 [ label="3" ]; + ///n4 [ label="4" ]; + ///n5 [ label="5" ]; + ///n6 [ label="6 (t)" ]; + ///arc [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; + ///n5 -> n6 [ label="9, length:4" ]; + ///n4 -> n6 [ label="8, length:2" ]; + ///n3 -> n5 [ label="7, length:1" ]; + ///n2 -> n5 [ label="6, length:3" ]; + ///n2 -> n6 [ label="5, length:5" ]; + ///n2 -> n4 [ label="4, length:2" ]; + ///n1 -> n4 [ label="3, length:3" ]; + ///n0 -> n3 [ label="2, length:1" ]; + ///n0 -> n2 [ label="1, length:2" ]; + ///n0 -> n1 [ label="0, length:3" ]; + ///} + ///\enddot + /// + ///\code + ///Digraph g; + ///Node s, t; + ///LengthMap length(g); + /// + ///readDimacs(std::cin, g, length, s, t); + /// + ///cout << "arcs with lengths (of form id, source--length->target): " << endl; + ///for(ArcIt e(g); e!=INVALID; ++e) + /// cout << g.id(e) << ", " << g.id(g.source(e)) << "--" + /// << length[e] << "->" << g.id(g.target(e)) << endl; + /// + ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; + ///\endcode + ///Next, the potential function is computed with Dijkstra. + ///\code + ///typedef Dijkstra Dijkstra; + ///Dijkstra dijkstra(g, length); + ///dijkstra.run(s); + ///\endcode + ///Next, we consrtruct a map which filters the arc-set to the tight arcs. + ///\code + ///typedef TightArcFilterMap + /// TightArcFilter; + ///TightArcFilter tight_arc_filter(g, dijkstra.distMap(), length); + /// + ///typedef ArcSubDigraphAdaptor SubGA; + ///SubGA ga(g, tight_arc_filter); + ///\endcode + ///Then, the maximum nimber of arc-disjoint \c s-\c t paths are computed + ///with a max flow algorithm Preflow. + ///\code + ///ConstMap const_1_map(1); + ///Digraph::ArcMap flow(g, 0); + /// + ///Preflow, Digraph::ArcMap > + /// preflow(ga, const_1_map, s, t); + ///preflow.run(); + ///\endcode + ///Last, the output is: + ///\code + ///cout << "maximum number of arc-disjoint shortest path: " + /// << preflow.flowValue() << endl; + ///cout << "arcs of the maximum number of arc-disjoint shortest s-t paths: " + /// << endl; + ///for(ArcIt e(g); e!=INVALID; ++e) + /// if (preflow.flow(e)) + /// cout << " " << g.id(g.source(e)) << "--" + /// << length[e] << "->" << g.id(g.target(e)) << endl; + ///\endcode + ///The program has the following (expected :-)) output: + ///\code + ///arcs with lengths (of form id, source--length->target): + /// 9, 5--4->6 + /// 8, 4--2->6 + /// 7, 3--1->5 + /// 6, 2--3->5 + /// 5, 2--5->6 + /// 4, 2--2->4 + /// 3, 1--3->4 + /// 2, 0--1->3 + /// 1, 0--2->2 + /// 0, 0--3->1 + ///s: 0 t: 6 + ///maximum number of arc-disjoint shortest path: 2 + ///arcs of the maximum number of arc-disjoint shortest s-t paths: + /// 9, 5--4->6 + /// 8, 4--2->6 + /// 7, 3--1->5 + /// 4, 2--2->4 + /// 2, 0--1->3 + /// 1, 0--2->2 + ///\endcode + template + class ArcSubDigraphAdaptor : + public SubDigraphAdaptor<_Digraph, ConstMap, + _ArcFilterMap, false> { + public: + typedef _Digraph Digraph; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptor, + ArcFilterMap, false> Parent; + protected: + ConstMap const_true_map; + + ArcSubDigraphAdaptor() : const_true_map(true) { + Parent::setNodeFilterMap(const_true_map); + } + + public: + + ArcSubDigraphAdaptor(Digraph& digraph, ArcFilterMap& arc_filter) + : Parent(), const_true_map(true) { + Parent::setDigraph(digraph); + Parent::setNodeFilterMap(const_true_map); + Parent::setArcFilterMap(arc_filter); + } + + }; + + /// \brief Just gives back an arc sub digraph adaptor + /// + /// Just gives back an arc sub digraph adaptor + template + ArcSubDigraphAdaptor + arcSubDigraphAdaptor(const Digraph& digraph, ArcFilterMap& afm) { + return ArcSubDigraphAdaptor(digraph, afm); + } + + template + ArcSubDigraphAdaptor + arcSubDigraphAdaptor(const Digraph& digraph, const ArcFilterMap& afm) { + return ArcSubDigraphAdaptor + (digraph, afm); + } + + template + class UndirDigraphAdaptorBase { + public: + typedef _Digraph Digraph; + typedef UndirDigraphAdaptorBase Adaptor; + + typedef True UndirectedTag; + + typedef typename Digraph::Arc Edge; + typedef typename Digraph::Node Node; + + class Arc : public Edge { + friend class UndirDigraphAdaptorBase; + protected: + bool _forward; + + Arc(const Edge& edge, bool forward) : + Edge(edge), _forward(forward) {} + + public: + Arc() {} + + Arc(Invalid) : Edge(INVALID), _forward(true) {} + + bool operator==(const Arc &other) const { + return _forward == other._forward && + static_cast(*this) == static_cast(other); + } + bool operator!=(const Arc &other) const { + return _forward != other._forward || + static_cast(*this) != static_cast(other); + } + bool operator<(const Arc &other) const { + return _forward < other._forward || + (_forward == other._forward && + static_cast(*this) < static_cast(other)); + } + }; + + + + void first(Node& n) const { + _digraph->first(n); + } + + void next(Node& n) const { + _digraph->next(n); + } + + void first(Arc& a) const { + _digraph->first(a); + a._forward = true; + } + + void next(Arc& a) const { + if (a._forward) { + a._forward = false; + } else { + _digraph->next(a); + a._forward = true; + } + } + + void first(Edge& e) const { + _digraph->first(e); + } + + void next(Edge& e) const { + _digraph->next(e); + } + + void firstOut(Arc& a, const Node& n) const { + _digraph->firstIn(a, n); + if( static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstOut(a, n); + a._forward = true; + } + } + void nextOut(Arc &a) const { + if (!a._forward) { + Node n = _digraph->target(a); + _digraph->nextIn(a); + if (static_cast(a) == INVALID ) { + _digraph->firstOut(a, n); + a._forward = true; + } + } + else { + _digraph->nextOut(a); + } + } + + void firstIn(Arc &a, const Node &n) const { + _digraph->firstOut(a, n); + if (static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstIn(a, n); + a._forward = true; + } + } + void nextIn(Arc &a) const { + if (!a._forward) { + Node n = _digraph->source(a); + _digraph->nextOut(a); + if( static_cast(a) == INVALID ) { + _digraph->firstIn(a, n); + a._forward = true; + } + } + else { + _digraph->nextIn(a); + } + } + + void firstInc(Edge &e, bool &d, const Node &n) const { + d = true; + _digraph->firstOut(e, n); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, n); + } + + void nextInc(Edge &e, bool &d) const { + if (d) { + Node s = _digraph->source(e); + _digraph->nextOut(e); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, s); + } else { + _digraph->nextIn(e); + } + } + + Node u(const Edge& e) const { + return _digraph->source(e); + } + + Node v(const Edge& e) const { + return _digraph->target(e); + } + + Node source(const Arc &a) const { + return a._forward ? _digraph->source(a) : _digraph->target(a); + } + + Node target(const Arc &a) const { + return a._forward ? _digraph->target(a) : _digraph->source(a); + } + + static Arc direct(const Edge &e, bool d) { + return Arc(e, d); + } + Arc direct(const Edge &e, const Node& n) const { + return Arc(e, _digraph->source(e) == n); + } + + static bool direction(const Arc &a) { return a._forward; } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { + return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); + } + Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } + + int id(const Node &n) const { return _digraph->id(n); } + int id(const Arc &a) const { + return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); + } + int id(const Edge &e) const { return _digraph->id(e); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } + int maxEdgeId() const { return _digraph->maxArcId(); } + + Node addNode() { return _digraph->addNode(); } + Edge addEdge(const Node& u, const Node& v) { + return _digraph->addArc(u, v); + } + + void erase(const Node& i) { _digraph->erase(i); } + void erase(const Edge& i) { _digraph->erase(i); } + + void clear() { _digraph->clear(); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return 2 * _digraph->arcNum(); } + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return 2 * _digraph->arcNum(); } + int edgeNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(Node s, Node t, Arc p = INVALID) const { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else if (direction(p)) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return direct(arc, false); + } + return INVALID; + } + + Edge findEdge(Node s, Node t, Edge p = INVALID) const { + if (s != t) { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else if (_digraph->s(p) == s) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return arc; + } + } else { + return _digraph->findArc(s, t, p); + } + return INVALID; + } + + private: + + template + class ArcMapBase { + private: + + typedef typename Digraph::template ArcMap<_Value> MapImpl; + + public: + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef _Value Value; + typedef Arc Key; + + ArcMapBase(const Adaptor& adaptor) : + _forward(*adaptor._digraph), _backward(*adaptor._digraph) {} + + ArcMapBase(const Adaptor& adaptor, const Value& v) + : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {} + + void set(const Arc& a, const Value& v) { + if (direction(a)) { + _forward.set(a, v); + } else { + _backward.set(a, v); + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& a) const { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& a) { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + protected: + + MapImpl _forward, _backward; + + }; + + public: + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template NodeMap Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public Digraph::template ArcMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template ArcMap Parent; + + explicit EdgeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + EdgeMap(const Adaptor& adaptor, const Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + protected: + + UndirDigraphAdaptorBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + ///\ingroup graph_adaptors + /// + /// \brief An graph is made from a directed digraph by an adaptor + /// + /// This adaptor makes an undirected graph from a directed + /// digraph. All arc of the underlying will be showed in the adaptor + /// as an edge. Let's see an informal example about using + /// this adaptor: + /// + /// There is a network of the streets of a town. Of course there are + /// some one-way street in the town hence the network is a directed + /// one. There is a crazy driver who go oppositely in the one-way + /// street without moral sense. Of course he can pass this streets + /// slower than the regular way, in fact his speed is half of the + /// normal speed. How long should he drive to get from a source + /// point to the target? Let see the example code which calculate it: + /// + /// \todo BadCode, SimpleMap does no exists + ///\code + /// typedef UndirDigraphAdaptor Graph; + /// Graph graph(digraph); + /// + /// typedef SimpleMap FLengthMap; + /// FLengthMap flength(length); + /// + /// typedef ScaleMap RLengthMap; + /// RLengthMap rlength(length, 2.0); + /// + /// typedef Graph::CombinedArcMap ULengthMap; + /// ULengthMap ulength(flength, rlength); + /// + /// Dijkstra dijkstra(graph, ulength); + /// std::cout << "Driving time : " << dijkstra.run(src, trg) << std::endl; + ///\endcode + /// + /// The combined arc map makes the length map for the undirected + /// graph. It is created from a forward and reverse map. The forward + /// map is created from the original length map with a SimpleMap + /// adaptor which just makes a read-write map from the reference map + /// i.e. it forgets that it can be return reference to values. The + /// reverse map is just the scaled original map with the ScaleMap + /// adaptor. The combination solves that passing the reverse way + /// takes double time than the original. To get the driving time we + /// run the dijkstra algorithm on the graph. + template + class UndirDigraphAdaptor + : public GraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef GraphAdaptorExtender > Parent; + protected: + UndirDigraphAdaptor() { } + public: + + /// \brief Constructor + /// + /// Constructor + UndirDigraphAdaptor(_Digraph& _digraph) { + setDigraph(_digraph); + } + + /// \brief ArcMap combined from two original ArcMap + /// + /// This class adapts two original digraph ArcMap to + /// get an arc map on the adaptor. + template + class CombinedArcMap { + public: + + typedef _ForwardMap ForwardMap; + typedef _BackwardMap BackwardMap; + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef typename ForwardMap::Value Value; + typedef typename Parent::Arc Key; + + /// \brief Constructor + /// + /// Constructor + CombinedArcMap() : _forward(0), _backward(0) {} + + /// \brief Constructor + /// + /// Constructor + CombinedArcMap(ForwardMap& forward, BackwardMap& backward) + : _forward(&forward), _backward(&backward) {} + + + /// \brief Sets the value associated with a key. + /// + /// Sets the value associated with a key. + void set(const Key& e, const Value& a) { + if (Parent::direction(e)) { + _forward->set(e, a); + } else { + _backward->set(e, a); + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ConstReturnValue + operator[](const Key& e) const { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ReturnValue + operator[](const Key& e) { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + /// \brief Sets the forward map + /// + /// Sets the forward map + void setForwardMap(ForwardMap& forward) { + _forward = &forward; + } + + /// \brief Sets the backward map + /// + /// Sets the backward map + void setBackwardMap(BackwardMap& backward) { + _backward = &backward; + } + + protected: + + ForwardMap* _forward; + BackwardMap* _backward; + + }; + + }; + + /// \brief Just gives back an undir digraph adaptor + /// + /// Just gives back an undir digraph adaptor + template + UndirDigraphAdaptor + undirDigraphAdaptor(const Digraph& digraph) { + return UndirDigraphAdaptor(digraph); + } + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResForwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + public: + + ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + + ResForwardFilter(const Tolerance& tolerance = Tolerance()) + : _capacity(0), _flow(0), _tolerance(tolerance) { } + + void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; } + void setFlow(const FlowMap& flow) { _flow = &flow; } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); + } + }; + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResBackwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + + public: + + ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + ResBackwardFilter(const Tolerance& tolerance = Tolerance()) + : _capacity(0), _flow(0), _tolerance(tolerance) { } + + void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; } + void setFlow(const FlowMap& flow) { _flow = &flow; } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_flow)[a]); + } + }; + + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for composing the residual graph for directed + ///flow and circulation problems. + /// + ///An adaptor for composing the residual graph for directed flow and + ///circulation problems. Let \f$ G=(V, A) \f$ be a directed digraph + ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F + ///\f$, be functions on the arc-set. + /// + ///In the appications of ResDigraphAdaptor, \f$ f \f$ usually stands + ///for a flow and \f$ c \f$ for a capacity function. Suppose that a + ///graph instance \c g of type \c ListDigraph implements \f$ G \f$. + /// + ///\code + /// ListDigraph g; + ///\endcode + /// + ///Then ResDigraphAdaptor implements the digraph structure with + /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} + /// \f$, where \f$ A_{forward}=\{uv : uv\in A, f(uv)0\} \f$, i.e. the so + /// called residual graph. When we take the union \f$ + /// A_{forward}\cup A_{backward} \f$, multilicities are counted, + /// i.e. if an arc is in both \f$ A_{forward} \f$ and \f$ + /// A_{backward} \f$, then in the adaptor it appears twice. The + /// following code shows how such an instance can be constructed. + /// + ///\code + /// typedef ListDigraph Digraph; + /// IntArcMap f(g), c(g); + /// ResDigraphAdaptor ga(g); + ///\endcode + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResDigraphAdaptor : + public ArcSubDigraphAdaptor< + UndirDigraphAdaptor, + typename UndirDigraphAdaptor::template CombinedArcMap< + ResForwardFilter, + ResBackwardFilter > > { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename CapacityMap::Value Value; + typedef ResDigraphAdaptor Adaptor; + + protected: + + typedef UndirDigraphAdaptor UndirDigraph; + + typedef ResForwardFilter + ForwardFilter; + + typedef ResBackwardFilter + BackwardFilter; + + typedef typename UndirDigraph:: + template CombinedArcMap ArcFilter; + + typedef ArcSubDigraphAdaptor Parent; + + const CapacityMap* _capacity; + FlowMap* _flow; + + UndirDigraph _graph; + ForwardFilter _forward_filter; + BackwardFilter _backward_filter; + ArcFilter _arc_filter; + + void setCapacityMap(const CapacityMap& capacity) { + _capacity = &capacity; + _forward_filter.setCapacity(capacity); + _backward_filter.setCapacity(capacity); + } + + void setFlowMap(FlowMap& flow) { + _flow = &flow; + _forward_filter.setFlow(flow); + _backward_filter.setFlow(flow); + } + + public: + + /// \brief Constructor of the residual digraph. + /// + /// Constructor of the residual graph. The parameters are the digraph type, + /// the flow map, the capacity map and a tolerance object. + ResDigraphAdaptor(const Digraph& digraph, const CapacityMap& capacity, + FlowMap& flow, const Tolerance& tolerance = Tolerance()) + : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph), + _forward_filter(capacity, flow, tolerance), + _backward_filter(capacity, flow, tolerance), + _arc_filter(_forward_filter, _backward_filter) + { + Parent::setDigraph(_graph); + Parent::setArcFilterMap(_arc_filter); + } + + typedef typename Parent::Arc Arc; + + /// \brief Gives back the residual capacity of the arc. + /// + /// Gives back the residual capacity of the arc. + Value rescap(const Arc& arc) const { + if (UndirDigraph::direction(arc)) { + return (*_capacity)[arc] - (*_flow)[arc]; + } else { + return (*_flow)[arc]; + } + } + + /// \brief Augment on the given arc in the residual digraph. + /// + /// Augment on the given arc in the residual digraph. It increase + /// or decrease the flow on the original arc depend on the direction + /// of the residual arc. + void augment(const Arc& e, const Value& a) const { + if (UndirDigraph::direction(e)) { + _flow->set(e, (*_flow)[e] + a); + } else { + _flow->set(e, (*_flow)[e] - a); + } + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is same oriented as the original arc. + static bool forward(const Arc& e) { + return UndirDigraph::direction(e); + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is opposite oriented as the original arc. + static bool backward(const Arc& e) { + return !UndirDigraph::direction(e); + } + + /// \brief Gives back the forward oriented residual arc. + /// + /// Gives back the forward oriented residual arc. + static Arc forward(const typename Digraph::Arc& e) { + return UndirDigraph::direct(e, true); + } + + /// \brief Gives back the backward oriented residual arc. + /// + /// Gives back the backward oriented residual arc. + static Arc backward(const typename Digraph::Arc& e) { + return UndirDigraph::direct(e, false); + } + + /// \brief Residual capacity map. + /// + /// In generic residual digraphs the residual capacity can be obtained + /// as a map. + class ResCap { + protected: + const Adaptor* _adaptor; + public: + typedef Arc Key; + typedef typename _CapacityMap::Value Value; + + ResCap(const Adaptor& adaptor) : _adaptor(&adaptor) {} + + Value operator[](const Arc& e) const { + return _adaptor->rescap(e); + } + + }; + + }; + + /// \brief Base class for split digraph adaptor + /// + /// Base class of split digraph adaptor. In most case you do not need to + /// use it directly but the documented member functions of this class can + /// be used with the SplitDigraphAdaptor class. + /// \sa SplitDigraphAdaptor + template + class SplitDigraphAdaptorBase { + public: + + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Parent; + typedef SplitDigraphAdaptorBase Adaptor; + + typedef typename Digraph::Node DigraphNode; + typedef typename Digraph::Arc DigraphArc; + + class Node; + class Arc; + + private: + + template class NodeMapBase; + template class ArcMapBase; + + public: + + class Node : public DigraphNode { + friend class SplitDigraphAdaptorBase; + template friend class NodeMapBase; + private: + + bool _in; + Node(DigraphNode node, bool in) + : DigraphNode(node), _in(in) {} + + public: + + Node() {} + Node(Invalid) : DigraphNode(INVALID), _in(true) {} + + bool operator==(const Node& node) const { + return DigraphNode::operator==(node) && _in == node._in; + } + + bool operator!=(const Node& node) const { + return !(*this == node); + } + + bool operator<(const Node& node) const { + return DigraphNode::operator<(node) || + (DigraphNode::operator==(node) && _in < node._in); + } + }; + + class Arc { + friend class SplitDigraphAdaptorBase; + template friend class ArcMapBase; + private: + typedef BiVariant ArcImpl; + + explicit Arc(const DigraphArc& arc) : _item(arc) {} + explicit Arc(const DigraphNode& node) : _item(node) {} + + ArcImpl _item; + + public: + Arc() {} + Arc(Invalid) : _item(DigraphArc(INVALID)) {} + + bool operator==(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() == arc._item.first(); + } + } else { + if (arc._item.secondState()) { + return _item.second() == arc._item.second(); + } + } + return false; + } + + bool operator!=(const Arc& arc) const { + return !(*this == arc); + } + + bool operator<(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() < arc._item.first(); + } + return false; + } else { + if (arc._item.secondState()) { + return _item.second() < arc._item.second(); + } + return true; + } + } + + operator DigraphArc() const { return _item.first(); } + operator DigraphNode() const { return _item.second(); } + + }; + + void first(Node& n) const { + _digraph->first(n); + n._in = true; + } + + void next(Node& n) const { + if (n._in) { + n._in = false; + } else { + n._in = true; + _digraph->next(n); + } + } + + void first(Arc& e) const { + e._item.setSecond(); + _digraph->first(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } + + void next(Arc& e) const { + if (e._item.secondState()) { + _digraph->next(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } else { + _digraph->next(e._item.first()); + } + } + + void firstOut(Arc& e, const Node& n) const { + if (n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstOut(e._item.first(), n); + } + } + + void nextOut(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextOut(e._item.first()); + } + } + + void firstIn(Arc& e, const Node& n) const { + if (!n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstIn(e._item.first(), n); + } + } + + void nextIn(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextIn(e._item.first()); + } + } + + Node source(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->source(e._item.first()), false); + } else { + return Node(e._item.second(), true); + } + } + + Node target(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->target(e._item.first()), true); + } else { + return Node(e._item.second(), false); + } + } + + int id(const Node& n) const { + return (_digraph->id(n) << 1) | (n._in ? 0 : 1); + } + Node nodeFromId(int ix) const { + return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); + } + int maxNodeId() const { + return 2 * _digraph->maxNodeId() + 1; + } + + int id(const Arc& e) const { + if (e._item.firstState()) { + return _digraph->id(e._item.first()) << 1; + } else { + return (_digraph->id(e._item.second()) << 1) | 1; + } + } + Arc arcFromId(int ix) const { + if ((ix & 1) == 0) { + return Arc(_digraph->arcFromId(ix >> 1)); + } else { + return Arc(_digraph->nodeFromId(ix >> 1)); + } + } + int maxArcId() const { + return std::max(_digraph->maxNodeId() << 1, + (_digraph->maxArcId() << 1) | 1); + } + + /// \brief Returns true when the node is in-node. + /// + /// Returns true when the node is in-node. + static bool inNode(const Node& n) { + return n._in; + } + + /// \brief Returns true when the node is out-node. + /// + /// Returns true when the node is out-node. + static bool outNode(const Node& n) { + return !n._in; + } + + /// \brief Returns true when the arc is arc in the original digraph. + /// + /// Returns true when the arc is arc in the original digraph. + static bool origArc(const Arc& e) { + return e._item.firstState(); + } + + /// \brief Returns true when the arc binds an in-node and an out-node. + /// + /// Returns true when the arc binds an in-node and an out-node. + static bool bindArc(const Arc& e) { + return e._item.secondState(); + } + + /// \brief Gives back the in-node created from the \c node. + /// + /// Gives back the in-node created from the \c node. + static Node inNode(const DigraphNode& n) { + return Node(n, true); + } + + /// \brief Gives back the out-node created from the \c node. + /// + /// Gives back the out-node created from the \c node. + static Node outNode(const DigraphNode& n) { + return Node(n, false); + } + + /// \brief Gives back the arc binds the two part of the node. + /// + /// Gives back the arc binds the two part of the node. + static Arc arc(const DigraphNode& n) { + return Arc(n); + } + + /// \brief Gives back the arc of the original arc. + /// + /// Gives back the arc of the original arc. + static Arc arc(const DigraphArc& e) { + return Arc(e); + } + + typedef True NodeNumTag; + + int nodeNum() const { + return 2 * countNodes(*_digraph); + } + + typedef True EdgeNumTag; + int arcNum() const { + return countArcs(*_digraph) + countNodes(*_digraph); + } + + typedef True FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) const { + if (inNode(u)) { + if (outNode(v)) { + if (static_cast(u) == + static_cast(v) && prev == INVALID) { + return Arc(u); + } + } + } else { + if (inNode(v)) { + return Arc(::lemon::findArc(*_digraph, u, v, prev)); + } + } + return INVALID; + } + + private: + + template + class NodeMapBase + : public MapTraits > { + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Node Key; + typedef _Value Value; + + NodeMapBase(const Adaptor& adaptor) + : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} + NodeMapBase(const Adaptor& adaptor, const Value& value) + : _in_map(*adaptor._digraph, value), + _out_map(*adaptor._digraph, value) {} + + void set(const Node& key, const Value& val) { + if (Adaptor::inNode(key)) { _in_map.set(key, val); } + else {_out_map.set(key, val); } + } + + typename MapTraits::ReturnValue + operator[](const Node& key) { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + typename MapTraits::ConstReturnValue + operator[](const Node& key) const { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + private: + NodeImpl _in_map, _out_map; + }; + + template + class ArcMapBase + : public MapTraits > { + typedef typename Parent::template ArcMap<_Value> ArcImpl; + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Arc Key; + typedef _Value Value; + + ArcMapBase(const Adaptor& adaptor) + : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} + ArcMapBase(const Adaptor& adaptor, const Value& value) + : _arc_map(*adaptor._digraph, value), + _node_map(*adaptor._digraph, value) {} + + void set(const Arc& key, const Value& val) { + if (Adaptor::origArc(key)) { + _arc_map.set(key._item.first(), val); + } else { + _node_map.set(key._item.second(), val); + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& key) { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& key) const { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + private: + ArcImpl _arc_map; + NodeImpl _node_map; + }; + + public: + + template + class NodeMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + NodeMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + NodeMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + protected: + + SplitDigraphAdaptorBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Split digraph adaptor class + /// + /// This is an digraph adaptor which splits all node into an in-node + /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$ + /// node in the digraph with two node, \f$ u_{in} \f$ node and + /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ arc in the + /// original digraph the new target of the arc will be \f$ u_{in} \f$ and + /// similarly the source of the original \f$ (u, v) \f$ arc will be + /// \f$ u_{out} \f$. The adaptor will add for each node in the + /// original digraph an additional arc which will connect + /// \f$ (u_{in}, u_{out}) \f$. + /// + /// The aim of this class is to run algorithm with node costs if the + /// algorithm can use directly just arc costs. In this case we should use + /// a \c SplitDigraphAdaptor and set the node cost of the digraph to the + /// bind arc in the adapted digraph. + /// + /// By example a maximum flow algoritm can compute how many arc + /// disjoint paths are in the digraph. But we would like to know how + /// many node disjoint paths are in the digraph. First we have to + /// adapt the digraph with the \c SplitDigraphAdaptor. Then run the flow + /// algorithm on the adapted digraph. The bottleneck of the flow will + /// be the bind arcs which bounds the flow with the count of the + /// node disjoint paths. + /// + ///\code + /// + /// typedef SplitDigraphAdaptor SDigraph; + /// + /// SDigraph sdigraph(digraph); + /// + /// typedef ConstMap SCapacity; + /// SCapacity scapacity(1); + /// + /// SDigraph::ArcMap sflow(sdigraph); + /// + /// Preflow + /// spreflow(sdigraph, scapacity, + /// SDigraph::outNode(source), SDigraph::inNode(target)); + /// + /// spreflow.run(); + /// + ///\endcode + /// + /// The result of the mamixum flow on the original digraph + /// shows the next figure: + /// + /// \image html arc_disjoint.png + /// \image latex arc_disjoint.eps "Arc disjoint paths" width=\textwidth + /// + /// And the maximum flow on the adapted digraph: + /// + /// \image html node_disjoint.png + /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth + /// + /// The second solution contains just 3 disjoint paths while the first 4. + /// The full code can be found in the \ref disjoint_paths_demo.cc demo file. + /// + /// This digraph adaptor is fully conform to the + /// \ref concepts::Digraph "Digraph" concept and + /// contains some additional member functions and types. The + /// documentation of some member functions may be found just in the + /// SplitDigraphAdaptorBase class. + /// + /// \sa SplitDigraphAdaptorBase + template + class SplitDigraphAdaptor + : public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender > Parent; + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + /// \brief Constructor of the adaptor. + /// + /// Constructor of the adaptor. + SplitDigraphAdaptor(Digraph& g) { + Parent::setDigraph(g); + } + + /// \brief NodeMap combined from two original NodeMap + /// + /// This class adapt two of the original digraph NodeMap to + /// get a node map on the adapted digraph. + template + class CombinedNodeMap { + public: + + typedef Node Key; + typedef typename InNodeMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) + : _in_map(in_map), _out_map(out_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + Value& operator[](const Key& key) { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& key) const { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The setter function of the map. + /// + /// The setter function of the map. + void set(const Key& key, const Value& value) { + if (Parent::inNode(key)) { + _in_map.set(key, value); + } else { + _out_map.set(key, value); + } + } + + private: + + InNodeMap& _in_map; + OutNodeMap& _out_map; + + }; + + + /// \brief Just gives back a combined node map. + /// + /// Just gives back a combined node map. + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + /// \brief ArcMap combined from an original ArcMap and NodeMap + /// + /// This class adapt an original digraph ArcMap and NodeMap to + /// get an arc map on the adapted digraph. + template + class CombinedArcMap { + public: + + typedef Arc Key; + typedef typename DigraphArcMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) + : _arc_map(arc_map), _node_map(node_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + void set(const Arc& arc, const Value& val) { + if (Parent::origArc(arc)) { + _arc_map.set(arc, val); + } else { + _node_map.set(arc, val); + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& arc) const { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value& operator[](const Key& arc) { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + private: + DigraphArcMap& _arc_map; + DigraphNodeMap& _node_map; + }; + + /// \brief Just gives back a combined arc map. + /// + /// Just gives back a combined arc map. + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, + const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + }; + + /// \brief Just gives back a split digraph adaptor + /// + /// Just gives back a split digraph adaptor + template + SplitDigraphAdaptor + splitDigraphAdaptor(const Digraph& digraph) { + return SplitDigraphAdaptor(digraph); + } + + +} //namespace lemon + +#endif //LEMON_DIGRAPH_ADAPTOR_H + diff -r 0c5dd7ceda03 -r 05357da973ce lemon/graph_adaptor.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/graph_adaptor.h Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,1136 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_GRAPH_ADAPTOR_H +#define LEMON_GRAPH_ADAPTOR_H + +///\ingroup graph_adaptors +///\file +///\brief Several graph adaptors. +/// +///This file contains several useful undirected graph adaptor classes. + +#include +#include +#include + +namespace lemon { + + /// \brief Base type for the Graph Adaptors + /// + /// This is the base type for most of LEMON graph adaptors. + /// This class implements a trivial graph adaptor i.e. it only wraps the + /// functions and types of the graph. The purpose of this class is to + /// make easier implementing graph adaptors. E.g. if an adaptor is + /// considered which differs from the wrapped graph only in some of its + /// functions or types, then it can be derived from GraphAdaptor, and only + /// the differences should be implemented. + template + class GraphAdaptorBase { + public: + typedef _Graph Graph; + typedef Graph ParentGraph; + + protected: + Graph* _graph; + + GraphAdaptorBase() : _graph(0) {} + + void setGraph(Graph& graph) { _graph = &graph; } + + public: + GraphAdaptorBase(Graph& graph) : _graph(&graph) {} + + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + typedef typename Graph::Edge Edge; + + void first(Node& i) const { _graph->first(i); } + void first(Arc& i) const { _graph->first(i); } + void first(Edge& i) const { _graph->first(i); } + void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } + void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } + void firstInc(Edge &i, bool &d, const Node &n) const { + _graph->firstInc(i, d, n); + } + + void next(Node& i) const { _graph->next(i); } + void next(Arc& i) const { _graph->next(i); } + void next(Edge& i) const { _graph->next(i); } + void nextIn(Arc& i) const { _graph->nextIn(i); } + void nextOut(Arc& i) const { _graph->nextOut(i); } + void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } + + Node u(const Edge& e) const { return _graph->u(e); } + Node v(const Edge& e) const { return _graph->v(e); } + + Node source(const Arc& a) const { return _graph->source(a); } + Node target(const Arc& a) const { return _graph->target(a); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _graph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _graph->arcNum(); } + int edgeNum() const { return _graph->edgeNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { + return _graph->findArc(u, v, prev); + } + Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) { + return _graph->findEdge(u, v, prev); + } + + Node addNode() { return _graph->addNode(); } + Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } + + void erase(const Node& i) { _graph->erase(i); } + void erase(const Edge& i) { _graph->erase(i); } + + void clear() { _graph->clear(); } + + bool direction(const Arc& a) const { return _graph->direction(a); } + Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } + + int id(const Node& v) const { return _graph->id(v); } + int id(const Arc& a) const { return _graph->id(a); } + int id(const Edge& e) const { return _graph->id(e); } + + Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } + Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } + + int maxNodeId() const { return _graph->maxNodeId(); } + int maxArcId() const { return _graph->maxArcId(); } + int maxEdgeId() const { return _graph->maxEdgeId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } + + typedef typename ItemSetTraits::ItemNotifier EdgeNotifier; + EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } + + template + class NodeMap : public Graph::template NodeMap<_Value> { + public: + typedef typename Graph::template NodeMap<_Value> Parent; + explicit NodeMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + NodeMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public Graph::template ArcMap<_Value> { + public: + typedef typename Graph::template ArcMap<_Value> Parent; + explicit ArcMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + ArcMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public Graph::template EdgeMap<_Value> { + public: + typedef typename Graph::template EdgeMap<_Value> Parent; + explicit EdgeMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + EdgeMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Trivial graph adaptor + /// + /// This class is an adaptor which does not change the adapted undirected + /// graph. It can be used only to test the graph adaptors. + template + class GraphAdaptor + : public GraphAdaptorExtender< GraphAdaptorBase<_Graph> > { + public: + typedef _Graph Graph; + typedef GraphAdaptorExtender > Parent; + protected: + GraphAdaptor() : Parent() {} + + public: + explicit GraphAdaptor(Graph& graph) { setGraph(graph); } + }; + + template + class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { + public: + typedef _Graph Graph; + typedef SubGraphAdaptorBase Adaptor; + typedef GraphAdaptorBase<_Graph> Parent; + protected: + + NodeFilterMap* _node_filter_map; + EdgeFilterMap* _edge_filter_map; + + SubGraphAdaptorBase() + : Parent(), _node_filter_map(0), _edge_filter_map(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter_map) { + _node_filter_map=&node_filter_map; + } + void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { + _edge_filter_map=&edge_filter_map; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)] + || !(*_node_filter_map)[Parent::target(i)])) Parent::next(i); + } + + void first(Edge& i) const { + Parent::first(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)])) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::target(i)])) Parent::nextOut(i); + } + + void firstInc(Edge& i, bool& d, const Node& n) const { + Parent::firstInc(i, d, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) Parent::nextInc(i, d); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)] + || !(*_node_filter_map)[Parent::target(i)])) Parent::next(i); + } + + void next(Edge& i) const { + Parent::next(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) Parent::next(i); + } + + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)])) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::target(i)])) Parent::nextOut(i); + } + + void nextInc(Edge& i, bool& d) const { + Parent::nextInc(i, d); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) Parent::nextInc(i, d); + } + + /// \brief Hide the given node in the graph. + /// + /// This function hides \c n in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter_map->set(n, false); } + + /// \brief Hide the given edge in the graph. + /// + /// This function hides \c e in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding edge-map. + void hide(const Edge& e) const { _edge_filter_map->set(e, false); } + + /// \brief Unhide the given node in the graph. + /// + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter_map->set(n, true); } + + /// \brief Hide the given edge in the graph. + /// + /// The value of \c e is set to be true in the edge-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } + + /// \brief Returns true if \c n is hidden. + /// + /// Returns true if \c n is hidden. + bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } + + /// \brief Returns true if \c e is hidden. + /// + /// Returns true if \c e is hidden. + bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { + return INVALID; + } + Arc arc = Parent::findArc(u, v, prev); + while (arc != INVALID && !(*_edge_filter_map)[arc]) { + arc = Parent::findArc(u, v, arc); + } + return arc; + } + Edge findEdge(const Node& u, const Node& v, + const Edge& prev = INVALID) { + if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { + return INVALID; + } + Edge edge = Parent::findEdge(u, v, prev); + while (edge != INVALID && !(*_edge_filter_map)[edge]) { + edge = Parent::findEdge(u, v, edge); + } + return edge; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + EdgeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + + EdgeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + template + class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> + : public GraphAdaptorBase<_Graph> { + public: + typedef _Graph Graph; + typedef SubGraphAdaptorBase Adaptor; + typedef GraphAdaptorBase<_Graph> Parent; + protected: + NodeFilterMap* _node_filter_map; + EdgeFilterMap* _edge_filter_map; + SubGraphAdaptorBase() : Parent(), + _node_filter_map(0), _edge_filter_map(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter_map) { + _node_filter_map=&node_filter_map; + } + void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { + _edge_filter_map=&edge_filter_map; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + + void first(Edge& i) const { + Parent::first(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); + } + + void firstInc(Edge& i, bool& d, const Node& n) const { + Parent::firstInc(i, d, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + void next(Edge& i) const { + Parent::next(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); + } + void nextInc(Edge& i, bool& d) const { + Parent::nextInc(i, d); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); + } + + /// \brief Hide the given node in the graph. + /// + /// This function hides \c n in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter_map->set(n, false); } + + /// \brief Hide the given edge in the graph. + /// + /// This function hides \c e in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding edge-map. + void hide(const Edge& e) const { _edge_filter_map->set(e, false); } + + /// \brief Unhide the given node in the graph. + /// + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter_map->set(n, true); } + + /// \brief Hide the given edge in the graph. + /// + /// The value of \c e is set to be true in the edge-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } + + /// \brief Returns true if \c n is hidden. + /// + /// Returns true if \c n is hidden. + bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } + + /// \brief Returns true if \c e is hidden. + /// + /// Returns true if \c e is hidden. + bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + Arc arc = Parent::findArc(u, v, prev); + while (arc != INVALID && !(*_edge_filter_map)[arc]) { + arc = Parent::findArc(u, v, arc); + } + return arc; + } + Edge findEdge(const Node& u, const Node& v, + const Edge& prev = INVALID) { + Edge edge = Parent::findEdge(u, v, prev); + while (edge != INVALID && !(*_edge_filter_map)[edge]) { + edge = Parent::findEdge(u, v, edge); + } + return edge; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + EdgeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + + EdgeMap(const Adaptor& adaptor, const _Value& value) + : MapParent(adaptor, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief A graph adaptor for hiding nodes and arcs from an + /// undirected graph. + /// + /// SubGraphAdaptor shows the graph with filtered node-set and + /// edge-set. If the \c checked parameter is true then it filters + /// the edge-set to do not get invalid edges which incident node is + /// filtered. + /// + /// If the \c checked template parameter is false then we have to + /// note that the node-iterator cares only the filter on the + /// node-set, and the edge-iterator cares only the filter on the + /// edge-set. This way the edge-map should filter all arcs which + /// has filtered end node. + template + class SubGraphAdaptor : + public GraphAdaptorExtender< + SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > { + public: + typedef _Graph Graph; + typedef GraphAdaptorExtender< + SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; + protected: + SubGraphAdaptor() { } + public: + SubGraphAdaptor(Graph& _graph, NodeFilterMap& node_filter_map, + EdgeFilterMap& edge_filter_map) { + setGraph(_graph); + setNodeFilterMap(node_filter_map); + setEdgeFilterMap(edge_filter_map); + } + }; + + template + SubGraphAdaptor + subGraphAdaptor(const Graph& graph, + NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraphAdaptor + (graph, nfm, efm); + } + + template + SubGraphAdaptor + subGraphAdaptor(const Graph& graph, + NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraphAdaptor + (graph, nfm, efm); + } + + template + SubGraphAdaptor + subGraphAdaptor(const Graph& graph, + NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraphAdaptor + (graph, nfm, efm); + } + + template + SubGraphAdaptor + subGraphAdaptor(const Graph& graph, + NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraphAdaptor(graph, nfm, efm); + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding nodes from an graph. + /// + /// An adaptor for hiding nodes from an graph. This + /// adaptor specializes SubGraphAdaptor in the way that only the + /// node-set can be filtered. In usual case the checked parameter is + /// true, we get the induced subgraph. But if the checked parameter + /// is false then we can filter only isolated nodes. + template + class NodeSubGraphAdaptor : + public SubGraphAdaptor<_Graph, _NodeFilterMap, + ConstMap, checked> { + public: + typedef _Graph Graph; + typedef _NodeFilterMap NodeFilterMap; + typedef SubGraphAdaptor > Parent; + protected: + ConstMap const_true_map; + + NodeSubGraphAdaptor() : const_true_map(true) { + Parent::setEdgeFilterMap(const_true_map); + } + + public: + NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& node_filter_map) : + Parent(), const_true_map(true) { + Parent::setGraph(_graph); + Parent::setNodeFilterMap(node_filter_map); + Parent::setEdgeFilterMap(const_true_map); + } + }; + + template + NodeSubGraphAdaptor + nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) { + return NodeSubGraphAdaptor(graph, nfm); + } + + template + NodeSubGraphAdaptor + nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) { + return NodeSubGraphAdaptor(graph, nfm); + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding edges from an graph. + /// + /// \warning Graph adaptors are in even more experimental state + /// than the other parts of the lib. Use them at you own risk. + /// + /// An adaptor for hiding edges from an graph. + /// This adaptor specializes SubGraphAdaptor in the way that + /// only the arc-set + /// can be filtered. + template + class EdgeSubGraphAdaptor : + public SubGraphAdaptor<_Graph, ConstMap, + _EdgeFilterMap, false> { + public: + typedef _Graph Graph; + typedef _EdgeFilterMap EdgeFilterMap; + typedef SubGraphAdaptor, + EdgeFilterMap, false> Parent; + protected: + ConstMap const_true_map; + + EdgeSubGraphAdaptor() : const_true_map(true) { + Parent::setNodeFilterMap(const_true_map); + } + + public: + + EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& edge_filter_map) : + Parent(), const_true_map(true) { + Parent::setGraph(_graph); + Parent::setNodeFilterMap(const_true_map); + Parent::setEdgeFilterMap(edge_filter_map); + } + + }; + + template + EdgeSubGraphAdaptor + edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) { + return EdgeSubGraphAdaptor(graph, efm); + } + + template + EdgeSubGraphAdaptor + edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) { + return EdgeSubGraphAdaptor(graph, efm); + } + + /// \brief Base of direct graph adaptor + /// + /// Base class of the direct graph adaptor. All public member + /// of this class can be used with the DirGraphAdaptor too. + /// \sa DirGraphAdaptor + template + class DirGraphAdaptorBase { + public: + + typedef _Graph Graph; + typedef _DirectionMap DirectionMap; + + typedef typename Graph::Node Node; + typedef typename Graph::Edge Arc; + + /// \brief Reverse arc + /// + /// It reverse the given arc. It simply negate the direction in the map. + void reverseArc(const Arc& arc) { + _direction->set(arc, !(*_direction)[arc]); + } + + void first(Node& i) const { _graph->first(i); } + void first(Arc& i) const { _graph->first(i); } + void firstIn(Arc& i, const Node& n) const { + bool d; + _graph->firstInc(i, d, n); + while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); + } + void firstOut(Arc& i, const Node& n ) const { + bool d; + _graph->firstInc(i, d, n); + while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); + } + + void next(Node& i) const { _graph->next(i); } + void next(Arc& i) const { _graph->next(i); } + void nextIn(Arc& i) const { + bool d = !(*_direction)[i]; + _graph->nextInc(i, d); + while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); + } + void nextOut(Arc& i) const { + bool d = (*_direction)[i]; + _graph->nextInc(i, d); + while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); + } + + Node source(const Arc& e) const { + return (*_direction)[e] ? _graph->u(e) : _graph->v(e); + } + Node target(const Arc& e) const { + return (*_direction)[e] ? _graph->v(e) : _graph->u(e); + } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _graph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _graph->edgeNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + Arc arc = prev; + bool d = arc == INVALID ? true : (*_direction)[arc]; + if (d) { + arc = _graph->findEdge(u, v, arc); + while (arc != INVALID && !(*_direction)[arc]) { + _graph->findEdge(u, v, arc); + } + if (arc != INVALID) return arc; + } + _graph->findEdge(v, u, arc); + while (arc != INVALID && (*_direction)[arc]) { + _graph->findEdge(u, v, arc); + } + return arc; + } + + Node addNode() { + return Node(_graph->addNode()); + } + + Arc addArc(const Node& u, const Node& v) { + Arc arc = _graph->addArc(u, v); + _direction->set(arc, _graph->source(arc) == u); + return arc; + } + + void erase(const Node& i) { _graph->erase(i); } + void erase(const Arc& i) { _graph->erase(i); } + + void clear() { _graph->clear(); } + + int id(const Node& v) const { return _graph->id(v); } + int id(const Arc& e) const { return _graph->id(e); } + + Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } + Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } + + int maxNodeId() const { return _graph->maxNodeId(); } + int maxArcId() const { return _graph->maxEdgeId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } + + template + class NodeMap : public _Graph::template NodeMap<_Value> { + public: + + typedef typename _Graph::template NodeMap<_Value> Parent; + + explicit NodeMap(const DirGraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + + NodeMap(const DirGraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public _Graph::template EdgeMap<_Value> { + public: + + typedef typename Graph::template EdgeMap<_Value> Parent; + + explicit ArcMap(const DirGraphAdaptorBase& adapter) + : Parent(*adapter._graph) { } + + ArcMap(const DirGraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) { } + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + + + protected: + Graph* _graph; + DirectionMap* _direction; + + void setDirectionMap(DirectionMap& direction) { + _direction = &direction; + } + + void setGraph(Graph& graph) { + _graph = &graph; + } + + }; + + + /// \ingroup graph_adaptors + /// + /// \brief A directed graph is made from an graph by an adaptor + /// + /// This adaptor gives a direction for each edge in the undirected + /// graph. The direction of the arcs stored in the + /// DirectionMap. This map is a bool map on the edges. If + /// the edge is mapped to true then the direction of the directed + /// arc will be the same as the default direction of the edge. The + /// arcs can be easily reverted by the \ref + /// DirGraphAdaptorBase::reverseArc "reverseArc()" member in the + /// adaptor. + /// + /// It can be used to solve orientation problems on directed graphs. + /// For example how can we orient an graph to get the minimum + /// number of strongly connected components. If we orient the arcs with + /// the dfs algorithm out from the source then we will get such an + /// orientation. + /// + /// We use the \ref DfsVisitor "visitor" interface of the + /// \ref DfsVisit "dfs" algorithm: + ///\code + /// template + /// class OrientVisitor : public DfsVisitor { + /// public: + /// + /// OrientVisitor(const Graph& graph, DirMap& dirMap) + /// : _graph(graph), _dirMap(dirMap), _processed(graph, false) {} + /// + /// void discover(const Arc& arc) { + /// _processed.set(arc, true); + /// _dirMap.set(arc, _graph.direction(arc)); + /// } + /// + /// void examine(const Arc& arc) { + /// if (_processed[arc]) return; + /// _processed.set(arc, true); + /// _dirMap.set(arc, _graph.direction(arc)); + /// } + /// + /// private: + /// const Graph& _graph; + /// DirMap& _dirMap; + /// Graph::EdgeMap _processed; + /// }; + ///\endcode + /// + /// And now we can use the orientation: + ///\code + /// Graph::EdgeMap dmap(graph); + /// + /// typedef OrientVisitor > Visitor; + /// Visitor visitor(graph, dmap); + /// + /// DfsVisit dfs(graph, visitor); + /// + /// dfs.run(); + /// + /// typedef DirGraphAdaptor DGraph; + /// DGraph dgraph(graph, dmap); + /// + /// LEMON_ASSERT(countStronglyConnectedComponents(dgraph) == + /// countBiArcConnectedComponents(graph), "Wrong Orientation"); + ///\endcode + /// + /// The number of the bi-connected components is a lower bound for + /// the number of the strongly connected components in the directed + /// graph because if we contract the bi-connected components to + /// nodes we will get a tree therefore we cannot orient arcs in + /// both direction between bi-connected components. In the other way + /// the algorithm will orient one component to be strongly + /// connected. The two relations proof that the assertion will + /// be always true and the found solution is optimal. + /// + /// \sa DirGraphAdaptorBase + /// \sa dirGraphAdaptor + template > + class DirGraphAdaptor : + public DigraphAdaptorExtender > { + public: + typedef _Graph Graph; + typedef DigraphAdaptorExtender< + DirGraphAdaptorBase<_Graph, DirectionMap> > Parent; + protected: + DirGraphAdaptor() { } + public: + + /// \brief Constructor of the adaptor + /// + /// Constructor of the adaptor + DirGraphAdaptor(Graph& graph, DirectionMap& direction) { + setGraph(graph); + setDirectionMap(direction); + } + }; + + /// \brief Just gives back a DirGraphAdaptor + /// + /// Just gives back a DirGraphAdaptor + template + DirGraphAdaptor + dirGraphAdaptor(const Graph& graph, DirectionMap& dm) { + return DirGraphAdaptor(graph, dm); + } + + template + DirGraphAdaptor + dirGraphAdaptor(const Graph& graph, const DirectionMap& dm) { + return DirGraphAdaptor(graph, dm); + } + +} + +#endif diff -r 0c5dd7ceda03 -r 05357da973ce test/Makefile.am --- a/test/Makefile.am Sun Nov 30 09:39:34 2008 +0000 +++ b/test/Makefile.am Sun Nov 30 18:57:18 2008 +0100 @@ -15,6 +15,7 @@ test/dijkstra_test \ test/dim_test \ test/error_test \ + test/graph_adaptor_test \ test/graph_copy_test \ test/graph_test \ test/graph_utils_test \ @@ -41,6 +42,7 @@ test_dijkstra_test_SOURCES = test/dijkstra_test.cc test_dim_test_SOURCES = test/dim_test.cc test_error_test_SOURCES = test/error_test.cc +test_graph_adaptor_test_SOURCES = test/graph_adaptor_test.cc test_graph_copy_test_SOURCES = test/graph_copy_test.cc test_graph_test_SOURCES = test/graph_test.cc test_graph_utils_test_SOURCES = test/graph_utils_test.cc diff -r 0c5dd7ceda03 -r 05357da973ce test/graph_adaptor_test.cc --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/test/graph_adaptor_test.cc Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,1072 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#include +#include + +#include +#include + +#include +#include + +#include +#include + +#include +#include +#include + +#include"test/test_tools.h" +#include"test/graph_test.h" + +using namespace lemon; + +void checkDigraphAdaptor() { + checkConcept >(); + + typedef ListDigraph Digraph; + typedef DigraphAdaptor Adaptor; + + Digraph digraph; + Adaptor adaptor(digraph); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); +} + +void checkRevDigraphAdaptor() { + checkConcept >(); + + typedef ListDigraph Digraph; + typedef RevDigraphAdaptor Adaptor; + + Digraph digraph; + Adaptor adaptor(digraph); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 0); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 2); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + check(adaptor.source(a) == digraph.target(a), "Wrong reverse"); + check(adaptor.target(a) == digraph.source(a), "Wrong reverse"); + } +} + +void checkSubDigraphAdaptor() { + checkConcept, + concepts::Digraph::ArcMap > >(); + + typedef ListDigraph Digraph; + typedef Digraph::NodeMap NodeFilter; + typedef Digraph::ArcMap ArcFilter; + typedef SubDigraphAdaptor Adaptor; + + Digraph digraph; + NodeFilter node_filter(digraph); + ArcFilter arc_filter(digraph); + Adaptor adaptor(digraph, node_filter, arc_filter); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = true; + arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + arc_filter[a2] = false; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 2); + checkGraphConArcList(adaptor, 2); + + checkGraphOutArcList(adaptor, n1, 1); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + node_filter[n1] = false; + + checkGraphNodeList(adaptor, 2); + checkGraphArcList(adaptor, 1); + checkGraphConArcList(adaptor, 1); + + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n2, 0); + checkGraphInArcList(adaptor, n3, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = false; + arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false; + + checkGraphNodeList(adaptor, 0); + checkGraphArcList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); +} + +void checkNodeSubDigraphAdaptor() { + checkConcept > >(); + + typedef ListDigraph Digraph; + typedef Digraph::NodeMap NodeFilter; + typedef NodeSubDigraphAdaptor Adaptor; + + Digraph digraph; + NodeFilter node_filter(digraph); + Adaptor adaptor(digraph, node_filter); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = true; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + node_filter[n1] = false; + + checkGraphNodeList(adaptor, 2); + checkGraphArcList(adaptor, 1); + checkGraphConArcList(adaptor, 1); + + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n2, 0); + checkGraphInArcList(adaptor, n3, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = false; + + checkGraphNodeList(adaptor, 0); + checkGraphArcList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); +} + +void checkArcSubDigraphAdaptor() { + checkConcept > >(); + + typedef ListDigraph Digraph; + typedef Digraph::ArcMap ArcFilter; + typedef ArcSubDigraphAdaptor Adaptor; + + Digraph digraph; + ArcFilter arc_filter(digraph); + Adaptor adaptor(digraph, arc_filter); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = true; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + arc_filter[a2] = false; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 2); + checkGraphConArcList(adaptor, 2); + + checkGraphOutArcList(adaptor, n1, 1); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + arc_filter[a1] = arc_filter[a2] = arc_filter[a3] = false; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); +} + +void checkUndirDigraphAdaptor() { + checkConcept >(); + + typedef ListDigraph Digraph; + typedef UndirDigraphAdaptor Adaptor; + + Digraph digraph; + Adaptor adaptor(digraph); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 6); + checkGraphEdgeList(adaptor, 3); + checkGraphConArcList(adaptor, 6); + checkGraphConEdgeList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 2); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 2); + + checkGraphIncEdgeList(adaptor, n1, 2); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 2); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + for (Adaptor::EdgeIt e(adaptor); e != INVALID; ++e) { + check(adaptor.u(e) == digraph.source(e), "Wrong undir"); + check(adaptor.v(e) == digraph.target(e), "Wrong undir"); + } + +} + +void checkResDigraphAdaptor() { + checkConcept, + concepts::Digraph::ArcMap > >(); + + typedef ListDigraph Digraph; + typedef Digraph::ArcMap IntArcMap; + typedef ResDigraphAdaptor Adaptor; + + Digraph digraph; + IntArcMap capacity(digraph), flow(digraph); + Adaptor adaptor(digraph, capacity, flow); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + Digraph::Node n4 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n1, n4); + Digraph::Arc a4 = digraph.addArc(n2, n3); + Digraph::Arc a5 = digraph.addArc(n2, n4); + Digraph::Arc a6 = digraph.addArc(n3, n4); + + capacity[a1] = 8; + capacity[a2] = 6; + capacity[a3] = 4; + capacity[a4] = 4; + capacity[a5] = 6; + capacity[a6] = 10; + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + flow[a] = 0; + } + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 6); + checkGraphConArcList(adaptor, 6); + + checkGraphOutArcList(adaptor, n1, 3); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 1); + checkGraphOutArcList(adaptor, n4, 0); + + checkGraphInArcList(adaptor, n1, 0); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + checkGraphInArcList(adaptor, n4, 3); + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + flow[a] = capacity[a] / 2; + } + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 12); + checkGraphConArcList(adaptor, 12); + + checkGraphOutArcList(adaptor, n1, 3); + checkGraphOutArcList(adaptor, n2, 3); + checkGraphOutArcList(adaptor, n3, 3); + checkGraphOutArcList(adaptor, n4, 3); + + checkGraphInArcList(adaptor, n1, 3); + checkGraphInArcList(adaptor, n2, 3); + checkGraphInArcList(adaptor, n3, 3); + checkGraphInArcList(adaptor, n4, 3); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + flow[a] = capacity[a]; + } + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 6); + checkGraphConArcList(adaptor, 6); + + checkGraphOutArcList(adaptor, n1, 0); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 2); + checkGraphOutArcList(adaptor, n4, 3); + + checkGraphInArcList(adaptor, n1, 3); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 1); + checkGraphInArcList(adaptor, n4, 0); + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + flow[a] = 0; + } + + int flow_value = 0; + while (true) { + + Bfs bfs(adaptor); + bfs.run(n1, n4); + + if (!bfs.reached(n4)) break; + + Path p = bfs.path(n4); + + int min = std::numeric_limits::max(); + for (Path::ArcIt a(p); a != INVALID; ++a) { + if (adaptor.rescap(a) < min) min = adaptor.rescap(a); + } + + for (Path::ArcIt a(p); a != INVALID; ++a) { + adaptor.augment(a, min); + } + flow_value += min; + } + + check(flow_value == 18, "Wrong flow with res graph adaptor"); + +} + +void checkSplitDigraphAdaptor() { + checkConcept >(); + + typedef ListDigraph Digraph; + typedef SplitDigraphAdaptor Adaptor; + + Digraph digraph; + Adaptor adaptor(digraph); + + Digraph::Node n1 = digraph.addNode(); + Digraph::Node n2 = digraph.addNode(); + Digraph::Node n3 = digraph.addNode(); + + Digraph::Arc a1 = digraph.addArc(n1, n2); + Digraph::Arc a2 = digraph.addArc(n1, n3); + Digraph::Arc a3 = digraph.addArc(n2, n3); + + checkGraphNodeList(adaptor, 6); + checkGraphArcList(adaptor, 6); + checkGraphConArcList(adaptor, 6); + + checkGraphOutArcList(adaptor, adaptor.inNode(n1), 1); + checkGraphOutArcList(adaptor, adaptor.outNode(n1), 2); + checkGraphOutArcList(adaptor, adaptor.inNode(n2), 1); + checkGraphOutArcList(adaptor, adaptor.outNode(n2), 1); + checkGraphOutArcList(adaptor, adaptor.inNode(n3), 1); + checkGraphOutArcList(adaptor, adaptor.outNode(n3), 0); + + checkGraphInArcList(adaptor, adaptor.inNode(n1), 0); + checkGraphInArcList(adaptor, adaptor.outNode(n1), 1); + checkGraphInArcList(adaptor, adaptor.inNode(n2), 1); + checkGraphInArcList(adaptor, adaptor.outNode(n2), 1); + checkGraphInArcList(adaptor, adaptor.inNode(n3), 2); + checkGraphInArcList(adaptor, adaptor.outNode(n3), 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + + for (Adaptor::ArcIt a(adaptor); a != INVALID; ++a) { + if (adaptor.origArc(a)) { + Digraph::Arc oa = a; + check(adaptor.source(a) == adaptor.outNode(digraph.source(oa)), + "Wrong split"); + check(adaptor.target(a) == adaptor.inNode(digraph.target(oa)), + "Wrong split"); + } else { + Digraph::Node on = a; + check(adaptor.source(a) == adaptor.inNode(on), "Wrong split"); + check(adaptor.target(a) == adaptor.outNode(on), "Wrong split"); + } + } +} + +void checkGraphAdaptor() { + checkConcept >(); + + typedef ListGraph Graph; + typedef GraphAdaptor Adaptor; + + Graph graph; + Adaptor adaptor(graph); + + Graph::Node n1 = graph.addNode(); + Graph::Node n2 = graph.addNode(); + Graph::Node n3 = graph.addNode(); + Graph::Node n4 = graph.addNode(); + + Graph::Edge a1 = graph.addEdge(n1, n2); + Graph::Edge a2 = graph.addEdge(n1, n3); + Graph::Edge a3 = graph.addEdge(n2, n3); + Graph::Edge a4 = graph.addEdge(n3, n4); + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 8); + checkGraphEdgeList(adaptor, 4); + checkGraphConArcList(adaptor, 8); + checkGraphConEdgeList(adaptor, 4); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 3); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 3); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 2); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 3); + checkGraphIncEdgeList(adaptor, n4, 1); + + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); +} + +void checkSubGraphAdaptor() { + checkConcept, + concepts::Graph::EdgeMap > >(); + + typedef ListGraph Graph; + typedef Graph::NodeMap NodeFilter; + typedef Graph::EdgeMap EdgeFilter; + typedef SubGraphAdaptor Adaptor; + + Graph graph; + NodeFilter node_filter(graph); + EdgeFilter edge_filter(graph); + Adaptor adaptor(graph, node_filter, edge_filter); + + Graph::Node n1 = graph.addNode(); + Graph::Node n2 = graph.addNode(); + Graph::Node n3 = graph.addNode(); + Graph::Node n4 = graph.addNode(); + + Graph::Edge e1 = graph.addEdge(n1, n2); + Graph::Edge e2 = graph.addEdge(n1, n3); + Graph::Edge e3 = graph.addEdge(n2, n3); + Graph::Edge e4 = graph.addEdge(n3, n4); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true; + edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 8); + checkGraphEdgeList(adaptor, 4); + checkGraphConArcList(adaptor, 8); + checkGraphConEdgeList(adaptor, 4); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 3); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 3); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 2); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 3); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + edge_filter[e2] = false; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 6); + checkGraphEdgeList(adaptor, 3); + checkGraphConArcList(adaptor, 6); + checkGraphConEdgeList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 1); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 2); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 1); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 2); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 1); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 2); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + node_filter[n1] = false; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 4); + checkGraphEdgeList(adaptor, 2); + checkGraphConArcList(adaptor, 4); + checkGraphConEdgeList(adaptor, 2); + + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 2); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n2, 1); + checkGraphIncEdgeList(adaptor, n3, 2); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false; + edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false; + + checkGraphNodeList(adaptor, 0); + checkGraphArcList(adaptor, 0); + checkGraphEdgeList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + checkGraphConEdgeList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); +} + +void checkNodeSubGraphAdaptor() { + checkConcept > >(); + + typedef ListGraph Graph; + typedef Graph::NodeMap NodeFilter; + typedef NodeSubGraphAdaptor Adaptor; + + Graph graph; + NodeFilter node_filter(graph); + Adaptor adaptor(graph, node_filter); + + Graph::Node n1 = graph.addNode(); + Graph::Node n2 = graph.addNode(); + Graph::Node n3 = graph.addNode(); + Graph::Node n4 = graph.addNode(); + + Graph::Edge e1 = graph.addEdge(n1, n2); + Graph::Edge e2 = graph.addEdge(n1, n3); + Graph::Edge e3 = graph.addEdge(n2, n3); + Graph::Edge e4 = graph.addEdge(n3, n4); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = true; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 8); + checkGraphEdgeList(adaptor, 4); + checkGraphConArcList(adaptor, 8); + checkGraphConEdgeList(adaptor, 4); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 3); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 3); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 2); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 3); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + node_filter[n1] = false; + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 4); + checkGraphEdgeList(adaptor, 2); + checkGraphConArcList(adaptor, 4); + checkGraphConEdgeList(adaptor, 2); + + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 2); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 2); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n2, 1); + checkGraphIncEdgeList(adaptor, n3, 2); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + node_filter[n1] = node_filter[n2] = node_filter[n3] = node_filter[n4] = false; + + checkGraphNodeList(adaptor, 0); + checkGraphArcList(adaptor, 0); + checkGraphEdgeList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + checkGraphConEdgeList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); +} + +void checkEdgeSubGraphAdaptor() { + checkConcept > >(); + + typedef ListGraph Graph; + typedef Graph::EdgeMap EdgeFilter; + typedef EdgeSubGraphAdaptor Adaptor; + + Graph graph; + EdgeFilter edge_filter(graph); + Adaptor adaptor(graph, edge_filter); + + Graph::Node n1 = graph.addNode(); + Graph::Node n2 = graph.addNode(); + Graph::Node n3 = graph.addNode(); + Graph::Node n4 = graph.addNode(); + + Graph::Edge e1 = graph.addEdge(n1, n2); + Graph::Edge e2 = graph.addEdge(n1, n3); + Graph::Edge e3 = graph.addEdge(n2, n3); + Graph::Edge e4 = graph.addEdge(n3, n4); + + edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = true; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 8); + checkGraphEdgeList(adaptor, 4); + checkGraphConArcList(adaptor, 8); + checkGraphConEdgeList(adaptor, 4); + + checkGraphOutArcList(adaptor, n1, 2); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 3); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 2); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 3); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 2); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 3); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + edge_filter[e2] = false; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 6); + checkGraphEdgeList(adaptor, 3); + checkGraphConArcList(adaptor, 6); + checkGraphConEdgeList(adaptor, 3); + + checkGraphOutArcList(adaptor, n1, 1); + checkGraphOutArcList(adaptor, n2, 2); + checkGraphOutArcList(adaptor, n3, 2); + checkGraphOutArcList(adaptor, n4, 1); + + checkGraphInArcList(adaptor, n1, 1); + checkGraphInArcList(adaptor, n2, 2); + checkGraphInArcList(adaptor, n3, 2); + checkGraphInArcList(adaptor, n4, 1); + + checkGraphIncEdgeList(adaptor, n1, 1); + checkGraphIncEdgeList(adaptor, n2, 2); + checkGraphIncEdgeList(adaptor, n3, 2); + checkGraphIncEdgeList(adaptor, n4, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); + + edge_filter[e1] = edge_filter[e2] = edge_filter[e3] = edge_filter[e4] = false; + + checkGraphNodeList(adaptor, 4); + checkGraphArcList(adaptor, 0); + checkGraphEdgeList(adaptor, 0); + checkGraphConArcList(adaptor, 0); + checkGraphConEdgeList(adaptor, 0); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + checkEdgeIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + checkGraphEdgeMap(adaptor); +} + +void checkDirGraphAdaptor() { + checkConcept > >(); + + typedef ListGraph Graph; + typedef ListGraph::EdgeMap DirMap; + typedef DirGraphAdaptor Adaptor; + + Graph graph; + DirMap dir(graph, true); + Adaptor adaptor(graph, dir); + + Graph::Node n1 = graph.addNode(); + Graph::Node n2 = graph.addNode(); + Graph::Node n3 = graph.addNode(); + + Graph::Edge e1 = graph.addEdge(n1, n2); + Graph::Edge e2 = graph.addEdge(n1, n3); + Graph::Edge e3 = graph.addEdge(n2, n3); + + checkGraphNodeList(adaptor, 3); + checkGraphArcList(adaptor, 3); + checkGraphConArcList(adaptor, 3); + + { + dir[e1] = true; + Adaptor::Node u = adaptor.source(e1); + Adaptor::Node v = adaptor.target(e1); + + dir[e1] = false; + check (u == adaptor.target(e1), "Wrong dir"); + check (v == adaptor.source(e1), "Wrong dir"); + + check ((u == n1 && v == n2) || (u == n2 && v == n1), "Wrong dir"); + dir[e1] = n1 == u; + } + + { + dir[e2] = true; + Adaptor::Node u = adaptor.source(e2); + Adaptor::Node v = adaptor.target(e2); + + dir[e2] = false; + check (u == adaptor.target(e2), "Wrong dir"); + check (v == adaptor.source(e2), "Wrong dir"); + + check ((u == n1 && v == n3) || (u == n3 && v == n1), "Wrong dir"); + dir[e2] = n3 == u; + } + + { + dir[e3] = true; + Adaptor::Node u = adaptor.source(e3); + Adaptor::Node v = adaptor.target(e3); + + dir[e3] = false; + check (u == adaptor.target(e3), "Wrong dir"); + check (v == adaptor.source(e3), "Wrong dir"); + + check ((u == n2 && v == n3) || (u == n3 && v == n2), "Wrong dir"); + dir[e3] = n2 == u; + } + + checkGraphOutArcList(adaptor, n1, 1); + checkGraphOutArcList(adaptor, n2, 1); + checkGraphOutArcList(adaptor, n3, 1); + + checkGraphInArcList(adaptor, n1, 1); + checkGraphInArcList(adaptor, n2, 1); + checkGraphInArcList(adaptor, n3, 1); + + checkNodeIds(adaptor); + checkArcIds(adaptor); + + checkGraphNodeMap(adaptor); + checkGraphArcMap(adaptor); + +} + + +int main(int, const char **) { + + checkDigraphAdaptor(); + checkRevDigraphAdaptor(); + checkSubDigraphAdaptor(); + checkNodeSubDigraphAdaptor(); + checkArcSubDigraphAdaptor(); + checkUndirDigraphAdaptor(); + checkResDigraphAdaptor(); + checkSplitDigraphAdaptor(); + + checkGraphAdaptor(); + checkSubGraphAdaptor(); + checkNodeSubGraphAdaptor(); + checkEdgeSubGraphAdaptor(); + checkDirGraphAdaptor(); + + return 0; +}