lemon-project-template-glpk
annotate deps/glpk/examples/todd.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
rev | line source |
---|---|
alpar@9 | 1 /* TODD, a class of hard instances of zero-one knapsack problems */ |
alpar@9 | 2 |
alpar@9 | 3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ |
alpar@9 | 4 |
alpar@9 | 5 /* Chvatal describes a class of instances of zero-one knapsack problems |
alpar@9 | 6 due to Todd. He shows that a wide class of algorithms - including all |
alpar@9 | 7 based on branch and bound or dynamic programming - find it difficult |
alpar@9 | 8 to solve problems in the Todd class. More exactly, the time required |
alpar@9 | 9 by these algorithms to solve instances of problems that belong to the |
alpar@9 | 10 Todd class grows as an exponential function of the problem size. |
alpar@9 | 11 |
alpar@9 | 12 Reference: |
alpar@9 | 13 Chvatal V. (1980), Hard knapsack problems, Op. Res. 28, 1402-1411. */ |
alpar@9 | 14 |
alpar@9 | 15 param n > 0 integer; |
alpar@9 | 16 |
alpar@9 | 17 param log2_n := log(n) / log(2); |
alpar@9 | 18 |
alpar@9 | 19 param k := floor(log2_n); |
alpar@9 | 20 |
alpar@9 | 21 param a{j in 1..n} := 2 ** (k + n + 1) + 2 ** (k + n + 1 - j) + 1; |
alpar@9 | 22 |
alpar@9 | 23 param b := 0.5 * floor(sum{j in 1..n} a[j]); |
alpar@9 | 24 |
alpar@9 | 25 var x{1..n} binary; |
alpar@9 | 26 |
alpar@9 | 27 maximize obj: sum{j in 1..n} a[j] * x[j]; |
alpar@9 | 28 |
alpar@9 | 29 s.t. cap: sum{j in 1..n} a[j] * x[j] <= b; |
alpar@9 | 30 |
alpar@9 | 31 data; |
alpar@9 | 32 |
alpar@9 | 33 param n := 15; |
alpar@9 | 34 /* change this parameter to choose a particular instance */ |
alpar@9 | 35 |
alpar@9 | 36 end; |