Port Bellman-Ford algorithm from SVN -r3524 (#51)
authorPeter Kovacs <kpeter@inf.elte.hu>
Fri, 24 Jul 2009 23:19:43 +0200
changeset 696c9b9da1a90a0
parent 683 9f529abcaebf
child 697 9496ed797f20
Port Bellman-Ford algorithm from SVN -r3524 (#51)
lemon/Makefile.am
lemon/bellman_ford.h
     1.1 --- a/lemon/Makefile.am	Thu Jun 11 23:13:24 2009 +0200
     1.2 +++ b/lemon/Makefile.am	Fri Jul 24 23:19:43 2009 +0200
     1.3 @@ -57,6 +57,7 @@
     1.4  	lemon/adaptors.h \
     1.5  	lemon/arg_parser.h \
     1.6  	lemon/assert.h \
     1.7 +	lemon/bellman_ford.h \
     1.8  	lemon/bfs.h \
     1.9  	lemon/bin_heap.h \
    1.10  	lemon/bucket_heap.h \
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/lemon/bellman_ford.h	Fri Jul 24 23:19:43 2009 +0200
     2.3 @@ -0,0 +1,1042 @@
     2.4 +/* -*- C++ -*-
     2.5 + *
     2.6 + * This file is a part of LEMON, a generic C++ optimization library
     2.7 + *
     2.8 + * Copyright (C) 2003-2008
     2.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    2.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    2.11 + *
    2.12 + * Permission to use, modify and distribute this software is granted
    2.13 + * provided that this copyright notice appears in all copies. For
    2.14 + * precise terms see the accompanying LICENSE file.
    2.15 + *
    2.16 + * This software is provided "AS IS" with no warranty of any kind,
    2.17 + * express or implied, and with no claim as to its suitability for any
    2.18 + * purpose.
    2.19 + *
    2.20 + */
    2.21 +
    2.22 +#ifndef LEMON_BELMANN_FORD_H
    2.23 +#define LEMON_BELMANN_FORD_H
    2.24 +
    2.25 +/// \ingroup shortest_path
    2.26 +/// \file
    2.27 +/// \brief Bellman-Ford algorithm.
    2.28 +///
    2.29 +
    2.30 +#include <lemon/bits/path_dump.h>
    2.31 +#include <lemon/core.h>
    2.32 +#include <lemon/error.h>
    2.33 +#include <lemon/maps.h>
    2.34 +
    2.35 +#include <limits>
    2.36 +
    2.37 +namespace lemon {
    2.38 +
    2.39 +  /// \brief Default OperationTraits for the BellmanFord algorithm class.
    2.40 +  ///  
    2.41 +  /// It defines all computational operations and constants which are
    2.42 +  /// used in the Bellman-Ford algorithm. The default implementation
    2.43 +  /// is based on the numeric_limits class. If the numeric type does not
    2.44 +  /// have infinity value then the maximum value is used as extremal
    2.45 +  /// infinity value.
    2.46 +  template <
    2.47 +    typename Value, 
    2.48 +    bool has_infinity = std::numeric_limits<Value>::has_infinity>
    2.49 +  struct BellmanFordDefaultOperationTraits {
    2.50 +    /// \brief Gives back the zero value of the type.
    2.51 +    static Value zero() {
    2.52 +      return static_cast<Value>(0);
    2.53 +    }
    2.54 +    /// \brief Gives back the positive infinity value of the type.
    2.55 +    static Value infinity() {
    2.56 +      return std::numeric_limits<Value>::infinity();
    2.57 +    }
    2.58 +    /// \brief Gives back the sum of the given two elements.
    2.59 +    static Value plus(const Value& left, const Value& right) {
    2.60 +      return left + right;
    2.61 +    }
    2.62 +    /// \brief Gives back true only if the first value less than the second.
    2.63 +    static bool less(const Value& left, const Value& right) {
    2.64 +      return left < right;
    2.65 +    }
    2.66 +  };
    2.67 +
    2.68 +  template <typename Value>
    2.69 +  struct BellmanFordDefaultOperationTraits<Value, false> {
    2.70 +    static Value zero() {
    2.71 +      return static_cast<Value>(0);
    2.72 +    }
    2.73 +    static Value infinity() {
    2.74 +      return std::numeric_limits<Value>::max();
    2.75 +    }
    2.76 +    static Value plus(const Value& left, const Value& right) {
    2.77 +      if (left == infinity() || right == infinity()) return infinity();
    2.78 +      return left + right;
    2.79 +    }
    2.80 +    static bool less(const Value& left, const Value& right) {
    2.81 +      return left < right;
    2.82 +    }
    2.83 +  };
    2.84 +  
    2.85 +  /// \brief Default traits class of BellmanFord class.
    2.86 +  ///
    2.87 +  /// Default traits class of BellmanFord class.
    2.88 +  /// \param _Digraph Digraph type.
    2.89 +  /// \param _LegthMap Type of length map.
    2.90 +  template<class _Digraph, class _LengthMap>
    2.91 +  struct BellmanFordDefaultTraits {
    2.92 +    /// The digraph type the algorithm runs on. 
    2.93 +    typedef _Digraph Digraph;
    2.94 +
    2.95 +    /// \brief The type of the map that stores the arc lengths.
    2.96 +    ///
    2.97 +    /// The type of the map that stores the arc lengths.
    2.98 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    2.99 +    typedef _LengthMap LengthMap;
   2.100 +
   2.101 +    // The type of the length of the arcs.
   2.102 +    typedef typename _LengthMap::Value Value;
   2.103 +
   2.104 +    /// \brief Operation traits for Bellman-Ford algorithm.
   2.105 +    ///
   2.106 +    /// It defines the infinity type on the given Value type
   2.107 +    /// and the used operation.
   2.108 +    /// \see BellmanFordDefaultOperationTraits
   2.109 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   2.110 + 
   2.111 +    /// \brief The type of the map that stores the last arcs of the 
   2.112 +    /// shortest paths.
   2.113 +    /// 
   2.114 +    /// The type of the map that stores the last
   2.115 +    /// arcs of the shortest paths.
   2.116 +    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   2.117 +    ///
   2.118 +    typedef typename Digraph::template NodeMap<typename _Digraph::Arc> PredMap;
   2.119 +
   2.120 +    /// \brief Instantiates a PredMap.
   2.121 +    /// 
   2.122 +    /// This function instantiates a \ref PredMap. 
   2.123 +    /// \param digraph is the digraph, to which we would like to define the PredMap.
   2.124 +    static PredMap *createPredMap(const _Digraph& digraph) {
   2.125 +      return new PredMap(digraph);
   2.126 +    }
   2.127 +
   2.128 +    /// \brief The type of the map that stores the dists of the nodes.
   2.129 +    ///
   2.130 +    /// The type of the map that stores the dists of the nodes.
   2.131 +    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   2.132 +    ///
   2.133 +    typedef typename Digraph::template NodeMap<typename _LengthMap::Value> 
   2.134 +    DistMap;
   2.135 +
   2.136 +    /// \brief Instantiates a DistMap.
   2.137 +    ///
   2.138 +    /// This function instantiates a \ref DistMap. 
   2.139 +    /// \param digraph is the digraph, to which we would like to define the 
   2.140 +    /// \ref DistMap
   2.141 +    static DistMap *createDistMap(const _Digraph& digraph) {
   2.142 +      return new DistMap(digraph);
   2.143 +    }
   2.144 +
   2.145 +  };
   2.146 +  
   2.147 +  /// \brief %BellmanFord algorithm class.
   2.148 +  ///
   2.149 +  /// \ingroup shortest_path
   2.150 +  /// This class provides an efficient implementation of \c Bellman-Ford 
   2.151 +  /// algorithm. The arc lengths are passed to the algorithm using a
   2.152 +  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
   2.153 +  /// kind of length.
   2.154 +  ///
   2.155 +  /// The Bellman-Ford algorithm solves the shortest path from one node
   2.156 +  /// problem when the arcs can have negative length but the digraph should
   2.157 +  /// not contain cycles with negative sum of length. If we can assume
   2.158 +  /// that all arc is non-negative in the digraph then the dijkstra algorithm
   2.159 +  /// should be used rather.
   2.160 +  ///
   2.161 +  /// The maximal time complexity of the algorithm is \f$ O(ne) \f$.
   2.162 +  ///
   2.163 +  /// The type of the length is determined by the
   2.164 +  /// \ref concepts::ReadMap::Value "Value" of the length map.
   2.165 +  ///
   2.166 +  /// \param _Digraph The digraph type the algorithm runs on. The default value
   2.167 +  /// is \ref ListDigraph. The value of _Digraph is not used directly by
   2.168 +  /// BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.
   2.169 +  /// \param _LengthMap This read-only ArcMap determines the lengths of the
   2.170 +  /// arcs. The default map type is \ref concepts::Digraph::ArcMap 
   2.171 +  /// "Digraph::ArcMap<int>".  The value of _LengthMap is not used directly 
   2.172 +  /// by BellmanFord, it is only passed to \ref BellmanFordDefaultTraits.  
   2.173 +  /// \param _Traits Traits class to set various data types used by the 
   2.174 +  /// algorithm.  The default traits class is \ref BellmanFordDefaultTraits
   2.175 +  /// "BellmanFordDefaultTraits<_Digraph,_LengthMap>".  See \ref
   2.176 +  /// BellmanFordDefaultTraits for the documentation of a BellmanFord traits
   2.177 +  /// class.
   2.178 +#ifdef DOXYGEN
   2.179 +  template <typename _Digraph, typename _LengthMap, typename _Traits>
   2.180 +#else
   2.181 +  template <typename _Digraph,
   2.182 +	    typename _LengthMap=typename _Digraph::template ArcMap<int>,
   2.183 +	    typename _Traits=BellmanFordDefaultTraits<_Digraph,_LengthMap> >
   2.184 +#endif
   2.185 +  class BellmanFord {
   2.186 +  public:
   2.187 +
   2.188 +    typedef _Traits Traits;
   2.189 +    ///The type of the underlying digraph.
   2.190 +    typedef typename _Traits::Digraph Digraph;
   2.191 +
   2.192 +    typedef typename Digraph::Node Node;
   2.193 +    typedef typename Digraph::NodeIt NodeIt;
   2.194 +    typedef typename Digraph::Arc Arc;
   2.195 +    typedef typename Digraph::OutArcIt OutArcIt;
   2.196 +    
   2.197 +    /// \brief The type of the length of the arcs.
   2.198 +    typedef typename _Traits::LengthMap::Value Value;
   2.199 +    /// \brief The type of the map that stores the arc lengths.
   2.200 +    typedef typename _Traits::LengthMap LengthMap;
   2.201 +    /// \brief The type of the map that stores the last
   2.202 +    /// arcs of the shortest paths.
   2.203 +    typedef typename _Traits::PredMap PredMap;
   2.204 +    /// \brief The type of the map that stores the dists of the nodes.
   2.205 +    typedef typename _Traits::DistMap DistMap;
   2.206 +    /// \brief The operation traits.
   2.207 +    typedef typename _Traits::OperationTraits OperationTraits;
   2.208 +  private:
   2.209 +    /// Pointer to the underlying digraph.
   2.210 +    const Digraph *digraph;
   2.211 +    /// Pointer to the length map
   2.212 +    const LengthMap *length;
   2.213 +    ///Pointer to the map of predecessors arcs.
   2.214 +    PredMap *_pred;
   2.215 +    ///Indicates if \ref _pred is locally allocated (\c true) or not.
   2.216 +    bool local_pred;
   2.217 +    ///Pointer to the map of distances.
   2.218 +    DistMap *_dist;
   2.219 +    ///Indicates if \ref _dist is locally allocated (\c true) or not.
   2.220 +    bool local_dist;
   2.221 +
   2.222 +    typedef typename Digraph::template NodeMap<bool> MaskMap;
   2.223 +    MaskMap *_mask;
   2.224 +
   2.225 +    std::vector<Node> _process;
   2.226 +
   2.227 +    /// Creates the maps if necessary.
   2.228 +    void create_maps() {
   2.229 +      if(!_pred) {
   2.230 +	local_pred = true;
   2.231 +	_pred = Traits::createPredMap(*digraph);
   2.232 +      }
   2.233 +      if(!_dist) {
   2.234 +	local_dist = true;
   2.235 +	_dist = Traits::createDistMap(*digraph);
   2.236 +      }
   2.237 +      _mask = new MaskMap(*digraph, false);
   2.238 +    }
   2.239 +    
   2.240 +  public :
   2.241 + 
   2.242 +    typedef BellmanFord Create;
   2.243 +
   2.244 +    /// \name Named template parameters
   2.245 +
   2.246 +    ///@{
   2.247 +
   2.248 +    template <class T>
   2.249 +    struct DefPredMapTraits : public Traits {
   2.250 +      typedef T PredMap;
   2.251 +      static PredMap *createPredMap(const Digraph&) {
   2.252 +        LEMON_ASSERT(false, "PredMap is not initialized");
   2.253 +        return 0; // ignore warnings
   2.254 +      }
   2.255 +    };
   2.256 +
   2.257 +    /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   2.258 +    /// type
   2.259 +    /// \ref named-templ-param "Named parameter" for setting PredMap type
   2.260 +    ///
   2.261 +    template <class T>
   2.262 +    struct SetPredMap 
   2.263 +      : public BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > {
   2.264 +      typedef BellmanFord< Digraph, LengthMap, DefPredMapTraits<T> > Create;
   2.265 +    };
   2.266 +    
   2.267 +    template <class T>
   2.268 +    struct DefDistMapTraits : public Traits {
   2.269 +      typedef T DistMap;
   2.270 +      static DistMap *createDistMap(const Digraph&) {
   2.271 +        LEMON_ASSERT(false, "DistMap is not initialized");
   2.272 +        return 0; // ignore warnings
   2.273 +      }
   2.274 +    };
   2.275 +
   2.276 +    /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   2.277 +    /// type
   2.278 +    ///
   2.279 +    /// \ref named-templ-param "Named parameter" for setting DistMap type
   2.280 +    ///
   2.281 +    template <class T>
   2.282 +    struct SetDistMap 
   2.283 +      : public BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > {
   2.284 +      typedef BellmanFord< Digraph, LengthMap, DefDistMapTraits<T> > Create;
   2.285 +    };
   2.286 +    
   2.287 +    template <class T>
   2.288 +    struct DefOperationTraitsTraits : public Traits {
   2.289 +      typedef T OperationTraits;
   2.290 +    };
   2.291 +    
   2.292 +    /// \brief \ref named-templ-param "Named parameter" for setting 
   2.293 +    /// OperationTraits type
   2.294 +    ///
   2.295 +    /// \ref named-templ-param "Named parameter" for setting OperationTraits
   2.296 +    /// type
   2.297 +    template <class T>
   2.298 +    struct SetOperationTraits
   2.299 +      : public BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> > {
   2.300 +      typedef BellmanFord< Digraph, LengthMap, DefOperationTraitsTraits<T> >
   2.301 +      Create;
   2.302 +    };
   2.303 +    
   2.304 +    ///@}
   2.305 +
   2.306 +  protected:
   2.307 +    
   2.308 +    BellmanFord() {}
   2.309 +
   2.310 +  public:      
   2.311 +    
   2.312 +    /// \brief Constructor.
   2.313 +    ///
   2.314 +    /// \param _graph the digraph the algorithm will run on.
   2.315 +    /// \param _length the length map used by the algorithm.
   2.316 +    BellmanFord(const Digraph& _graph, const LengthMap& _length) :
   2.317 +      digraph(&_graph), length(&_length),
   2.318 +      _pred(0), local_pred(false),
   2.319 +      _dist(0), local_dist(false), _mask(0) {}
   2.320 +    
   2.321 +    ///Destructor.
   2.322 +    ~BellmanFord() {
   2.323 +      if(local_pred) delete _pred;
   2.324 +      if(local_dist) delete _dist;
   2.325 +      if(_mask) delete _mask;
   2.326 +    }
   2.327 +
   2.328 +    /// \brief Sets the length map.
   2.329 +    ///
   2.330 +    /// Sets the length map.
   2.331 +    /// \return \c (*this)
   2.332 +    BellmanFord &lengthMap(const LengthMap &m) {
   2.333 +      length = &m;
   2.334 +      return *this;
   2.335 +    }
   2.336 +
   2.337 +    /// \brief Sets the map storing the predecessor arcs.
   2.338 +    ///
   2.339 +    /// Sets the map storing the predecessor arcs.
   2.340 +    /// If you don't use this function before calling \ref run(),
   2.341 +    /// it will allocate one. The destuctor deallocates this
   2.342 +    /// automatically allocated map, of course.
   2.343 +    /// \return \c (*this)
   2.344 +    BellmanFord &predMap(PredMap &m) {
   2.345 +      if(local_pred) {
   2.346 +	delete _pred;
   2.347 +	local_pred=false;
   2.348 +      }
   2.349 +      _pred = &m;
   2.350 +      return *this;
   2.351 +    }
   2.352 +
   2.353 +    /// \brief Sets the map storing the distances calculated by the algorithm.
   2.354 +    ///
   2.355 +    /// Sets the map storing the distances calculated by the algorithm.
   2.356 +    /// If you don't use this function before calling \ref run(),
   2.357 +    /// it will allocate one. The destuctor deallocates this
   2.358 +    /// automatically allocated map, of course.
   2.359 +    /// \return \c (*this)
   2.360 +    BellmanFord &distMap(DistMap &m) {
   2.361 +      if(local_dist) {
   2.362 +	delete _dist;
   2.363 +	local_dist=false;
   2.364 +      }
   2.365 +      _dist = &m;
   2.366 +      return *this;
   2.367 +    }
   2.368 +
   2.369 +    /// \name Execution control
   2.370 +    /// The simplest way to execute the algorithm is to use
   2.371 +    /// one of the member functions called \c run(...).
   2.372 +    /// \n
   2.373 +    /// If you need more control on the execution,
   2.374 +    /// first you must call \ref init(), then you can add several source nodes
   2.375 +    /// with \ref addSource().
   2.376 +    /// Finally \ref start() will perform the actual path
   2.377 +    /// computation.
   2.378 +
   2.379 +    ///@{
   2.380 +
   2.381 +    /// \brief Initializes the internal data structures.
   2.382 +    /// 
   2.383 +    /// Initializes the internal data structures.
   2.384 +    void init(const Value value = OperationTraits::infinity()) {
   2.385 +      create_maps();
   2.386 +      for (NodeIt it(*digraph); it != INVALID; ++it) {
   2.387 +	_pred->set(it, INVALID);
   2.388 +	_dist->set(it, value);
   2.389 +      }
   2.390 +      _process.clear();
   2.391 +      if (OperationTraits::less(value, OperationTraits::infinity())) {
   2.392 +	for (NodeIt it(*digraph); it != INVALID; ++it) {
   2.393 +	  _process.push_back(it);
   2.394 +	  _mask->set(it, true);
   2.395 +	}
   2.396 +      }
   2.397 +    }
   2.398 +    
   2.399 +    /// \brief Adds a new source node.
   2.400 +    ///
   2.401 +    /// Adds a new source node. The optional second parameter is the 
   2.402 +    /// initial distance of the node. It just sets the distance of the 
   2.403 +    /// node to the given value.
   2.404 +    void addSource(Node source, Value dst = OperationTraits::zero()) {
   2.405 +      _dist->set(source, dst);
   2.406 +      if (!(*_mask)[source]) {
   2.407 +	_process.push_back(source);
   2.408 +	_mask->set(source, true);
   2.409 +      }
   2.410 +    }
   2.411 +
   2.412 +    /// \brief Executes one round from the Bellman-Ford algorithm.
   2.413 +    ///
   2.414 +    /// If the algoritm calculated the distances in the previous round
   2.415 +    /// exactly for all at most \f$ k \f$ length path lengths then it will
   2.416 +    /// calculate the distances exactly for all at most \f$ k + 1 \f$
   2.417 +    /// length path lengths. With \f$ k \f$ iteration this function
   2.418 +    /// calculates the at most \f$ k \f$ length path lengths.
   2.419 +    ///
   2.420 +    /// \warning The paths with limited arc number cannot be retrieved
   2.421 +    /// easily with \ref path() or \ref predArc() functions. If you
   2.422 +    /// need the shortest path and not just the distance you should store
   2.423 +    /// after each iteration the \ref predMap() map and manually build
   2.424 +    /// the path.
   2.425 +    ///
   2.426 +    /// \return \c true when the algorithm have not found more shorter
   2.427 +    /// paths.
   2.428 +    bool processNextRound() {
   2.429 +      for (int i = 0; i < int(_process.size()); ++i) {
   2.430 +	_mask->set(_process[i], false);
   2.431 +      }
   2.432 +      std::vector<Node> nextProcess;
   2.433 +      std::vector<Value> values(_process.size());
   2.434 +      for (int i = 0; i < int(_process.size()); ++i) {
   2.435 +	values[i] = (*_dist)[_process[i]];
   2.436 +      }
   2.437 +      for (int i = 0; i < int(_process.size()); ++i) {
   2.438 +	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
   2.439 +	  Node target = digraph->target(it);
   2.440 +	  Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
   2.441 +	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   2.442 +	    _pred->set(target, it);
   2.443 +	    _dist->set(target, relaxed);
   2.444 +	    if (!(*_mask)[target]) {
   2.445 +	      _mask->set(target, true);
   2.446 +	      nextProcess.push_back(target);
   2.447 +	    }
   2.448 +	  }	  
   2.449 +	}
   2.450 +      }
   2.451 +      _process.swap(nextProcess);
   2.452 +      return _process.empty();
   2.453 +    }
   2.454 +
   2.455 +    /// \brief Executes one weak round from the Bellman-Ford algorithm.
   2.456 +    ///
   2.457 +    /// If the algorithm calculated the distances in the
   2.458 +    /// previous round at least for all at most k length paths then it will
   2.459 +    /// calculate the distances at least for all at most k + 1 length paths.
   2.460 +    /// This function does not make it possible to calculate strictly the
   2.461 +    /// at most k length minimal paths, this is why it is
   2.462 +    /// called just weak round.
   2.463 +    /// \return \c true when the algorithm have not found more shorter paths.
   2.464 +    bool processNextWeakRound() {
   2.465 +      for (int i = 0; i < int(_process.size()); ++i) {
   2.466 +	_mask->set(_process[i], false);
   2.467 +      }
   2.468 +      std::vector<Node> nextProcess;
   2.469 +      for (int i = 0; i < int(_process.size()); ++i) {
   2.470 +	for (OutArcIt it(*digraph, _process[i]); it != INVALID; ++it) {
   2.471 +	  Node target = digraph->target(it);
   2.472 +	  Value relaxed = 
   2.473 +	    OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
   2.474 +	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
   2.475 +	    _pred->set(target, it);
   2.476 +	    _dist->set(target, relaxed);
   2.477 +	    if (!(*_mask)[target]) {
   2.478 +	      _mask->set(target, true);
   2.479 +	      nextProcess.push_back(target);
   2.480 +	    }
   2.481 +	  }	  
   2.482 +	}
   2.483 +      }
   2.484 +      _process.swap(nextProcess);
   2.485 +      return _process.empty();
   2.486 +    }
   2.487 +
   2.488 +    /// \brief Executes the algorithm.
   2.489 +    ///
   2.490 +    /// \pre init() must be called and at least one node should be added
   2.491 +    /// with addSource() before using this function.
   2.492 +    ///
   2.493 +    /// This method runs the %BellmanFord algorithm from the root node(s)
   2.494 +    /// in order to compute the shortest path to each node. The algorithm 
   2.495 +    /// computes 
   2.496 +    /// - The shortest path tree.
   2.497 +    /// - The distance of each node from the root(s).
   2.498 +    void start() {
   2.499 +      int num = countNodes(*digraph) - 1;
   2.500 +      for (int i = 0; i < num; ++i) {
   2.501 +	if (processNextWeakRound()) break;
   2.502 +      }
   2.503 +    }
   2.504 +
   2.505 +    /// \brief Executes the algorithm and checks the negative cycles.
   2.506 +    ///
   2.507 +    /// \pre init() must be called and at least one node should be added
   2.508 +    /// with addSource() before using this function. 
   2.509 +    ///
   2.510 +    /// This method runs the %BellmanFord algorithm from the root node(s)
   2.511 +    /// in order to compute the shortest path to each node. The algorithm 
   2.512 +    /// computes 
   2.513 +    /// - The shortest path tree.
   2.514 +    /// - The distance of each node from the root(s).
   2.515 +    /// 
   2.516 +    /// \return \c false if there is a negative cycle in the digraph.
   2.517 +    bool checkedStart() {
   2.518 +      int num = countNodes(*digraph);
   2.519 +      for (int i = 0; i < num; ++i) {
   2.520 +	if (processNextWeakRound()) return true;
   2.521 +      }
   2.522 +      return _process.empty();
   2.523 +    }
   2.524 +
   2.525 +    /// \brief Executes the algorithm with path length limit.
   2.526 +    ///
   2.527 +    /// \pre init() must be called and at least one node should be added
   2.528 +    /// with addSource() before using this function.
   2.529 +    ///
   2.530 +    /// This method runs the %BellmanFord algorithm from the root
   2.531 +    /// node(s) in order to compute the shortest path lengths with at
   2.532 +    /// most \c num arc.
   2.533 +    ///
   2.534 +    /// \warning The paths with limited arc number cannot be retrieved
   2.535 +    /// easily with \ref path() or \ref predArc() functions. If you
   2.536 +    /// need the shortest path and not just the distance you should store
   2.537 +    /// after each iteration the \ref predMap() map and manually build
   2.538 +    /// the path.
   2.539 +    ///
   2.540 +    /// The algorithm computes
   2.541 +    /// - The predecessor arc from each node.
   2.542 +    /// - The limited distance of each node from the root(s).
   2.543 +    void limitedStart(int num) {
   2.544 +      for (int i = 0; i < num; ++i) {
   2.545 +	if (processNextRound()) break;
   2.546 +      }
   2.547 +    }
   2.548 +    
   2.549 +    /// \brief Runs %BellmanFord algorithm from node \c s.
   2.550 +    ///    
   2.551 +    /// This method runs the %BellmanFord algorithm from a root node \c s
   2.552 +    /// in order to compute the shortest path to each node. The algorithm 
   2.553 +    /// computes
   2.554 +    /// - The shortest path tree.
   2.555 +    /// - The distance of each node from the root.
   2.556 +    ///
   2.557 +    /// \note d.run(s) is just a shortcut of the following code.
   2.558 +    ///\code
   2.559 +    ///  d.init();
   2.560 +    ///  d.addSource(s);
   2.561 +    ///  d.start();
   2.562 +    ///\endcode
   2.563 +    void run(Node s) {
   2.564 +      init();
   2.565 +      addSource(s);
   2.566 +      start();
   2.567 +    }
   2.568 +    
   2.569 +    /// \brief Runs %BellmanFord algorithm with limited path length 
   2.570 +    /// from node \c s.
   2.571 +    ///    
   2.572 +    /// This method runs the %BellmanFord algorithm from a root node \c s
   2.573 +    /// in order to compute the shortest path with at most \c len arcs 
   2.574 +    /// to each node. The algorithm computes
   2.575 +    /// - The shortest path tree.
   2.576 +    /// - The distance of each node from the root.
   2.577 +    ///
   2.578 +    /// \note d.run(s, num) is just a shortcut of the following code.
   2.579 +    ///\code
   2.580 +    ///  d.init();
   2.581 +    ///  d.addSource(s);
   2.582 +    ///  d.limitedStart(num);
   2.583 +    ///\endcode
   2.584 +    void run(Node s, int num) {
   2.585 +      init();
   2.586 +      addSource(s);
   2.587 +      limitedStart(num);
   2.588 +    }
   2.589 +    
   2.590 +    ///@}
   2.591 +
   2.592 +    /// \name Query Functions
   2.593 +    /// The result of the %BellmanFord algorithm can be obtained using these
   2.594 +    /// functions.\n
   2.595 +    /// Before the use of these functions,
   2.596 +    /// either run() or start() must be called.
   2.597 +    
   2.598 +    ///@{
   2.599 +
   2.600 +    /// \brief Lemon iterator for get the active nodes.
   2.601 +    ///
   2.602 +    /// Lemon iterator for get the active nodes. This class provides a
   2.603 +    /// common style lemon iterator which gives back a subset of the
   2.604 +    /// nodes. The iterated nodes are active in the algorithm after
   2.605 +    /// the last phase so these should be checked in the next phase to
   2.606 +    /// find augmenting arcs from these.
   2.607 +    class ActiveIt {
   2.608 +    public:
   2.609 +
   2.610 +      /// \brief Constructor.
   2.611 +      ///
   2.612 +      /// Constructor for get the nodeset of the variable. 
   2.613 +      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
   2.614 +      {
   2.615 +        _index = _algorithm->_process.size() - 1;
   2.616 +      }
   2.617 +
   2.618 +      /// \brief Invalid constructor.
   2.619 +      ///
   2.620 +      /// Invalid constructor.
   2.621 +      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
   2.622 +
   2.623 +      /// \brief Conversion to node.
   2.624 +      ///
   2.625 +      /// Conversion to node.
   2.626 +      operator Node() const { 
   2.627 +        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
   2.628 +      }
   2.629 +
   2.630 +      /// \brief Increment operator.
   2.631 +      ///
   2.632 +      /// Increment operator.
   2.633 +      ActiveIt& operator++() {
   2.634 +        --_index;
   2.635 +        return *this; 
   2.636 +      }
   2.637 +
   2.638 +      bool operator==(const ActiveIt& it) const { 
   2.639 +        return static_cast<Node>(*this) == static_cast<Node>(it); 
   2.640 +      }
   2.641 +      bool operator!=(const ActiveIt& it) const { 
   2.642 +        return static_cast<Node>(*this) != static_cast<Node>(it); 
   2.643 +      }
   2.644 +      bool operator<(const ActiveIt& it) const { 
   2.645 +        return static_cast<Node>(*this) < static_cast<Node>(it); 
   2.646 +      }
   2.647 +      
   2.648 +    private:
   2.649 +      const BellmanFord* _algorithm;
   2.650 +      int _index;
   2.651 +    };
   2.652 +
   2.653 +    typedef PredMapPath<Digraph, PredMap> Path;
   2.654 +
   2.655 +    /// \brief Gives back the shortest path.
   2.656 +    ///    
   2.657 +    /// Gives back the shortest path.
   2.658 +    /// \pre The \c t should be reachable from the source.
   2.659 +    Path path(Node t) 
   2.660 +    {
   2.661 +      return Path(*digraph, *_pred, t);
   2.662 +    }
   2.663 +
   2.664 +
   2.665 +    // TODO : implement negative cycle
   2.666 +//     /// \brief Gives back a negative cycle.
   2.667 +//     ///    
   2.668 +//     /// This function gives back a negative cycle.
   2.669 +//     /// If the algorithm have not found yet negative cycle it will give back
   2.670 +//     /// an empty path.
   2.671 +//     Path negativeCycle() {
   2.672 +//       typename Digraph::template NodeMap<int> state(*digraph, 0);
   2.673 +//       for (ActiveIt it(*this); it != INVALID; ++it) {
   2.674 +//         if (state[it] == 0) {
   2.675 +//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
   2.676 +//             if (state[t] == 0) {
   2.677 +//               state[t] = 1;
   2.678 +//             } else if (state[t] == 2) {
   2.679 +//               break;
   2.680 +//             } else {
   2.681 +//               p.clear();
   2.682 +//               typename Path::Builder b(p);
   2.683 +//               b.setStartNode(t);
   2.684 +//               b.pushFront(predArc(t));
   2.685 +//               for(Node s = predNode(t); s != t; s = predNode(s)) {
   2.686 +//                 b.pushFront(predArc(s));
   2.687 +//               }
   2.688 +//               b.commit();
   2.689 +//               return true;
   2.690 +//             }
   2.691 +//           }
   2.692 +//           for (Node t = it; predArc(t) != INVALID; t = predNode(t)) {
   2.693 +//             if (state[t] == 1) {
   2.694 +//               state[t] = 2;
   2.695 +//             } else {
   2.696 +//               break;
   2.697 +//             }
   2.698 +//           }
   2.699 +//         }
   2.700 +//       }
   2.701 +//       return false;
   2.702 +//     }
   2.703 +	  
   2.704 +    /// \brief The distance of a node from the root.
   2.705 +    ///
   2.706 +    /// Returns the distance of a node from the root.
   2.707 +    /// \pre \ref run() must be called before using this function.
   2.708 +    /// \warning If node \c v in unreachable from the root the return value
   2.709 +    /// of this funcion is undefined.
   2.710 +    Value dist(Node v) const { return (*_dist)[v]; }
   2.711 +
   2.712 +    /// \brief Returns the 'previous arc' of the shortest path tree.
   2.713 +    ///
   2.714 +    /// For a node \c v it returns the 'previous arc' of the shortest path 
   2.715 +    /// tree, i.e. it returns the last arc of a shortest path from the root 
   2.716 +    /// to \c v. It is \ref INVALID if \c v is unreachable from the root or 
   2.717 +    /// if \c v=s. The shortest path tree used here is equal to the shortest 
   2.718 +    /// path tree used in \ref predNode(). 
   2.719 +    /// \pre \ref run() must be called before using
   2.720 +    /// this function.
   2.721 +    Arc predArc(Node v) const { return (*_pred)[v]; }
   2.722 +
   2.723 +    /// \brief Returns the 'previous node' of the shortest path tree.
   2.724 +    ///
   2.725 +    /// For a node \c v it returns the 'previous node' of the shortest path 
   2.726 +    /// tree, i.e. it returns the last but one node from a shortest path from 
   2.727 +    /// the root to \c /v. It is INVALID if \c v is unreachable from the root 
   2.728 +    /// or if \c v=s. The shortest path tree used here is equal to the 
   2.729 +    /// shortest path tree used in \ref predArc().  \pre \ref run() must be 
   2.730 +    /// called before using this function.
   2.731 +    Node predNode(Node v) const { 
   2.732 +      return (*_pred)[v] == INVALID ? INVALID : digraph->source((*_pred)[v]); 
   2.733 +    }
   2.734 +    
   2.735 +    /// \brief Returns a reference to the NodeMap of distances.
   2.736 +    ///
   2.737 +    /// Returns a reference to the NodeMap of distances. \pre \ref run() must
   2.738 +    /// be called before using this function.
   2.739 +    const DistMap &distMap() const { return *_dist;}
   2.740 + 
   2.741 +    /// \brief Returns a reference to the shortest path tree map.
   2.742 +    ///
   2.743 +    /// Returns a reference to the NodeMap of the arcs of the
   2.744 +    /// shortest path tree.
   2.745 +    /// \pre \ref run() must be called before using this function.
   2.746 +    const PredMap &predMap() const { return *_pred; }
   2.747 + 
   2.748 +    /// \brief Checks if a node is reachable from the root.
   2.749 +    ///
   2.750 +    /// Returns \c true if \c v is reachable from the root.
   2.751 +    /// \pre \ref run() must be called before using this function.
   2.752 +    ///
   2.753 +    bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
   2.754 +    
   2.755 +    ///@}
   2.756 +  };
   2.757 + 
   2.758 +  /// \brief Default traits class of BellmanFord function.
   2.759 +  ///
   2.760 +  /// Default traits class of BellmanFord function.
   2.761 +  /// \param _Digraph Digraph type.
   2.762 +  /// \param _LengthMap Type of length map.
   2.763 +  template <typename _Digraph, typename _LengthMap>
   2.764 +  struct BellmanFordWizardDefaultTraits {
   2.765 +    /// \brief The digraph type the algorithm runs on. 
   2.766 +    typedef _Digraph Digraph;
   2.767 +
   2.768 +    /// \brief The type of the map that stores the arc lengths.
   2.769 +    ///
   2.770 +    /// The type of the map that stores the arc lengths.
   2.771 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
   2.772 +    typedef _LengthMap LengthMap;
   2.773 +
   2.774 +    /// \brief The value type of the length map.
   2.775 +    typedef typename _LengthMap::Value Value;
   2.776 +
   2.777 +    /// \brief Operation traits for Bellman-Ford algorithm.
   2.778 +    ///
   2.779 +    /// It defines the infinity type on the given Value type
   2.780 +    /// and the used operation.
   2.781 +    /// \see BellmanFordDefaultOperationTraits
   2.782 +    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
   2.783 +
   2.784 +    /// \brief The type of the map that stores the last
   2.785 +    /// arcs of the shortest paths.
   2.786 +    /// 
   2.787 +    /// The type of the map that stores the last
   2.788 +    /// arcs of the shortest paths.
   2.789 +    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   2.790 +    typedef NullMap <typename _Digraph::Node,typename _Digraph::Arc> PredMap;
   2.791 +
   2.792 +    /// \brief Instantiates a PredMap.
   2.793 +    /// 
   2.794 +    /// This function instantiates a \ref PredMap. 
   2.795 +    static PredMap *createPredMap(const _Digraph &) {
   2.796 +      return new PredMap();
   2.797 +    }
   2.798 +    /// \brief The type of the map that stores the dists of the nodes.
   2.799 +    ///
   2.800 +    /// The type of the map that stores the dists of the nodes.
   2.801 +    /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   2.802 +    typedef NullMap<typename Digraph::Node, Value> DistMap;
   2.803 +    /// \brief Instantiates a DistMap.
   2.804 +    ///
   2.805 +    /// This function instantiates a \ref DistMap. 
   2.806 +    static DistMap *createDistMap(const _Digraph &) {
   2.807 +      return new DistMap();
   2.808 +    }
   2.809 +  };
   2.810 +  
   2.811 +  /// \brief Default traits used by \ref BellmanFordWizard
   2.812 +  ///
   2.813 +  /// To make it easier to use BellmanFord algorithm
   2.814 +  /// we have created a wizard class.
   2.815 +  /// This \ref BellmanFordWizard class needs default traits,
   2.816 +  /// as well as the \ref BellmanFord class.
   2.817 +  /// The \ref BellmanFordWizardBase is a class to be the default traits of the
   2.818 +  /// \ref BellmanFordWizard class.
   2.819 +  /// \todo More named parameters are required...
   2.820 +  template<class _Digraph,class _LengthMap>
   2.821 +  class BellmanFordWizardBase 
   2.822 +    : public BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> {
   2.823 +
   2.824 +    typedef BellmanFordWizardDefaultTraits<_Digraph,_LengthMap> Base;
   2.825 +  protected:
   2.826 +    /// Type of the nodes in the digraph.
   2.827 +    typedef typename Base::Digraph::Node Node;
   2.828 +
   2.829 +    /// Pointer to the underlying digraph.
   2.830 +    void *_graph;
   2.831 +    /// Pointer to the length map
   2.832 +    void *_length;
   2.833 +    ///Pointer to the map of predecessors arcs.
   2.834 +    void *_pred;
   2.835 +    ///Pointer to the map of distances.
   2.836 +    void *_dist;
   2.837 +    ///Pointer to the source node.
   2.838 +    Node _source;
   2.839 +
   2.840 +    public:
   2.841 +    /// Constructor.
   2.842 +    
   2.843 +    /// This constructor does not require parameters, therefore it initiates
   2.844 +    /// all of the attributes to default values (0, INVALID).
   2.845 +    BellmanFordWizardBase() : _graph(0), _length(0), _pred(0),
   2.846 +			   _dist(0), _source(INVALID) {}
   2.847 +
   2.848 +    /// Constructor.
   2.849 +    
   2.850 +    /// This constructor requires some parameters,
   2.851 +    /// listed in the parameters list.
   2.852 +    /// Others are initiated to 0.
   2.853 +    /// \param digraph is the initial value of  \ref _graph
   2.854 +    /// \param length is the initial value of  \ref _length
   2.855 +    /// \param source is the initial value of  \ref _source
   2.856 +    BellmanFordWizardBase(const _Digraph& digraph, 
   2.857 +			  const _LengthMap& length, 
   2.858 +			  Node source = INVALID) :
   2.859 +      _graph(reinterpret_cast<void*>(const_cast<_Digraph*>(&digraph))), 
   2.860 +      _length(reinterpret_cast<void*>(const_cast<_LengthMap*>(&length))), 
   2.861 +      _pred(0), _dist(0), _source(source) {}
   2.862 +
   2.863 +  };
   2.864 +  
   2.865 +  /// A class to make the usage of BellmanFord algorithm easier
   2.866 +
   2.867 +  /// This class is created to make it easier to use BellmanFord algorithm.
   2.868 +  /// It uses the functions and features of the plain \ref BellmanFord,
   2.869 +  /// but it is much simpler to use it.
   2.870 +  ///
   2.871 +  /// Simplicity means that the way to change the types defined
   2.872 +  /// in the traits class is based on functions that returns the new class
   2.873 +  /// and not on templatable built-in classes.
   2.874 +  /// When using the plain \ref BellmanFord
   2.875 +  /// the new class with the modified type comes from
   2.876 +  /// the original class by using the ::
   2.877 +  /// operator. In the case of \ref BellmanFordWizard only
   2.878 +  /// a function have to be called and it will
   2.879 +  /// return the needed class.
   2.880 +  ///
   2.881 +  /// It does not have own \ref run method. When its \ref run method is called
   2.882 +  /// it initiates a plain \ref BellmanFord class, and calls the \ref 
   2.883 +  /// BellmanFord::run method of it.
   2.884 +  template<class _Traits>
   2.885 +  class BellmanFordWizard : public _Traits {
   2.886 +    typedef _Traits Base;
   2.887 +
   2.888 +    ///The type of the underlying digraph.
   2.889 +    typedef typename _Traits::Digraph Digraph;
   2.890 +
   2.891 +    typedef typename Digraph::Node Node;
   2.892 +    typedef typename Digraph::NodeIt NodeIt;
   2.893 +    typedef typename Digraph::Arc Arc;
   2.894 +    typedef typename Digraph::OutArcIt ArcIt;
   2.895 +    
   2.896 +    ///The type of the map that stores the arc lengths.
   2.897 +    typedef typename _Traits::LengthMap LengthMap;
   2.898 +
   2.899 +    ///The type of the length of the arcs.
   2.900 +    typedef typename LengthMap::Value Value;
   2.901 +
   2.902 +    ///\brief The type of the map that stores the last
   2.903 +    ///arcs of the shortest paths.
   2.904 +    typedef typename _Traits::PredMap PredMap;
   2.905 +
   2.906 +    ///The type of the map that stores the dists of the nodes.
   2.907 +    typedef typename _Traits::DistMap DistMap;
   2.908 +
   2.909 +  public:
   2.910 +    /// Constructor.
   2.911 +    BellmanFordWizard() : _Traits() {}
   2.912 +
   2.913 +    /// \brief Constructor that requires parameters.
   2.914 +    ///
   2.915 +    /// Constructor that requires parameters.
   2.916 +    /// These parameters will be the default values for the traits class.
   2.917 +    BellmanFordWizard(const Digraph& digraph, const LengthMap& length, 
   2.918 +		      Node src = INVALID) 
   2.919 +      : _Traits(digraph, length, src) {}
   2.920 +
   2.921 +    /// \brief Copy constructor
   2.922 +    BellmanFordWizard(const _Traits &b) : _Traits(b) {}
   2.923 +
   2.924 +    ~BellmanFordWizard() {}
   2.925 +
   2.926 +    /// \brief Runs BellmanFord algorithm from a given node.
   2.927 +    ///    
   2.928 +    /// Runs BellmanFord algorithm from a given node.
   2.929 +    /// The node can be given by the \ref source function.
   2.930 +    void run() {
   2.931 +      LEMON_ASSERT(Base::_source != INVALID, "Source node is not given");
   2.932 +      BellmanFord<Digraph,LengthMap,_Traits> 
   2.933 +	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
   2.934 +           *reinterpret_cast<const LengthMap*>(Base::_length));
   2.935 +      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
   2.936 +      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
   2.937 +      bf.run(Base::_source);
   2.938 +    }
   2.939 +
   2.940 +    /// \brief Runs BellmanFord algorithm from the given node.
   2.941 +    ///
   2.942 +    /// Runs BellmanFord algorithm from the given node.
   2.943 +    /// \param src is the given source.
   2.944 +    void run(Node src) {
   2.945 +      Base::_source = src;
   2.946 +      run();
   2.947 +    }
   2.948 +
   2.949 +    template<class T>
   2.950 +    struct DefPredMapBase : public Base {
   2.951 +      typedef T PredMap;
   2.952 +      static PredMap *createPredMap(const Digraph &) { return 0; };
   2.953 +      DefPredMapBase(const _Traits &b) : _Traits(b) {}
   2.954 +    };
   2.955 +    
   2.956 +    ///\brief \ref named-templ-param "Named parameter"
   2.957 +    ///function for setting PredMap type
   2.958 +    ///
   2.959 +    /// \ref named-templ-param "Named parameter"
   2.960 +    ///function for setting PredMap type
   2.961 +    ///
   2.962 +    template<class T>
   2.963 +    BellmanFordWizard<DefPredMapBase<T> > predMap(const T &t) 
   2.964 +    {
   2.965 +      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
   2.966 +      return BellmanFordWizard<DefPredMapBase<T> >(*this);
   2.967 +    }
   2.968 +    
   2.969 +    template<class T>
   2.970 +    struct DefDistMapBase : public Base {
   2.971 +      typedef T DistMap;
   2.972 +      static DistMap *createDistMap(const Digraph &) { return 0; };
   2.973 +      DefDistMapBase(const _Traits &b) : _Traits(b) {}
   2.974 +    };
   2.975 +    
   2.976 +    ///\brief \ref named-templ-param "Named parameter"
   2.977 +    ///function for setting DistMap type
   2.978 +    ///
   2.979 +    /// \ref named-templ-param "Named parameter"
   2.980 +    ///function for setting DistMap type
   2.981 +    ///
   2.982 +    template<class T>
   2.983 +    BellmanFordWizard<DefDistMapBase<T> > distMap(const T &t) {
   2.984 +      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
   2.985 +      return BellmanFordWizard<DefDistMapBase<T> >(*this);
   2.986 +    }
   2.987 +
   2.988 +    template<class T>
   2.989 +    struct DefOperationTraitsBase : public Base {
   2.990 +      typedef T OperationTraits;
   2.991 +      DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
   2.992 +    };
   2.993 +    
   2.994 +    ///\brief \ref named-templ-param "Named parameter"
   2.995 +    ///function for setting OperationTraits type
   2.996 +    ///
   2.997 +    /// \ref named-templ-param "Named parameter"
   2.998 +    ///function for setting OperationTraits type
   2.999 +    ///
  2.1000 +    template<class T>
  2.1001 +    BellmanFordWizard<DefOperationTraitsBase<T> > distMap() {
  2.1002 +      return BellmanFordWizard<DefDistMapBase<T> >(*this);
  2.1003 +    }
  2.1004 +    
  2.1005 +    /// \brief Sets the source node, from which the BellmanFord algorithm runs.
  2.1006 +    ///
  2.1007 +    /// Sets the source node, from which the BellmanFord algorithm runs.
  2.1008 +    /// \param src is the source node.
  2.1009 +    BellmanFordWizard<_Traits>& source(Node src) {
  2.1010 +      Base::_source = src;
  2.1011 +      return *this;
  2.1012 +    }
  2.1013 +    
  2.1014 +  };
  2.1015 +  
  2.1016 +  /// \brief Function type interface for BellmanFord algorithm.
  2.1017 +  ///
  2.1018 +  /// \ingroup shortest_path
  2.1019 +  /// Function type interface for BellmanFord algorithm.
  2.1020 +  ///
  2.1021 +  /// This function also has several \ref named-templ-func-param 
  2.1022 +  /// "named parameters", they are declared as the members of class 
  2.1023 +  /// \ref BellmanFordWizard.
  2.1024 +  /// The following
  2.1025 +  /// example shows how to use these parameters.
  2.1026 +  ///\code
  2.1027 +  /// bellmanford(g,length,source).predMap(preds).run();
  2.1028 +  ///\endcode
  2.1029 +  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
  2.1030 +  /// to the end of the parameter list.
  2.1031 +  /// \sa BellmanFordWizard
  2.1032 +  /// \sa BellmanFord
  2.1033 +  template<class _Digraph, class _LengthMap>
  2.1034 +  BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
  2.1035 +  bellmanFord(const _Digraph& digraph,
  2.1036 +	      const _LengthMap& length, 
  2.1037 +	      typename _Digraph::Node source = INVALID) {
  2.1038 +    return BellmanFordWizard<BellmanFordWizardBase<_Digraph,_LengthMap> >
  2.1039 +      (digraph, length, source);
  2.1040 +  }
  2.1041 +
  2.1042 +} //END OF NAMESPACE LEMON
  2.1043 +
  2.1044 +#endif
  2.1045 +