Port remaining heaps from SVN -r 3509 (#50)
authorBalazs Dezso <deba@inf.elte.hu>
Thu, 11 Jun 2009 22:11:29 +0200
changeset 681532697c9fa53
parent 680 257e91516e09
child 682 bb8c4cd57900
Port remaining heaps from SVN -r 3509 (#50)

- FibHeap
- RadixHeap
- BucketHeap
- SimpleBucketHeap
lemon/Makefile.am
lemon/bucket_heap.h
lemon/fib_heap.h
lemon/radix_heap.h
test/heap_test.cc
     1.1 --- a/lemon/Makefile.am	Fri May 29 17:46:48 2009 +0100
     1.2 +++ b/lemon/Makefile.am	Thu Jun 11 22:11:29 2009 +0200
     1.3 @@ -59,6 +59,7 @@
     1.4  	lemon/assert.h \
     1.5  	lemon/bfs.h \
     1.6  	lemon/bin_heap.h \
     1.7 +	lemon/bucket_heap.h \
     1.8  	lemon/cbc.h \
     1.9  	lemon/circulation.h \
    1.10  	lemon/clp.h \
    1.11 @@ -76,6 +77,7 @@
    1.12  	lemon/elevator.h \
    1.13  	lemon/error.h \
    1.14  	lemon/euler.h \
    1.15 +	lemon/fib_heap.h \
    1.16  	lemon/full_graph.h \
    1.17  	lemon/glpk.h \
    1.18  	lemon/gomory_hu.h \
    1.19 @@ -99,6 +101,7 @@
    1.20  	lemon/network_simplex.h \
    1.21  	lemon/path.h \
    1.22  	lemon/preflow.h \
    1.23 +	lemon/radix_heap.h \
    1.24  	lemon/radix_sort.h \
    1.25  	lemon/random.h \
    1.26  	lemon/smart_graph.h \
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/bucket_heap.h	Thu Jun 11 22:11:29 2009 +0200
     2.3 @@ -0,0 +1,831 @@
     2.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     2.5 + *
     2.6 + * This file is a part of LEMON, a generic C++ optimization library.
     2.7 + *
     2.8 + * Copyright (C) 2003-2009
     2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    2.11 + *
    2.12 + * Permission to use, modify and distribute this software is granted
    2.13 + * provided that this copyright notice appears in all copies. For
    2.14 + * precise terms see the accompanying LICENSE file.
    2.15 + *
    2.16 + * This software is provided "AS IS" with no warranty of any kind,
    2.17 + * express or implied, and with no claim as to its suitability for any
    2.18 + * purpose.
    2.19 + *
    2.20 + */
    2.21 +
    2.22 +#ifndef LEMON_BUCKET_HEAP_H
    2.23 +#define LEMON_BUCKET_HEAP_H
    2.24 +
    2.25 +///\ingroup auxdat
    2.26 +///\file
    2.27 +///\brief Bucket Heap implementation.
    2.28 +
    2.29 +#include <vector>
    2.30 +#include <utility>
    2.31 +#include <functional>
    2.32 +
    2.33 +namespace lemon {
    2.34 +
    2.35 +  /// \ingroup auxdat
    2.36 +  ///
    2.37 +  /// \brief A Bucket Heap implementation.
    2.38 +  ///
    2.39 +  /// This class implements the \e bucket \e heap data structure. A \e heap
    2.40 +  /// is a data structure for storing items with specified values called \e
    2.41 +  /// priorities in such a way that finding the item with minimum priority is
    2.42 +  /// efficient. The bucket heap is very simple implementation, it can store
    2.43 +  /// only integer priorities and it stores for each priority in the
    2.44 +  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
    2.45 +  /// the priorities are small. It is not intended to use as dijkstra heap.
    2.46 +  ///
    2.47 +  /// \param _ItemIntMap A read and writable Item int map, used internally
    2.48 +  /// to handle the cross references.
    2.49 +  /// \param minimize If the given parameter is true then the heap gives back
    2.50 +  /// the lowest priority.
    2.51 +  template <typename _ItemIntMap, bool minimize = true >
    2.52 +  class BucketHeap {
    2.53 +
    2.54 +  public:
    2.55 +    /// \e
    2.56 +    typedef typename _ItemIntMap::Key Item;
    2.57 +    /// \e
    2.58 +    typedef int Prio;
    2.59 +    /// \e
    2.60 +    typedef std::pair<Item, Prio> Pair;
    2.61 +    /// \e
    2.62 +    typedef _ItemIntMap ItemIntMap;
    2.63 +
    2.64 +    /// \brief Type to represent the items states.
    2.65 +    ///
    2.66 +    /// Each Item element have a state associated to it. It may be "in heap",
    2.67 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    2.68 +    /// heap's point of view, but may be useful to the user.
    2.69 +    ///
    2.70 +    /// The ItemIntMap \e should be initialized in such way that it maps
    2.71 +    /// PRE_HEAP (-1) to any element to be put in the heap...
    2.72 +    enum State {
    2.73 +      IN_HEAP = 0,
    2.74 +      PRE_HEAP = -1,
    2.75 +      POST_HEAP = -2
    2.76 +    };
    2.77 +
    2.78 +  public:
    2.79 +    /// \brief The constructor.
    2.80 +    ///
    2.81 +    /// The constructor.
    2.82 +    /// \param _index should be given to the constructor, since it is used
    2.83 +    /// internally to handle the cross references. The value of the map
    2.84 +    /// should be PRE_HEAP (-1) for each element.
    2.85 +    explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
    2.86 +
    2.87 +    /// The number of items stored in the heap.
    2.88 +    ///
    2.89 +    /// \brief Returns the number of items stored in the heap.
    2.90 +    int size() const { return data.size(); }
    2.91 +
    2.92 +    /// \brief Checks if the heap stores no items.
    2.93 +    ///
    2.94 +    /// Returns \c true if and only if the heap stores no items.
    2.95 +    bool empty() const { return data.empty(); }
    2.96 +
    2.97 +    /// \brief Make empty this heap.
    2.98 +    ///
    2.99 +    /// Make empty this heap. It does not change the cross reference
   2.100 +    /// map.  If you want to reuse a heap what is not surely empty you
   2.101 +    /// should first clear the heap and after that you should set the
   2.102 +    /// cross reference map for each item to \c PRE_HEAP.
   2.103 +    void clear() {
   2.104 +      data.clear(); first.clear(); minimal = 0;
   2.105 +    }
   2.106 +
   2.107 +  private:
   2.108 +
   2.109 +    void relocate_last(int idx) {
   2.110 +      if (idx + 1 < int(data.size())) {
   2.111 +        data[idx] = data.back();
   2.112 +        if (data[idx].prev != -1) {
   2.113 +          data[data[idx].prev].next = idx;
   2.114 +        } else {
   2.115 +          first[data[idx].value] = idx;
   2.116 +        }
   2.117 +        if (data[idx].next != -1) {
   2.118 +          data[data[idx].next].prev = idx;
   2.119 +        }
   2.120 +        index[data[idx].item] = idx;
   2.121 +      }
   2.122 +      data.pop_back();
   2.123 +    }
   2.124 +
   2.125 +    void unlace(int idx) {
   2.126 +      if (data[idx].prev != -1) {
   2.127 +        data[data[idx].prev].next = data[idx].next;
   2.128 +      } else {
   2.129 +        first[data[idx].value] = data[idx].next;
   2.130 +      }
   2.131 +      if (data[idx].next != -1) {
   2.132 +        data[data[idx].next].prev = data[idx].prev;
   2.133 +      }
   2.134 +    }
   2.135 +
   2.136 +    void lace(int idx) {
   2.137 +      if (int(first.size()) <= data[idx].value) {
   2.138 +        first.resize(data[idx].value + 1, -1);
   2.139 +      }
   2.140 +      data[idx].next = first[data[idx].value];
   2.141 +      if (data[idx].next != -1) {
   2.142 +        data[data[idx].next].prev = idx;
   2.143 +      }
   2.144 +      first[data[idx].value] = idx;
   2.145 +      data[idx].prev = -1;
   2.146 +    }
   2.147 +
   2.148 +  public:
   2.149 +    /// \brief Insert a pair of item and priority into the heap.
   2.150 +    ///
   2.151 +    /// Adds \c p.first to the heap with priority \c p.second.
   2.152 +    /// \param p The pair to insert.
   2.153 +    void push(const Pair& p) {
   2.154 +      push(p.first, p.second);
   2.155 +    }
   2.156 +
   2.157 +    /// \brief Insert an item into the heap with the given priority.
   2.158 +    ///
   2.159 +    /// Adds \c i to the heap with priority \c p.
   2.160 +    /// \param i The item to insert.
   2.161 +    /// \param p The priority of the item.
   2.162 +    void push(const Item &i, const Prio &p) {
   2.163 +      int idx = data.size();
   2.164 +      index[i] = idx;
   2.165 +      data.push_back(BucketItem(i, p));
   2.166 +      lace(idx);
   2.167 +      if (p < minimal) {
   2.168 +        minimal = p;
   2.169 +      }
   2.170 +    }
   2.171 +
   2.172 +    /// \brief Returns the item with minimum priority.
   2.173 +    ///
   2.174 +    /// This method returns the item with minimum priority.
   2.175 +    /// \pre The heap must be nonempty.
   2.176 +    Item top() const {
   2.177 +      while (first[minimal] == -1) {
   2.178 +        ++minimal;
   2.179 +      }
   2.180 +      return data[first[minimal]].item;
   2.181 +    }
   2.182 +
   2.183 +    /// \brief Returns the minimum priority.
   2.184 +    ///
   2.185 +    /// It returns the minimum priority.
   2.186 +    /// \pre The heap must be nonempty.
   2.187 +    Prio prio() const {
   2.188 +      while (first[minimal] == -1) {
   2.189 +        ++minimal;
   2.190 +      }
   2.191 +      return minimal;
   2.192 +    }
   2.193 +
   2.194 +    /// \brief Deletes the item with minimum priority.
   2.195 +    ///
   2.196 +    /// This method deletes the item with minimum priority from the heap.
   2.197 +    /// \pre The heap must be non-empty.
   2.198 +    void pop() {
   2.199 +      while (first[minimal] == -1) {
   2.200 +        ++minimal;
   2.201 +      }
   2.202 +      int idx = first[minimal];
   2.203 +      index[data[idx].item] = -2;
   2.204 +      unlace(idx);
   2.205 +      relocate_last(idx);
   2.206 +    }
   2.207 +
   2.208 +    /// \brief Deletes \c i from the heap.
   2.209 +    ///
   2.210 +    /// This method deletes item \c i from the heap, if \c i was
   2.211 +    /// already stored in the heap.
   2.212 +    /// \param i The item to erase.
   2.213 +    void erase(const Item &i) {
   2.214 +      int idx = index[i];
   2.215 +      index[data[idx].item] = -2;
   2.216 +      unlace(idx);
   2.217 +      relocate_last(idx);
   2.218 +    }
   2.219 +
   2.220 +
   2.221 +    /// \brief Returns the priority of \c i.
   2.222 +    ///
   2.223 +    /// This function returns the priority of item \c i.
   2.224 +    /// \pre \c i must be in the heap.
   2.225 +    /// \param i The item.
   2.226 +    Prio operator[](const Item &i) const {
   2.227 +      int idx = index[i];
   2.228 +      return data[idx].value;
   2.229 +    }
   2.230 +
   2.231 +    /// \brief \c i gets to the heap with priority \c p independently
   2.232 +    /// if \c i was already there.
   2.233 +    ///
   2.234 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   2.235 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   2.236 +    /// \param i The item.
   2.237 +    /// \param p The priority.
   2.238 +    void set(const Item &i, const Prio &p) {
   2.239 +      int idx = index[i];
   2.240 +      if (idx < 0) {
   2.241 +        push(i,p);
   2.242 +      } else if (p > data[idx].value) {
   2.243 +        increase(i, p);
   2.244 +      } else {
   2.245 +        decrease(i, p);
   2.246 +      }
   2.247 +    }
   2.248 +
   2.249 +    /// \brief Decreases the priority of \c i to \c p.
   2.250 +    ///
   2.251 +    /// This method decreases the priority of item \c i to \c p.
   2.252 +    /// \pre \c i must be stored in the heap with priority at least \c
   2.253 +    /// p relative to \c Compare.
   2.254 +    /// \param i The item.
   2.255 +    /// \param p The priority.
   2.256 +    void decrease(const Item &i, const Prio &p) {
   2.257 +      int idx = index[i];
   2.258 +      unlace(idx);
   2.259 +      data[idx].value = p;
   2.260 +      if (p < minimal) {
   2.261 +        minimal = p;
   2.262 +      }
   2.263 +      lace(idx);
   2.264 +    }
   2.265 +
   2.266 +    /// \brief Increases the priority of \c i to \c p.
   2.267 +    ///
   2.268 +    /// This method sets the priority of item \c i to \c p.
   2.269 +    /// \pre \c i must be stored in the heap with priority at most \c
   2.270 +    /// p relative to \c Compare.
   2.271 +    /// \param i The item.
   2.272 +    /// \param p The priority.
   2.273 +    void increase(const Item &i, const Prio &p) {
   2.274 +      int idx = index[i];
   2.275 +      unlace(idx);
   2.276 +      data[idx].value = p;
   2.277 +      lace(idx);
   2.278 +    }
   2.279 +
   2.280 +    /// \brief Returns if \c item is in, has already been in, or has
   2.281 +    /// never been in the heap.
   2.282 +    ///
   2.283 +    /// This method returns PRE_HEAP if \c item has never been in the
   2.284 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   2.285 +    /// otherwise. In the latter case it is possible that \c item will
   2.286 +    /// get back to the heap again.
   2.287 +    /// \param i The item.
   2.288 +    State state(const Item &i) const {
   2.289 +      int idx = index[i];
   2.290 +      if (idx >= 0) idx = 0;
   2.291 +      return State(idx);
   2.292 +    }
   2.293 +
   2.294 +    /// \brief Sets the state of the \c item in the heap.
   2.295 +    ///
   2.296 +    /// Sets the state of the \c item in the heap. It can be used to
   2.297 +    /// manually clear the heap when it is important to achive the
   2.298 +    /// better time complexity.
   2.299 +    /// \param i The item.
   2.300 +    /// \param st The state. It should not be \c IN_HEAP.
   2.301 +    void state(const Item& i, State st) {
   2.302 +      switch (st) {
   2.303 +      case POST_HEAP:
   2.304 +      case PRE_HEAP:
   2.305 +        if (state(i) == IN_HEAP) {
   2.306 +          erase(i);
   2.307 +        }
   2.308 +        index[i] = st;
   2.309 +        break;
   2.310 +      case IN_HEAP:
   2.311 +        break;
   2.312 +      }
   2.313 +    }
   2.314 +
   2.315 +  private:
   2.316 +
   2.317 +    struct BucketItem {
   2.318 +      BucketItem(const Item& _item, int _value)
   2.319 +        : item(_item), value(_value) {}
   2.320 +
   2.321 +      Item item;
   2.322 +      int value;
   2.323 +
   2.324 +      int prev, next;
   2.325 +    };
   2.326 +
   2.327 +    ItemIntMap& index;
   2.328 +    std::vector<int> first;
   2.329 +    std::vector<BucketItem> data;
   2.330 +    mutable int minimal;
   2.331 +
   2.332 +  }; // class BucketHeap
   2.333 +
   2.334 +
   2.335 +  template <typename _ItemIntMap>
   2.336 +  class BucketHeap<_ItemIntMap, false> {
   2.337 +
   2.338 +  public:
   2.339 +    typedef typename _ItemIntMap::Key Item;
   2.340 +    typedef int Prio;
   2.341 +    typedef std::pair<Item, Prio> Pair;
   2.342 +    typedef _ItemIntMap ItemIntMap;
   2.343 +
   2.344 +    enum State {
   2.345 +      IN_HEAP = 0,
   2.346 +      PRE_HEAP = -1,
   2.347 +      POST_HEAP = -2
   2.348 +    };
   2.349 +
   2.350 +  public:
   2.351 +
   2.352 +    explicit BucketHeap(ItemIntMap &_index) : index(_index), maximal(-1) {}
   2.353 +
   2.354 +    int size() const { return data.size(); }
   2.355 +    bool empty() const { return data.empty(); }
   2.356 +
   2.357 +    void clear() {
   2.358 +      data.clear(); first.clear(); maximal = -1;
   2.359 +    }
   2.360 +
   2.361 +  private:
   2.362 +
   2.363 +    void relocate_last(int idx) {
   2.364 +      if (idx + 1 != int(data.size())) {
   2.365 +        data[idx] = data.back();
   2.366 +        if (data[idx].prev != -1) {
   2.367 +          data[data[idx].prev].next = idx;
   2.368 +        } else {
   2.369 +          first[data[idx].value] = idx;
   2.370 +        }
   2.371 +        if (data[idx].next != -1) {
   2.372 +          data[data[idx].next].prev = idx;
   2.373 +        }
   2.374 +        index[data[idx].item] = idx;
   2.375 +      }
   2.376 +      data.pop_back();
   2.377 +    }
   2.378 +
   2.379 +    void unlace(int idx) {
   2.380 +      if (data[idx].prev != -1) {
   2.381 +        data[data[idx].prev].next = data[idx].next;
   2.382 +      } else {
   2.383 +        first[data[idx].value] = data[idx].next;
   2.384 +      }
   2.385 +      if (data[idx].next != -1) {
   2.386 +        data[data[idx].next].prev = data[idx].prev;
   2.387 +      }
   2.388 +    }
   2.389 +
   2.390 +    void lace(int idx) {
   2.391 +      if (int(first.size()) <= data[idx].value) {
   2.392 +        first.resize(data[idx].value + 1, -1);
   2.393 +      }
   2.394 +      data[idx].next = first[data[idx].value];
   2.395 +      if (data[idx].next != -1) {
   2.396 +        data[data[idx].next].prev = idx;
   2.397 +      }
   2.398 +      first[data[idx].value] = idx;
   2.399 +      data[idx].prev = -1;
   2.400 +    }
   2.401 +
   2.402 +  public:
   2.403 +
   2.404 +    void push(const Pair& p) {
   2.405 +      push(p.first, p.second);
   2.406 +    }
   2.407 +
   2.408 +    void push(const Item &i, const Prio &p) {
   2.409 +      int idx = data.size();
   2.410 +      index[i] = idx;
   2.411 +      data.push_back(BucketItem(i, p));
   2.412 +      lace(idx);
   2.413 +      if (data[idx].value > maximal) {
   2.414 +        maximal = data[idx].value;
   2.415 +      }
   2.416 +    }
   2.417 +
   2.418 +    Item top() const {
   2.419 +      while (first[maximal] == -1) {
   2.420 +        --maximal;
   2.421 +      }
   2.422 +      return data[first[maximal]].item;
   2.423 +    }
   2.424 +
   2.425 +    Prio prio() const {
   2.426 +      while (first[maximal] == -1) {
   2.427 +        --maximal;
   2.428 +      }
   2.429 +      return maximal;
   2.430 +    }
   2.431 +
   2.432 +    void pop() {
   2.433 +      while (first[maximal] == -1) {
   2.434 +        --maximal;
   2.435 +      }
   2.436 +      int idx = first[maximal];
   2.437 +      index[data[idx].item] = -2;
   2.438 +      unlace(idx);
   2.439 +      relocate_last(idx);
   2.440 +    }
   2.441 +
   2.442 +    void erase(const Item &i) {
   2.443 +      int idx = index[i];
   2.444 +      index[data[idx].item] = -2;
   2.445 +      unlace(idx);
   2.446 +      relocate_last(idx);
   2.447 +    }
   2.448 +
   2.449 +    Prio operator[](const Item &i) const {
   2.450 +      int idx = index[i];
   2.451 +      return data[idx].value;
   2.452 +    }
   2.453 +
   2.454 +    void set(const Item &i, const Prio &p) {
   2.455 +      int idx = index[i];
   2.456 +      if (idx < 0) {
   2.457 +        push(i,p);
   2.458 +      } else if (p > data[idx].value) {
   2.459 +        decrease(i, p);
   2.460 +      } else {
   2.461 +        increase(i, p);
   2.462 +      }
   2.463 +    }
   2.464 +
   2.465 +    void decrease(const Item &i, const Prio &p) {
   2.466 +      int idx = index[i];
   2.467 +      unlace(idx);
   2.468 +      data[idx].value = p;
   2.469 +      if (p > maximal) {
   2.470 +        maximal = p;
   2.471 +      }
   2.472 +      lace(idx);
   2.473 +    }
   2.474 +
   2.475 +    void increase(const Item &i, const Prio &p) {
   2.476 +      int idx = index[i];
   2.477 +      unlace(idx);
   2.478 +      data[idx].value = p;
   2.479 +      lace(idx);
   2.480 +    }
   2.481 +
   2.482 +    State state(const Item &i) const {
   2.483 +      int idx = index[i];
   2.484 +      if (idx >= 0) idx = 0;
   2.485 +      return State(idx);
   2.486 +    }
   2.487 +
   2.488 +    void state(const Item& i, State st) {
   2.489 +      switch (st) {
   2.490 +      case POST_HEAP:
   2.491 +      case PRE_HEAP:
   2.492 +        if (state(i) == IN_HEAP) {
   2.493 +          erase(i);
   2.494 +        }
   2.495 +        index[i] = st;
   2.496 +        break;
   2.497 +      case IN_HEAP:
   2.498 +        break;
   2.499 +      }
   2.500 +    }
   2.501 +
   2.502 +  private:
   2.503 +
   2.504 +    struct BucketItem {
   2.505 +      BucketItem(const Item& _item, int _value)
   2.506 +        : item(_item), value(_value) {}
   2.507 +
   2.508 +      Item item;
   2.509 +      int value;
   2.510 +
   2.511 +      int prev, next;
   2.512 +    };
   2.513 +
   2.514 +    ItemIntMap& index;
   2.515 +    std::vector<int> first;
   2.516 +    std::vector<BucketItem> data;
   2.517 +    mutable int maximal;
   2.518 +
   2.519 +  }; // class BucketHeap
   2.520 +
   2.521 +  /// \ingroup auxdat
   2.522 +  ///
   2.523 +  /// \brief A Simplified Bucket Heap implementation.
   2.524 +  ///
   2.525 +  /// This class implements a simplified \e bucket \e heap data
   2.526 +  /// structure.  It does not provide some functionality but it faster
   2.527 +  /// and simplier data structure than the BucketHeap. The main
   2.528 +  /// difference is that the BucketHeap stores for every key a double
   2.529 +  /// linked list while this class stores just simple lists. In the
   2.530 +  /// other way it does not supports erasing each elements just the
   2.531 +  /// minimal and it does not supports key increasing, decreasing.
   2.532 +  ///
   2.533 +  /// \param _ItemIntMap A read and writable Item int map, used internally
   2.534 +  /// to handle the cross references.
   2.535 +  /// \param minimize If the given parameter is true then the heap gives back
   2.536 +  /// the lowest priority.
   2.537 +  ///
   2.538 +  /// \sa BucketHeap
   2.539 +  template <typename _ItemIntMap, bool minimize = true >
   2.540 +  class SimpleBucketHeap {
   2.541 +
   2.542 +  public:
   2.543 +    typedef typename _ItemIntMap::Key Item;
   2.544 +    typedef int Prio;
   2.545 +    typedef std::pair<Item, Prio> Pair;
   2.546 +    typedef _ItemIntMap ItemIntMap;
   2.547 +
   2.548 +    /// \brief Type to represent the items states.
   2.549 +    ///
   2.550 +    /// Each Item element have a state associated to it. It may be "in heap",
   2.551 +    /// "pre heap" or "post heap". The latter two are indifferent from the
   2.552 +    /// heap's point of view, but may be useful to the user.
   2.553 +    ///
   2.554 +    /// The ItemIntMap \e should be initialized in such way that it maps
   2.555 +    /// PRE_HEAP (-1) to any element to be put in the heap...
   2.556 +    enum State {
   2.557 +      IN_HEAP = 0,
   2.558 +      PRE_HEAP = -1,
   2.559 +      POST_HEAP = -2
   2.560 +    };
   2.561 +
   2.562 +  public:
   2.563 +
   2.564 +    /// \brief The constructor.
   2.565 +    ///
   2.566 +    /// The constructor.
   2.567 +    /// \param _index should be given to the constructor, since it is used
   2.568 +    /// internally to handle the cross references. The value of the map
   2.569 +    /// should be PRE_HEAP (-1) for each element.
   2.570 +    explicit SimpleBucketHeap(ItemIntMap &_index)
   2.571 +      : index(_index), free(-1), num(0), minimal(0) {}
   2.572 +
   2.573 +    /// \brief Returns the number of items stored in the heap.
   2.574 +    ///
   2.575 +    /// The number of items stored in the heap.
   2.576 +    int size() const { return num; }
   2.577 +
   2.578 +    /// \brief Checks if the heap stores no items.
   2.579 +    ///
   2.580 +    /// Returns \c true if and only if the heap stores no items.
   2.581 +    bool empty() const { return num == 0; }
   2.582 +
   2.583 +    /// \brief Make empty this heap.
   2.584 +    ///
   2.585 +    /// Make empty this heap. It does not change the cross reference
   2.586 +    /// map.  If you want to reuse a heap what is not surely empty you
   2.587 +    /// should first clear the heap and after that you should set the
   2.588 +    /// cross reference map for each item to \c PRE_HEAP.
   2.589 +    void clear() {
   2.590 +      data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
   2.591 +    }
   2.592 +
   2.593 +    /// \brief Insert a pair of item and priority into the heap.
   2.594 +    ///
   2.595 +    /// Adds \c p.first to the heap with priority \c p.second.
   2.596 +    /// \param p The pair to insert.
   2.597 +    void push(const Pair& p) {
   2.598 +      push(p.first, p.second);
   2.599 +    }
   2.600 +
   2.601 +    /// \brief Insert an item into the heap with the given priority.
   2.602 +    ///
   2.603 +    /// Adds \c i to the heap with priority \c p.
   2.604 +    /// \param i The item to insert.
   2.605 +    /// \param p The priority of the item.
   2.606 +    void push(const Item &i, const Prio &p) {
   2.607 +      int idx;
   2.608 +      if (free == -1) {
   2.609 +        idx = data.size();
   2.610 +        data.push_back(BucketItem(i));
   2.611 +      } else {
   2.612 +        idx = free;
   2.613 +        free = data[idx].next;
   2.614 +        data[idx].item = i;
   2.615 +      }
   2.616 +      index[i] = idx;
   2.617 +      if (p >= int(first.size())) first.resize(p + 1, -1);
   2.618 +      data[idx].next = first[p];
   2.619 +      first[p] = idx;
   2.620 +      if (p < minimal) {
   2.621 +        minimal = p;
   2.622 +      }
   2.623 +      ++num;
   2.624 +    }
   2.625 +
   2.626 +    /// \brief Returns the item with minimum priority.
   2.627 +    ///
   2.628 +    /// This method returns the item with minimum priority.
   2.629 +    /// \pre The heap must be nonempty.
   2.630 +    Item top() const {
   2.631 +      while (first[minimal] == -1) {
   2.632 +        ++minimal;
   2.633 +      }
   2.634 +      return data[first[minimal]].item;
   2.635 +    }
   2.636 +
   2.637 +    /// \brief Returns the minimum priority.
   2.638 +    ///
   2.639 +    /// It returns the minimum priority.
   2.640 +    /// \pre The heap must be nonempty.
   2.641 +    Prio prio() const {
   2.642 +      while (first[minimal] == -1) {
   2.643 +        ++minimal;
   2.644 +      }
   2.645 +      return minimal;
   2.646 +    }
   2.647 +
   2.648 +    /// \brief Deletes the item with minimum priority.
   2.649 +    ///
   2.650 +    /// This method deletes the item with minimum priority from the heap.
   2.651 +    /// \pre The heap must be non-empty.
   2.652 +    void pop() {
   2.653 +      while (first[minimal] == -1) {
   2.654 +        ++minimal;
   2.655 +      }
   2.656 +      int idx = first[minimal];
   2.657 +      index[data[idx].item] = -2;
   2.658 +      first[minimal] = data[idx].next;
   2.659 +      data[idx].next = free;
   2.660 +      free = idx;
   2.661 +      --num;
   2.662 +    }
   2.663 +
   2.664 +    /// \brief Returns the priority of \c i.
   2.665 +    ///
   2.666 +    /// This function returns the priority of item \c i.
   2.667 +    /// \warning This operator is not a constant time function
   2.668 +    /// because it scans the whole data structure to find the proper
   2.669 +    /// value.
   2.670 +    /// \pre \c i must be in the heap.
   2.671 +    /// \param i The item.
   2.672 +    Prio operator[](const Item &i) const {
   2.673 +      for (int k = 0; k < first.size(); ++k) {
   2.674 +        int idx = first[k];
   2.675 +        while (idx != -1) {
   2.676 +          if (data[idx].item == i) {
   2.677 +            return k;
   2.678 +          }
   2.679 +          idx = data[idx].next;
   2.680 +        }
   2.681 +      }
   2.682 +      return -1;
   2.683 +    }
   2.684 +
   2.685 +    /// \brief Returns if \c item is in, has already been in, or has
   2.686 +    /// never been in the heap.
   2.687 +    ///
   2.688 +    /// This method returns PRE_HEAP if \c item has never been in the
   2.689 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   2.690 +    /// otherwise. In the latter case it is possible that \c item will
   2.691 +    /// get back to the heap again.
   2.692 +    /// \param i The item.
   2.693 +    State state(const Item &i) const {
   2.694 +      int idx = index[i];
   2.695 +      if (idx >= 0) idx = 0;
   2.696 +      return State(idx);
   2.697 +    }
   2.698 +
   2.699 +  private:
   2.700 +
   2.701 +    struct BucketItem {
   2.702 +      BucketItem(const Item& _item)
   2.703 +        : item(_item) {}
   2.704 +
   2.705 +      Item item;
   2.706 +      int next;
   2.707 +    };
   2.708 +
   2.709 +    ItemIntMap& index;
   2.710 +    std::vector<int> first;
   2.711 +    std::vector<BucketItem> data;
   2.712 +    int free, num;
   2.713 +    mutable int minimal;
   2.714 +
   2.715 +  }; // class SimpleBucketHeap
   2.716 +
   2.717 +  template <typename _ItemIntMap>
   2.718 +  class SimpleBucketHeap<_ItemIntMap, false> {
   2.719 +
   2.720 +  public:
   2.721 +    typedef typename _ItemIntMap::Key Item;
   2.722 +    typedef int Prio;
   2.723 +    typedef std::pair<Item, Prio> Pair;
   2.724 +    typedef _ItemIntMap ItemIntMap;
   2.725 +
   2.726 +    enum State {
   2.727 +      IN_HEAP = 0,
   2.728 +      PRE_HEAP = -1,
   2.729 +      POST_HEAP = -2
   2.730 +    };
   2.731 +
   2.732 +  public:
   2.733 +
   2.734 +    explicit SimpleBucketHeap(ItemIntMap &_index)
   2.735 +      : index(_index), free(-1), num(0), maximal(0) {}
   2.736 +
   2.737 +    int size() const { return num; }
   2.738 +
   2.739 +    bool empty() const { return num == 0; }
   2.740 +
   2.741 +    void clear() {
   2.742 +      data.clear(); first.clear(); free = -1; num = 0; maximal = 0;
   2.743 +    }
   2.744 +
   2.745 +    void push(const Pair& p) {
   2.746 +      push(p.first, p.second);
   2.747 +    }
   2.748 +
   2.749 +    void push(const Item &i, const Prio &p) {
   2.750 +      int idx;
   2.751 +      if (free == -1) {
   2.752 +        idx = data.size();
   2.753 +        data.push_back(BucketItem(i));
   2.754 +      } else {
   2.755 +        idx = free;
   2.756 +        free = data[idx].next;
   2.757 +        data[idx].item = i;
   2.758 +      }
   2.759 +      index[i] = idx;
   2.760 +      if (p >= int(first.size())) first.resize(p + 1, -1);
   2.761 +      data[idx].next = first[p];
   2.762 +      first[p] = idx;
   2.763 +      if (p > maximal) {
   2.764 +        maximal = p;
   2.765 +      }
   2.766 +      ++num;
   2.767 +    }
   2.768 +
   2.769 +    Item top() const {
   2.770 +      while (first[maximal] == -1) {
   2.771 +        --maximal;
   2.772 +      }
   2.773 +      return data[first[maximal]].item;
   2.774 +    }
   2.775 +
   2.776 +    Prio prio() const {
   2.777 +      while (first[maximal] == -1) {
   2.778 +        --maximal;
   2.779 +      }
   2.780 +      return maximal;
   2.781 +    }
   2.782 +
   2.783 +    void pop() {
   2.784 +      while (first[maximal] == -1) {
   2.785 +        --maximal;
   2.786 +      }
   2.787 +      int idx = first[maximal];
   2.788 +      index[data[idx].item] = -2;
   2.789 +      first[maximal] = data[idx].next;
   2.790 +      data[idx].next = free;
   2.791 +      free = idx;
   2.792 +      --num;
   2.793 +    }
   2.794 +
   2.795 +    Prio operator[](const Item &i) const {
   2.796 +      for (int k = 0; k < first.size(); ++k) {
   2.797 +        int idx = first[k];
   2.798 +        while (idx != -1) {
   2.799 +          if (data[idx].item == i) {
   2.800 +            return k;
   2.801 +          }
   2.802 +          idx = data[idx].next;
   2.803 +        }
   2.804 +      }
   2.805 +      return -1;
   2.806 +    }
   2.807 +
   2.808 +    State state(const Item &i) const {
   2.809 +      int idx = index[i];
   2.810 +      if (idx >= 0) idx = 0;
   2.811 +      return State(idx);
   2.812 +    }
   2.813 +
   2.814 +  private:
   2.815 +
   2.816 +    struct BucketItem {
   2.817 +      BucketItem(const Item& _item) : item(_item) {}
   2.818 +
   2.819 +      Item item;
   2.820 +
   2.821 +      int next;
   2.822 +    };
   2.823 +
   2.824 +    ItemIntMap& index;
   2.825 +    std::vector<int> first;
   2.826 +    std::vector<BucketItem> data;
   2.827 +    int free, num;
   2.828 +    mutable int maximal;
   2.829 +
   2.830 +  };
   2.831 +
   2.832 +}
   2.833 +
   2.834 +#endif
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/lemon/fib_heap.h	Thu Jun 11 22:11:29 2009 +0200
     3.3 @@ -0,0 +1,467 @@
     3.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     3.5 + *
     3.6 + * This file is a part of LEMON, a generic C++ optimization library.
     3.7 + *
     3.8 + * Copyright (C) 2003-2009
     3.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    3.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    3.11 + *
    3.12 + * Permission to use, modify and distribute this software is granted
    3.13 + * provided that this copyright notice appears in all copies. For
    3.14 + * precise terms see the accompanying LICENSE file.
    3.15 + *
    3.16 + * This software is provided "AS IS" with no warranty of any kind,
    3.17 + * express or implied, and with no claim as to its suitability for any
    3.18 + * purpose.
    3.19 + *
    3.20 + */
    3.21 +
    3.22 +#ifndef LEMON_FIB_HEAP_H
    3.23 +#define LEMON_FIB_HEAP_H
    3.24 +
    3.25 +///\file
    3.26 +///\ingroup auxdat
    3.27 +///\brief Fibonacci Heap implementation.
    3.28 +
    3.29 +#include <vector>
    3.30 +#include <functional>
    3.31 +#include <lemon/math.h>
    3.32 +
    3.33 +namespace lemon {
    3.34 +
    3.35 +  /// \ingroup auxdat
    3.36 +  ///
    3.37 +  ///\brief Fibonacci Heap.
    3.38 +  ///
    3.39 +  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    3.40 +  ///is a data structure for storing items with specified values called \e
    3.41 +  ///priorities in such a way that finding the item with minimum priority is
    3.42 +  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    3.43 +  ///one can change the priority of an item, add or erase an item, etc.
    3.44 +  ///
    3.45 +  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    3.46 +  ///heap. In case of many calls to these operations, it is better to use a
    3.47 +  ///\ref BinHeap "binary heap".
    3.48 +  ///
    3.49 +  ///\param _Prio Type of the priority of the items.
    3.50 +  ///\param _ItemIntMap A read and writable Item int map, used internally
    3.51 +  ///to handle the cross references.
    3.52 +  ///\param _Compare A class for the ordering of the priorities. The
    3.53 +  ///default is \c std::less<_Prio>.
    3.54 +  ///
    3.55 +  ///\sa BinHeap
    3.56 +  ///\sa Dijkstra
    3.57 +#ifdef DOXYGEN
    3.58 +  template <typename _Prio,
    3.59 +            typename _ItemIntMap,
    3.60 +            typename _Compare>
    3.61 +#else
    3.62 +  template <typename _Prio,
    3.63 +            typename _ItemIntMap,
    3.64 +            typename _Compare = std::less<_Prio> >
    3.65 +#endif
    3.66 +  class FibHeap {
    3.67 +  public:
    3.68 +    ///\e
    3.69 +    typedef _ItemIntMap ItemIntMap;
    3.70 +    ///\e
    3.71 +    typedef _Prio Prio;
    3.72 +    ///\e
    3.73 +    typedef typename ItemIntMap::Key Item;
    3.74 +    ///\e
    3.75 +    typedef std::pair<Item,Prio> Pair;
    3.76 +    ///\e
    3.77 +    typedef _Compare Compare;
    3.78 +
    3.79 +  private:
    3.80 +    class store;
    3.81 +
    3.82 +    std::vector<store> container;
    3.83 +    int minimum;
    3.84 +    ItemIntMap &iimap;
    3.85 +    Compare comp;
    3.86 +    int num_items;
    3.87 +
    3.88 +  public:
    3.89 +    ///Status of the nodes
    3.90 +    enum State {
    3.91 +      ///The node is in the heap
    3.92 +      IN_HEAP = 0,
    3.93 +      ///The node has never been in the heap
    3.94 +      PRE_HEAP = -1,
    3.95 +      ///The node was in the heap but it got out of it
    3.96 +      POST_HEAP = -2
    3.97 +    };
    3.98 +
    3.99 +    /// \brief The constructor
   3.100 +    ///
   3.101 +    /// \c _iimap should be given to the constructor, since it is
   3.102 +    ///   used internally to handle the cross references.
   3.103 +    explicit FibHeap(ItemIntMap &_iimap)
   3.104 +      : minimum(0), iimap(_iimap), num_items() {}
   3.105 +
   3.106 +    /// \brief The constructor
   3.107 +    ///
   3.108 +    /// \c _iimap should be given to the constructor, since it is used
   3.109 +    /// internally to handle the cross references. \c _comp is an
   3.110 +    /// object for ordering of the priorities.
   3.111 +    FibHeap(ItemIntMap &_iimap, const Compare &_comp)
   3.112 +      : minimum(0), iimap(_iimap), comp(_comp), num_items() {}
   3.113 +
   3.114 +    /// \brief The number of items stored in the heap.
   3.115 +    ///
   3.116 +    /// Returns the number of items stored in the heap.
   3.117 +    int size() const { return num_items; }
   3.118 +
   3.119 +    /// \brief Checks if the heap stores no items.
   3.120 +    ///
   3.121 +    ///   Returns \c true if and only if the heap stores no items.
   3.122 +    bool empty() const { return num_items==0; }
   3.123 +
   3.124 +    /// \brief Make empty this heap.
   3.125 +    ///
   3.126 +    /// Make empty this heap. It does not change the cross reference
   3.127 +    /// map.  If you want to reuse a heap what is not surely empty you
   3.128 +    /// should first clear the heap and after that you should set the
   3.129 +    /// cross reference map for each item to \c PRE_HEAP.
   3.130 +    void clear() {
   3.131 +      container.clear(); minimum = 0; num_items = 0;
   3.132 +    }
   3.133 +
   3.134 +    /// \brief \c item gets to the heap with priority \c value independently
   3.135 +    /// if \c item was already there.
   3.136 +    ///
   3.137 +    /// This method calls \ref push(\c item, \c value) if \c item is not
   3.138 +    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   3.139 +    /// \ref increase(\c item, \c value) otherwise.
   3.140 +    void set (const Item& item, const Prio& value) {
   3.141 +      int i=iimap[item];
   3.142 +      if ( i >= 0 && container[i].in ) {
   3.143 +        if ( comp(value, container[i].prio) ) decrease(item, value);
   3.144 +        if ( comp(container[i].prio, value) ) increase(item, value);
   3.145 +      } else push(item, value);
   3.146 +    }
   3.147 +
   3.148 +    /// \brief Adds \c item to the heap with priority \c value.
   3.149 +    ///
   3.150 +    /// Adds \c item to the heap with priority \c value.
   3.151 +    /// \pre \c item must not be stored in the heap.
   3.152 +    void push (const Item& item, const Prio& value) {
   3.153 +      int i=iimap[item];
   3.154 +      if ( i < 0 ) {
   3.155 +        int s=container.size();
   3.156 +        iimap.set( item, s );
   3.157 +        store st;
   3.158 +        st.name=item;
   3.159 +        container.push_back(st);
   3.160 +        i=s;
   3.161 +      } else {
   3.162 +        container[i].parent=container[i].child=-1;
   3.163 +        container[i].degree=0;
   3.164 +        container[i].in=true;
   3.165 +        container[i].marked=false;
   3.166 +      }
   3.167 +
   3.168 +      if ( num_items ) {
   3.169 +        container[container[minimum].right_neighbor].left_neighbor=i;
   3.170 +        container[i].right_neighbor=container[minimum].right_neighbor;
   3.171 +        container[minimum].right_neighbor=i;
   3.172 +        container[i].left_neighbor=minimum;
   3.173 +        if ( comp( value, container[minimum].prio) ) minimum=i;
   3.174 +      } else {
   3.175 +        container[i].right_neighbor=container[i].left_neighbor=i;
   3.176 +        minimum=i;
   3.177 +      }
   3.178 +      container[i].prio=value;
   3.179 +      ++num_items;
   3.180 +    }
   3.181 +
   3.182 +    /// \brief Returns the item with minimum priority relative to \c Compare.
   3.183 +    ///
   3.184 +    /// This method returns the item with minimum priority relative to \c
   3.185 +    /// Compare.
   3.186 +    /// \pre The heap must be nonempty.
   3.187 +    Item top() const { return container[minimum].name; }
   3.188 +
   3.189 +    /// \brief Returns the minimum priority relative to \c Compare.
   3.190 +    ///
   3.191 +    /// It returns the minimum priority relative to \c Compare.
   3.192 +    /// \pre The heap must be nonempty.
   3.193 +    const Prio& prio() const { return container[minimum].prio; }
   3.194 +
   3.195 +    /// \brief Returns the priority of \c item.
   3.196 +    ///
   3.197 +    /// It returns the priority of \c item.
   3.198 +    /// \pre \c item must be in the heap.
   3.199 +    const Prio& operator[](const Item& item) const {
   3.200 +      return container[iimap[item]].prio;
   3.201 +    }
   3.202 +
   3.203 +    /// \brief Deletes the item with minimum priority relative to \c Compare.
   3.204 +    ///
   3.205 +    /// This method deletes the item with minimum priority relative to \c
   3.206 +    /// Compare from the heap.
   3.207 +    /// \pre The heap must be non-empty.
   3.208 +    void pop() {
   3.209 +      /*The first case is that there are only one root.*/
   3.210 +      if ( container[minimum].left_neighbor==minimum ) {
   3.211 +        container[minimum].in=false;
   3.212 +        if ( container[minimum].degree!=0 ) {
   3.213 +          makeroot(container[minimum].child);
   3.214 +          minimum=container[minimum].child;
   3.215 +          balance();
   3.216 +        }
   3.217 +      } else {
   3.218 +        int right=container[minimum].right_neighbor;
   3.219 +        unlace(minimum);
   3.220 +        container[minimum].in=false;
   3.221 +        if ( container[minimum].degree > 0 ) {
   3.222 +          int left=container[minimum].left_neighbor;
   3.223 +          int child=container[minimum].child;
   3.224 +          int last_child=container[child].left_neighbor;
   3.225 +
   3.226 +          makeroot(child);
   3.227 +
   3.228 +          container[left].right_neighbor=child;
   3.229 +          container[child].left_neighbor=left;
   3.230 +          container[right].left_neighbor=last_child;
   3.231 +          container[last_child].right_neighbor=right;
   3.232 +        }
   3.233 +        minimum=right;
   3.234 +        balance();
   3.235 +      } // the case where there are more roots
   3.236 +      --num_items;
   3.237 +    }
   3.238 +
   3.239 +    /// \brief Deletes \c item from the heap.
   3.240 +    ///
   3.241 +    /// This method deletes \c item from the heap, if \c item was already
   3.242 +    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   3.243 +    void erase (const Item& item) {
   3.244 +      int i=iimap[item];
   3.245 +
   3.246 +      if ( i >= 0 && container[i].in ) {
   3.247 +        if ( container[i].parent!=-1 ) {
   3.248 +          int p=container[i].parent;
   3.249 +          cut(i,p);
   3.250 +          cascade(p);
   3.251 +        }
   3.252 +        minimum=i;     //As if its prio would be -infinity
   3.253 +        pop();
   3.254 +      }
   3.255 +    }
   3.256 +
   3.257 +    /// \brief Decreases the priority of \c item to \c value.
   3.258 +    ///
   3.259 +    /// This method decreases the priority of \c item to \c value.
   3.260 +    /// \pre \c item must be stored in the heap with priority at least \c
   3.261 +    ///   value relative to \c Compare.
   3.262 +    void decrease (Item item, const Prio& value) {
   3.263 +      int i=iimap[item];
   3.264 +      container[i].prio=value;
   3.265 +      int p=container[i].parent;
   3.266 +
   3.267 +      if ( p!=-1 && comp(value, container[p].prio) ) {
   3.268 +        cut(i,p);
   3.269 +        cascade(p);
   3.270 +      }
   3.271 +      if ( comp(value, container[minimum].prio) ) minimum=i;
   3.272 +    }
   3.273 +
   3.274 +    /// \brief Increases the priority of \c item to \c value.
   3.275 +    ///
   3.276 +    /// This method sets the priority of \c item to \c value. Though
   3.277 +    /// there is no precondition on the priority of \c item, this
   3.278 +    /// method should be used only if it is indeed necessary to increase
   3.279 +    /// (relative to \c Compare) the priority of \c item, because this
   3.280 +    /// method is inefficient.
   3.281 +    void increase (Item item, const Prio& value) {
   3.282 +      erase(item);
   3.283 +      push(item, value);
   3.284 +    }
   3.285 +
   3.286 +
   3.287 +    /// \brief Returns if \c item is in, has already been in, or has never
   3.288 +    /// been in the heap.
   3.289 +    ///
   3.290 +    /// This method returns PRE_HEAP if \c item has never been in the
   3.291 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   3.292 +    /// otherwise. In the latter case it is possible that \c item will
   3.293 +    /// get back to the heap again.
   3.294 +    State state(const Item &item) const {
   3.295 +      int i=iimap[item];
   3.296 +      if( i>=0 ) {
   3.297 +        if ( container[i].in ) i=0;
   3.298 +        else i=-2;
   3.299 +      }
   3.300 +      return State(i);
   3.301 +    }
   3.302 +
   3.303 +    /// \brief Sets the state of the \c item in the heap.
   3.304 +    ///
   3.305 +    /// Sets the state of the \c item in the heap. It can be used to
   3.306 +    /// manually clear the heap when it is important to achive the
   3.307 +    /// better time complexity.
   3.308 +    /// \param i The item.
   3.309 +    /// \param st The state. It should not be \c IN_HEAP.
   3.310 +    void state(const Item& i, State st) {
   3.311 +      switch (st) {
   3.312 +      case POST_HEAP:
   3.313 +      case PRE_HEAP:
   3.314 +        if (state(i) == IN_HEAP) {
   3.315 +          erase(i);
   3.316 +        }
   3.317 +        iimap[i] = st;
   3.318 +        break;
   3.319 +      case IN_HEAP:
   3.320 +        break;
   3.321 +      }
   3.322 +    }
   3.323 +
   3.324 +  private:
   3.325 +
   3.326 +    void balance() {
   3.327 +
   3.328 +      int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
   3.329 +
   3.330 +      std::vector<int> A(maxdeg,-1);
   3.331 +
   3.332 +      /*
   3.333 +       *Recall that now minimum does not point to the minimum prio element.
   3.334 +       *We set minimum to this during balance().
   3.335 +       */
   3.336 +      int anchor=container[minimum].left_neighbor;
   3.337 +      int next=minimum;
   3.338 +      bool end=false;
   3.339 +
   3.340 +      do {
   3.341 +        int active=next;
   3.342 +        if ( anchor==active ) end=true;
   3.343 +        int d=container[active].degree;
   3.344 +        next=container[active].right_neighbor;
   3.345 +
   3.346 +        while (A[d]!=-1) {
   3.347 +          if( comp(container[active].prio, container[A[d]].prio) ) {
   3.348 +            fuse(active,A[d]);
   3.349 +          } else {
   3.350 +            fuse(A[d],active);
   3.351 +            active=A[d];
   3.352 +          }
   3.353 +          A[d]=-1;
   3.354 +          ++d;
   3.355 +        }
   3.356 +        A[d]=active;
   3.357 +      } while ( !end );
   3.358 +
   3.359 +
   3.360 +      while ( container[minimum].parent >=0 )
   3.361 +        minimum=container[minimum].parent;
   3.362 +      int s=minimum;
   3.363 +      int m=minimum;
   3.364 +      do {
   3.365 +        if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   3.366 +        s=container[s].right_neighbor;
   3.367 +      } while ( s != m );
   3.368 +    }
   3.369 +
   3.370 +    void makeroot(int c) {
   3.371 +      int s=c;
   3.372 +      do {
   3.373 +        container[s].parent=-1;
   3.374 +        s=container[s].right_neighbor;
   3.375 +      } while ( s != c );
   3.376 +    }
   3.377 +
   3.378 +    void cut(int a, int b) {
   3.379 +      /*
   3.380 +       *Replacing a from the children of b.
   3.381 +       */
   3.382 +      --container[b].degree;
   3.383 +
   3.384 +      if ( container[b].degree !=0 ) {
   3.385 +        int child=container[b].child;
   3.386 +        if ( child==a )
   3.387 +          container[b].child=container[child].right_neighbor;
   3.388 +        unlace(a);
   3.389 +      }
   3.390 +
   3.391 +
   3.392 +      /*Lacing a to the roots.*/
   3.393 +      int right=container[minimum].right_neighbor;
   3.394 +      container[minimum].right_neighbor=a;
   3.395 +      container[a].left_neighbor=minimum;
   3.396 +      container[a].right_neighbor=right;
   3.397 +      container[right].left_neighbor=a;
   3.398 +
   3.399 +      container[a].parent=-1;
   3.400 +      container[a].marked=false;
   3.401 +    }
   3.402 +
   3.403 +    void cascade(int a) {
   3.404 +      if ( container[a].parent!=-1 ) {
   3.405 +        int p=container[a].parent;
   3.406 +
   3.407 +        if ( container[a].marked==false ) container[a].marked=true;
   3.408 +        else {
   3.409 +          cut(a,p);
   3.410 +          cascade(p);
   3.411 +        }
   3.412 +      }
   3.413 +    }
   3.414 +
   3.415 +    void fuse(int a, int b) {
   3.416 +      unlace(b);
   3.417 +
   3.418 +      /*Lacing b under a.*/
   3.419 +      container[b].parent=a;
   3.420 +
   3.421 +      if (container[a].degree==0) {
   3.422 +        container[b].left_neighbor=b;
   3.423 +        container[b].right_neighbor=b;
   3.424 +        container[a].child=b;
   3.425 +      } else {
   3.426 +        int child=container[a].child;
   3.427 +        int last_child=container[child].left_neighbor;
   3.428 +        container[child].left_neighbor=b;
   3.429 +        container[b].right_neighbor=child;
   3.430 +        container[last_child].right_neighbor=b;
   3.431 +        container[b].left_neighbor=last_child;
   3.432 +      }
   3.433 +
   3.434 +      ++container[a].degree;
   3.435 +
   3.436 +      container[b].marked=false;
   3.437 +    }
   3.438 +
   3.439 +    /*
   3.440 +     *It is invoked only if a has siblings.
   3.441 +     */
   3.442 +    void unlace(int a) {
   3.443 +      int leftn=container[a].left_neighbor;
   3.444 +      int rightn=container[a].right_neighbor;
   3.445 +      container[leftn].right_neighbor=rightn;
   3.446 +      container[rightn].left_neighbor=leftn;
   3.447 +    }
   3.448 +
   3.449 +
   3.450 +    class store {
   3.451 +      friend class FibHeap;
   3.452 +
   3.453 +      Item name;
   3.454 +      int parent;
   3.455 +      int left_neighbor;
   3.456 +      int right_neighbor;
   3.457 +      int child;
   3.458 +      int degree;
   3.459 +      bool marked;
   3.460 +      bool in;
   3.461 +      Prio prio;
   3.462 +
   3.463 +      store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
   3.464 +    };
   3.465 +  };
   3.466 +
   3.467 +} //namespace lemon
   3.468 +
   3.469 +#endif //LEMON_FIB_HEAP_H
   3.470 +
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/lemon/radix_heap.h	Thu Jun 11 22:11:29 2009 +0200
     4.3 @@ -0,0 +1,433 @@
     4.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     4.5 + *
     4.6 + * This file is a part of LEMON, a generic C++ optimization library.
     4.7 + *
     4.8 + * Copyright (C) 2003-2009
     4.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    4.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    4.11 + *
    4.12 + * Permission to use, modify and distribute this software is granted
    4.13 + * provided that this copyright notice appears in all copies. For
    4.14 + * precise terms see the accompanying LICENSE file.
    4.15 + *
    4.16 + * This software is provided "AS IS" with no warranty of any kind,
    4.17 + * express or implied, and with no claim as to its suitability for any
    4.18 + * purpose.
    4.19 + *
    4.20 + */
    4.21 +
    4.22 +#ifndef LEMON_RADIX_HEAP_H
    4.23 +#define LEMON_RADIX_HEAP_H
    4.24 +
    4.25 +///\ingroup auxdat
    4.26 +///\file
    4.27 +///\brief Radix Heap implementation.
    4.28 +
    4.29 +#include <vector>
    4.30 +#include <lemon/error.h>
    4.31 +
    4.32 +namespace lemon {
    4.33 +
    4.34 +
    4.35 +  /// \ingroup auxdata
    4.36 +  ///
    4.37 +  /// \brief A Radix Heap implementation.
    4.38 +  ///
    4.39 +  /// This class implements the \e radix \e heap data structure. A \e heap
    4.40 +  /// is a data structure for storing items with specified values called \e
    4.41 +  /// priorities in such a way that finding the item with minimum priority is
    4.42 +  /// efficient. This heap type can store only items with \e int priority.
    4.43 +  /// In a heap one can change the priority of an item, add or erase an
    4.44 +  /// item, but the priority cannot be decreased under the last removed
    4.45 +  /// item's priority.
    4.46 +  ///
    4.47 +  /// \param _ItemIntMap A read and writable Item int map, used internally
    4.48 +  /// to handle the cross references.
    4.49 +  ///
    4.50 +  /// \see BinHeap
    4.51 +  /// \see Dijkstra
    4.52 +  template <typename _ItemIntMap>
    4.53 +  class RadixHeap {
    4.54 +
    4.55 +  public:
    4.56 +    typedef typename _ItemIntMap::Key Item;
    4.57 +    typedef int Prio;
    4.58 +    typedef _ItemIntMap ItemIntMap;
    4.59 +
    4.60 +    /// \brief Exception thrown by RadixHeap.
    4.61 +    ///
    4.62 +    /// This Exception is thrown when a smaller priority
    4.63 +    /// is inserted into the \e RadixHeap then the last time erased.
    4.64 +    /// \see RadixHeap
    4.65 +
    4.66 +    class UnderFlowPriorityError : public Exception {
    4.67 +    public:
    4.68 +      virtual const char* what() const throw() {
    4.69 +        return "lemon::RadixHeap::UnderFlowPriorityError";
    4.70 +      }
    4.71 +    };
    4.72 +
    4.73 +    /// \brief Type to represent the items states.
    4.74 +    ///
    4.75 +    /// Each Item element have a state associated to it. It may be "in heap",
    4.76 +    /// "pre heap" or "post heap". The latter two are indifferent from the
    4.77 +    /// heap's point of view, but may be useful to the user.
    4.78 +    ///
    4.79 +    /// The ItemIntMap \e should be initialized in such way that it maps
    4.80 +    /// PRE_HEAP (-1) to any element to be put in the heap...
    4.81 +    enum State {
    4.82 +      IN_HEAP = 0,
    4.83 +      PRE_HEAP = -1,
    4.84 +      POST_HEAP = -2
    4.85 +    };
    4.86 +
    4.87 +  private:
    4.88 +
    4.89 +    struct RadixItem {
    4.90 +      int prev, next, box;
    4.91 +      Item item;
    4.92 +      int prio;
    4.93 +      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    4.94 +    };
    4.95 +
    4.96 +    struct RadixBox {
    4.97 +      int first;
    4.98 +      int min, size;
    4.99 +      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   4.100 +    };
   4.101 +
   4.102 +    std::vector<RadixItem> data;
   4.103 +    std::vector<RadixBox> boxes;
   4.104 +
   4.105 +    ItemIntMap &iim;
   4.106 +
   4.107 +
   4.108 +  public:
   4.109 +    /// \brief The constructor.
   4.110 +    ///
   4.111 +    /// The constructor.
   4.112 +    ///
   4.113 +    /// \param _iim It should be given to the constructor, since it is used
   4.114 +    /// internally to handle the cross references. The value of the map
   4.115 +    /// should be PRE_HEAP (-1) for each element.
   4.116 +    ///
   4.117 +    /// \param minimal The initial minimal value of the heap.
   4.118 +    /// \param capacity It determines the initial capacity of the heap.
   4.119 +    RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0)
   4.120 +      : iim(_iim) {
   4.121 +      boxes.push_back(RadixBox(minimal, 1));
   4.122 +      boxes.push_back(RadixBox(minimal + 1, 1));
   4.123 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   4.124 +        extend();
   4.125 +      }
   4.126 +    }
   4.127 +
   4.128 +    /// The number of items stored in the heap.
   4.129 +    ///
   4.130 +    /// \brief Returns the number of items stored in the heap.
   4.131 +    int size() const { return data.size(); }
   4.132 +    /// \brief Checks if the heap stores no items.
   4.133 +    ///
   4.134 +    /// Returns \c true if and only if the heap stores no items.
   4.135 +    bool empty() const { return data.empty(); }
   4.136 +
   4.137 +    /// \brief Make empty this heap.
   4.138 +    ///
   4.139 +    /// Make empty this heap. It does not change the cross reference
   4.140 +    /// map.  If you want to reuse a heap what is not surely empty you
   4.141 +    /// should first clear the heap and after that you should set the
   4.142 +    /// cross reference map for each item to \c PRE_HEAP.
   4.143 +    void clear(int minimal = 0, int capacity = 0) {
   4.144 +      data.clear(); boxes.clear();
   4.145 +      boxes.push_back(RadixBox(minimal, 1));
   4.146 +      boxes.push_back(RadixBox(minimal + 1, 1));
   4.147 +      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   4.148 +        extend();
   4.149 +      }
   4.150 +    }
   4.151 +
   4.152 +  private:
   4.153 +
   4.154 +    bool upper(int box, Prio pr) {
   4.155 +      return pr < boxes[box].min;
   4.156 +    }
   4.157 +
   4.158 +    bool lower(int box, Prio pr) {
   4.159 +      return pr >= boxes[box].min + boxes[box].size;
   4.160 +    }
   4.161 +
   4.162 +    /// \brief Remove item from the box list.
   4.163 +    void remove(int index) {
   4.164 +      if (data[index].prev >= 0) {
   4.165 +        data[data[index].prev].next = data[index].next;
   4.166 +      } else {
   4.167 +        boxes[data[index].box].first = data[index].next;
   4.168 +      }
   4.169 +      if (data[index].next >= 0) {
   4.170 +        data[data[index].next].prev = data[index].prev;
   4.171 +      }
   4.172 +    }
   4.173 +
   4.174 +    /// \brief Insert item into the box list.
   4.175 +    void insert(int box, int index) {
   4.176 +      if (boxes[box].first == -1) {
   4.177 +        boxes[box].first = index;
   4.178 +        data[index].next = data[index].prev = -1;
   4.179 +      } else {
   4.180 +        data[index].next = boxes[box].first;
   4.181 +        data[boxes[box].first].prev = index;
   4.182 +        data[index].prev = -1;
   4.183 +        boxes[box].first = index;
   4.184 +      }
   4.185 +      data[index].box = box;
   4.186 +    }
   4.187 +
   4.188 +    /// \brief Add a new box to the box list.
   4.189 +    void extend() {
   4.190 +      int min = boxes.back().min + boxes.back().size;
   4.191 +      int bs = 2 * boxes.back().size;
   4.192 +      boxes.push_back(RadixBox(min, bs));
   4.193 +    }
   4.194 +
   4.195 +    /// \brief Move an item up into the proper box.
   4.196 +    void bubble_up(int index) {
   4.197 +      if (!lower(data[index].box, data[index].prio)) return;
   4.198 +      remove(index);
   4.199 +      int box = findUp(data[index].box, data[index].prio);
   4.200 +      insert(box, index);
   4.201 +    }
   4.202 +
   4.203 +    /// \brief Find up the proper box for the item with the given prio.
   4.204 +    int findUp(int start, int pr) {
   4.205 +      while (lower(start, pr)) {
   4.206 +        if (++start == int(boxes.size())) {
   4.207 +          extend();
   4.208 +        }
   4.209 +      }
   4.210 +      return start;
   4.211 +    }
   4.212 +
   4.213 +    /// \brief Move an item down into the proper box.
   4.214 +    void bubble_down(int index) {
   4.215 +      if (!upper(data[index].box, data[index].prio)) return;
   4.216 +      remove(index);
   4.217 +      int box = findDown(data[index].box, data[index].prio);
   4.218 +      insert(box, index);
   4.219 +    }
   4.220 +
   4.221 +    /// \brief Find up the proper box for the item with the given prio.
   4.222 +    int findDown(int start, int pr) {
   4.223 +      while (upper(start, pr)) {
   4.224 +        if (--start < 0) throw UnderFlowPriorityError();
   4.225 +      }
   4.226 +      return start;
   4.227 +    }
   4.228 +
   4.229 +    /// \brief Find the first not empty box.
   4.230 +    int findFirst() {
   4.231 +      int first = 0;
   4.232 +      while (boxes[first].first == -1) ++first;
   4.233 +      return first;
   4.234 +    }
   4.235 +
   4.236 +    /// \brief Gives back the minimal prio of the box.
   4.237 +    int minValue(int box) {
   4.238 +      int min = data[boxes[box].first].prio;
   4.239 +      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   4.240 +        if (data[k].prio < min) min = data[k].prio;
   4.241 +      }
   4.242 +      return min;
   4.243 +    }
   4.244 +
   4.245 +    /// \brief Rearrange the items of the heap and makes the
   4.246 +    /// first box not empty.
   4.247 +    void moveDown() {
   4.248 +      int box = findFirst();
   4.249 +      if (box == 0) return;
   4.250 +      int min = minValue(box);
   4.251 +      for (int i = 0; i <= box; ++i) {
   4.252 +        boxes[i].min = min;
   4.253 +        min += boxes[i].size;
   4.254 +      }
   4.255 +      int curr = boxes[box].first, next;
   4.256 +      while (curr != -1) {
   4.257 +        next = data[curr].next;
   4.258 +        bubble_down(curr);
   4.259 +        curr = next;
   4.260 +      }
   4.261 +    }
   4.262 +
   4.263 +    void relocate_last(int index) {
   4.264 +      if (index != int(data.size()) - 1) {
   4.265 +        data[index] = data.back();
   4.266 +        if (data[index].prev != -1) {
   4.267 +          data[data[index].prev].next = index;
   4.268 +        } else {
   4.269 +          boxes[data[index].box].first = index;
   4.270 +        }
   4.271 +        if (data[index].next != -1) {
   4.272 +          data[data[index].next].prev = index;
   4.273 +        }
   4.274 +        iim[data[index].item] = index;
   4.275 +      }
   4.276 +      data.pop_back();
   4.277 +    }
   4.278 +
   4.279 +  public:
   4.280 +
   4.281 +    /// \brief Insert an item into the heap with the given priority.
   4.282 +    ///
   4.283 +    /// Adds \c i to the heap with priority \c p.
   4.284 +    /// \param i The item to insert.
   4.285 +    /// \param p The priority of the item.
   4.286 +    void push(const Item &i, const Prio &p) {
   4.287 +      int n = data.size();
   4.288 +      iim.set(i, n);
   4.289 +      data.push_back(RadixItem(i, p));
   4.290 +      while (lower(boxes.size() - 1, p)) {
   4.291 +        extend();
   4.292 +      }
   4.293 +      int box = findDown(boxes.size() - 1, p);
   4.294 +      insert(box, n);
   4.295 +    }
   4.296 +
   4.297 +    /// \brief Returns the item with minimum priority.
   4.298 +    ///
   4.299 +    /// This method returns the item with minimum priority.
   4.300 +    /// \pre The heap must be nonempty.
   4.301 +    Item top() const {
   4.302 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   4.303 +      return data[boxes[0].first].item;
   4.304 +    }
   4.305 +
   4.306 +    /// \brief Returns the minimum priority.
   4.307 +    ///
   4.308 +    /// It returns the minimum priority.
   4.309 +    /// \pre The heap must be nonempty.
   4.310 +    Prio prio() const {
   4.311 +      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   4.312 +      return data[boxes[0].first].prio;
   4.313 +     }
   4.314 +
   4.315 +    /// \brief Deletes the item with minimum priority.
   4.316 +    ///
   4.317 +    /// This method deletes the item with minimum priority.
   4.318 +    /// \pre The heap must be non-empty.
   4.319 +    void pop() {
   4.320 +      moveDown();
   4.321 +      int index = boxes[0].first;
   4.322 +      iim[data[index].item] = POST_HEAP;
   4.323 +      remove(index);
   4.324 +      relocate_last(index);
   4.325 +    }
   4.326 +
   4.327 +    /// \brief Deletes \c i from the heap.
   4.328 +    ///
   4.329 +    /// This method deletes item \c i from the heap, if \c i was
   4.330 +    /// already stored in the heap.
   4.331 +    /// \param i The item to erase.
   4.332 +    void erase(const Item &i) {
   4.333 +      int index = iim[i];
   4.334 +      iim[i] = POST_HEAP;
   4.335 +      remove(index);
   4.336 +      relocate_last(index);
   4.337 +   }
   4.338 +
   4.339 +    /// \brief Returns the priority of \c i.
   4.340 +    ///
   4.341 +    /// This function returns the priority of item \c i.
   4.342 +    /// \pre \c i must be in the heap.
   4.343 +    /// \param i The item.
   4.344 +    Prio operator[](const Item &i) const {
   4.345 +      int idx = iim[i];
   4.346 +      return data[idx].prio;
   4.347 +    }
   4.348 +
   4.349 +    /// \brief \c i gets to the heap with priority \c p independently
   4.350 +    /// if \c i was already there.
   4.351 +    ///
   4.352 +    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   4.353 +    /// in the heap and sets the priority of \c i to \c p otherwise.
   4.354 +    /// It may throw an \e UnderFlowPriorityException.
   4.355 +    /// \param i The item.
   4.356 +    /// \param p The priority.
   4.357 +    void set(const Item &i, const Prio &p) {
   4.358 +      int idx = iim[i];
   4.359 +      if( idx < 0 ) {
   4.360 +        push(i, p);
   4.361 +      }
   4.362 +      else if( p >= data[idx].prio ) {
   4.363 +        data[idx].prio = p;
   4.364 +        bubble_up(idx);
   4.365 +      } else {
   4.366 +        data[idx].prio = p;
   4.367 +        bubble_down(idx);
   4.368 +      }
   4.369 +    }
   4.370 +
   4.371 +
   4.372 +    /// \brief Decreases the priority of \c i to \c p.
   4.373 +    ///
   4.374 +    /// This method decreases the priority of item \c i to \c p.
   4.375 +    /// \pre \c i must be stored in the heap with priority at least \c p, and
   4.376 +    /// \c should be greater or equal to the last removed item's priority.
   4.377 +    /// \param i The item.
   4.378 +    /// \param p The priority.
   4.379 +    void decrease(const Item &i, const Prio &p) {
   4.380 +      int idx = iim[i];
   4.381 +      data[idx].prio = p;
   4.382 +      bubble_down(idx);
   4.383 +    }
   4.384 +
   4.385 +    /// \brief Increases the priority of \c i to \c p.
   4.386 +    ///
   4.387 +    /// This method sets the priority of item \c i to \c p.
   4.388 +    /// \pre \c i must be stored in the heap with priority at most \c p
   4.389 +    /// \param i The item.
   4.390 +    /// \param p The priority.
   4.391 +    void increase(const Item &i, const Prio &p) {
   4.392 +      int idx = iim[i];
   4.393 +      data[idx].prio = p;
   4.394 +      bubble_up(idx);
   4.395 +    }
   4.396 +
   4.397 +    /// \brief Returns if \c item is in, has already been in, or has
   4.398 +    /// never been in the heap.
   4.399 +    ///
   4.400 +    /// This method returns PRE_HEAP if \c item has never been in the
   4.401 +    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   4.402 +    /// otherwise. In the latter case it is possible that \c item will
   4.403 +    /// get back to the heap again.
   4.404 +    /// \param i The item.
   4.405 +    State state(const Item &i) const {
   4.406 +      int s = iim[i];
   4.407 +      if( s >= 0 ) s = 0;
   4.408 +      return State(s);
   4.409 +    }
   4.410 +
   4.411 +    /// \brief Sets the state of the \c item in the heap.
   4.412 +    ///
   4.413 +    /// Sets the state of the \c item in the heap. It can be used to
   4.414 +    /// manually clear the heap when it is important to achive the
   4.415 +    /// better time complexity.
   4.416 +    /// \param i The item.
   4.417 +    /// \param st The state. It should not be \c IN_HEAP.
   4.418 +    void state(const Item& i, State st) {
   4.419 +      switch (st) {
   4.420 +      case POST_HEAP:
   4.421 +      case PRE_HEAP:
   4.422 +        if (state(i) == IN_HEAP) {
   4.423 +          erase(i);
   4.424 +        }
   4.425 +        iim[i] = st;
   4.426 +        break;
   4.427 +      case IN_HEAP:
   4.428 +        break;
   4.429 +      }
   4.430 +    }
   4.431 +
   4.432 +  }; // class RadixHeap
   4.433 +
   4.434 +} // namespace lemon
   4.435 +
   4.436 +#endif // LEMON_RADIX_HEAP_H
     5.1 --- a/test/heap_test.cc	Fri May 29 17:46:48 2009 +0100
     5.2 +++ b/test/heap_test.cc	Thu Jun 11 22:11:29 2009 +0200
     5.3 @@ -31,6 +31,9 @@
     5.4  #include <lemon/maps.h>
     5.5  
     5.6  #include <lemon/bin_heap.h>
     5.7 +#include <lemon/fib_heap.h>
     5.8 +#include <lemon/radix_heap.h>
     5.9 +#include <lemon/bucket_heap.h>
    5.10  
    5.11  #include "test_tools.h"
    5.12  
    5.13 @@ -183,5 +186,39 @@
    5.14      dijkstraHeapTest<NodeHeap>(digraph, length, source);
    5.15    }
    5.16  
    5.17 +  {
    5.18 +    typedef FibHeap<Prio, ItemIntMap> IntHeap;
    5.19 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
    5.20 +    heapSortTest<IntHeap>();
    5.21 +    heapIncreaseTest<IntHeap>();
    5.22 +
    5.23 +    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
    5.24 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
    5.25 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
    5.26 +  }
    5.27 +
    5.28 +  {
    5.29 +    typedef RadixHeap<ItemIntMap> IntHeap;
    5.30 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
    5.31 +    heapSortTest<IntHeap>();
    5.32 +    heapIncreaseTest<IntHeap>();
    5.33 +
    5.34 +    typedef RadixHeap<IntNodeMap > NodeHeap;
    5.35 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
    5.36 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
    5.37 +  }
    5.38 +
    5.39 +  {
    5.40 +    typedef BucketHeap<ItemIntMap> IntHeap;
    5.41 +    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
    5.42 +    heapSortTest<IntHeap>();
    5.43 +    heapIncreaseTest<IntHeap>();
    5.44 +
    5.45 +    typedef BucketHeap<IntNodeMap > NodeHeap;
    5.46 +    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
    5.47 +    dijkstraHeapTest<NodeHeap>(digraph, length, source);
    5.48 +  }
    5.49 +
    5.50 +
    5.51    return 0;
    5.52  }