rev |
line source |
alpar@9
|
1 /* glpnpp02.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpnpp.h"
|
alpar@9
|
26
|
alpar@9
|
27 /***********************************************************************
|
alpar@9
|
28 * NAME
|
alpar@9
|
29 *
|
alpar@9
|
30 * npp_free_row - process free (unbounded) row
|
alpar@9
|
31 *
|
alpar@9
|
32 * SYNOPSIS
|
alpar@9
|
33 *
|
alpar@9
|
34 * #include "glpnpp.h"
|
alpar@9
|
35 * void npp_free_row(NPP *npp, NPPROW *p);
|
alpar@9
|
36 *
|
alpar@9
|
37 * DESCRIPTION
|
alpar@9
|
38 *
|
alpar@9
|
39 * The routine npp_free_row processes row p, which is free (i.e. has
|
alpar@9
|
40 * no finite bounds):
|
alpar@9
|
41 *
|
alpar@9
|
42 * -inf < sum a[p,j] x[j] < +inf. (1)
|
alpar@9
|
43 * j
|
alpar@9
|
44 *
|
alpar@9
|
45 * PROBLEM TRANSFORMATION
|
alpar@9
|
46 *
|
alpar@9
|
47 * Constraint (1) cannot be active, so it is redundant and can be
|
alpar@9
|
48 * removed from the original problem.
|
alpar@9
|
49 *
|
alpar@9
|
50 * Removing row p leads to removing a column of multiplier pi[p] for
|
alpar@9
|
51 * this row in the dual system. Since row p has no bounds, pi[p] = 0,
|
alpar@9
|
52 * so removing the column does not affect the dual solution.
|
alpar@9
|
53 *
|
alpar@9
|
54 * RECOVERING BASIC SOLUTION
|
alpar@9
|
55 *
|
alpar@9
|
56 * In solution to the original problem row p is inactive constraint,
|
alpar@9
|
57 * so it is assigned status GLP_BS, and multiplier pi[p] is assigned
|
alpar@9
|
58 * zero value.
|
alpar@9
|
59 *
|
alpar@9
|
60 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
61 *
|
alpar@9
|
62 * In solution to the original problem row p is inactive constraint,
|
alpar@9
|
63 * so its multiplier pi[p] is assigned zero value.
|
alpar@9
|
64 *
|
alpar@9
|
65 * RECOVERING MIP SOLUTION
|
alpar@9
|
66 *
|
alpar@9
|
67 * None needed. */
|
alpar@9
|
68
|
alpar@9
|
69 struct free_row
|
alpar@9
|
70 { /* free (unbounded) row */
|
alpar@9
|
71 int p;
|
alpar@9
|
72 /* row reference number */
|
alpar@9
|
73 };
|
alpar@9
|
74
|
alpar@9
|
75 static int rcv_free_row(NPP *npp, void *info);
|
alpar@9
|
76
|
alpar@9
|
77 void npp_free_row(NPP *npp, NPPROW *p)
|
alpar@9
|
78 { /* process free (unbounded) row */
|
alpar@9
|
79 struct free_row *info;
|
alpar@9
|
80 /* the row must be free */
|
alpar@9
|
81 xassert(p->lb == -DBL_MAX && p->ub == +DBL_MAX);
|
alpar@9
|
82 /* create transformation stack entry */
|
alpar@9
|
83 info = npp_push_tse(npp,
|
alpar@9
|
84 rcv_free_row, sizeof(struct free_row));
|
alpar@9
|
85 info->p = p->i;
|
alpar@9
|
86 /* remove the row from the problem */
|
alpar@9
|
87 npp_del_row(npp, p);
|
alpar@9
|
88 return;
|
alpar@9
|
89 }
|
alpar@9
|
90
|
alpar@9
|
91 static int rcv_free_row(NPP *npp, void *_info)
|
alpar@9
|
92 { /* recover free (unbounded) row */
|
alpar@9
|
93 struct free_row *info = _info;
|
alpar@9
|
94 if (npp->sol == GLP_SOL)
|
alpar@9
|
95 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
96 if (npp->sol != GLP_MIP)
|
alpar@9
|
97 npp->r_pi[info->p] = 0.0;
|
alpar@9
|
98 return 0;
|
alpar@9
|
99 }
|
alpar@9
|
100
|
alpar@9
|
101 /***********************************************************************
|
alpar@9
|
102 * NAME
|
alpar@9
|
103 *
|
alpar@9
|
104 * npp_geq_row - process row of 'not less than' type
|
alpar@9
|
105 *
|
alpar@9
|
106 * SYNOPSIS
|
alpar@9
|
107 *
|
alpar@9
|
108 * #include "glpnpp.h"
|
alpar@9
|
109 * void npp_geq_row(NPP *npp, NPPROW *p);
|
alpar@9
|
110 *
|
alpar@9
|
111 * DESCRIPTION
|
alpar@9
|
112 *
|
alpar@9
|
113 * The routine npp_geq_row processes row p, which is 'not less than'
|
alpar@9
|
114 * inequality constraint:
|
alpar@9
|
115 *
|
alpar@9
|
116 * L[p] <= sum a[p,j] x[j] (<= U[p]), (1)
|
alpar@9
|
117 * j
|
alpar@9
|
118 *
|
alpar@9
|
119 * where L[p] < U[p], and upper bound may not exist (U[p] = +oo).
|
alpar@9
|
120 *
|
alpar@9
|
121 * PROBLEM TRANSFORMATION
|
alpar@9
|
122 *
|
alpar@9
|
123 * Constraint (1) can be replaced by equality constraint:
|
alpar@9
|
124 *
|
alpar@9
|
125 * sum a[p,j] x[j] - s = L[p], (2)
|
alpar@9
|
126 * j
|
alpar@9
|
127 *
|
alpar@9
|
128 * where
|
alpar@9
|
129 *
|
alpar@9
|
130 * 0 <= s (<= U[p] - L[p]) (3)
|
alpar@9
|
131 *
|
alpar@9
|
132 * is a non-negative surplus variable.
|
alpar@9
|
133 *
|
alpar@9
|
134 * Since in the primal system there appears column s having the only
|
alpar@9
|
135 * non-zero coefficient in row p, in the dual system there appears a
|
alpar@9
|
136 * new row:
|
alpar@9
|
137 *
|
alpar@9
|
138 * (-1) pi[p] + lambda = 0, (4)
|
alpar@9
|
139 *
|
alpar@9
|
140 * where (-1) is coefficient of column s in row p, pi[p] is multiplier
|
alpar@9
|
141 * of row p, lambda is multiplier of column q, 0 is coefficient of
|
alpar@9
|
142 * column s in the objective row.
|
alpar@9
|
143 *
|
alpar@9
|
144 * RECOVERING BASIC SOLUTION
|
alpar@9
|
145 *
|
alpar@9
|
146 * Status of row p in solution to the original problem is determined
|
alpar@9
|
147 * by its status and status of column q in solution to the transformed
|
alpar@9
|
148 * problem as follows:
|
alpar@9
|
149 *
|
alpar@9
|
150 * +--------------------------------------+------------------+
|
alpar@9
|
151 * | Transformed problem | Original problem |
|
alpar@9
|
152 * +-----------------+--------------------+------------------+
|
alpar@9
|
153 * | Status of row p | Status of column s | Status of row p |
|
alpar@9
|
154 * +-----------------+--------------------+------------------+
|
alpar@9
|
155 * | GLP_BS | GLP_BS | N/A |
|
alpar@9
|
156 * | GLP_BS | GLP_NL | GLP_BS |
|
alpar@9
|
157 * | GLP_BS | GLP_NU | GLP_BS |
|
alpar@9
|
158 * | GLP_NS | GLP_BS | GLP_BS |
|
alpar@9
|
159 * | GLP_NS | GLP_NL | GLP_NL |
|
alpar@9
|
160 * | GLP_NS | GLP_NU | GLP_NU |
|
alpar@9
|
161 * +-----------------+--------------------+------------------+
|
alpar@9
|
162 *
|
alpar@9
|
163 * Value of row multiplier pi[p] in solution to the original problem
|
alpar@9
|
164 * is the same as in solution to the transformed problem.
|
alpar@9
|
165 *
|
alpar@9
|
166 * 1. In solution to the transformed problem row p and column q cannot
|
alpar@9
|
167 * be basic at the same time; otherwise the basis matrix would have
|
alpar@9
|
168 * two linear dependent columns: unity column of auxiliary variable
|
alpar@9
|
169 * of row p and unity column of variable s.
|
alpar@9
|
170 *
|
alpar@9
|
171 * 2. Though in the transformed problem row p is equality constraint,
|
alpar@9
|
172 * it may be basic due to primal degenerate solution.
|
alpar@9
|
173 *
|
alpar@9
|
174 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
175 *
|
alpar@9
|
176 * Value of row multiplier pi[p] in solution to the original problem
|
alpar@9
|
177 * is the same as in solution to the transformed problem.
|
alpar@9
|
178 *
|
alpar@9
|
179 * RECOVERING MIP SOLUTION
|
alpar@9
|
180 *
|
alpar@9
|
181 * None needed. */
|
alpar@9
|
182
|
alpar@9
|
183 struct ineq_row
|
alpar@9
|
184 { /* inequality constraint row */
|
alpar@9
|
185 int p;
|
alpar@9
|
186 /* row reference number */
|
alpar@9
|
187 int s;
|
alpar@9
|
188 /* column reference number for slack/surplus variable */
|
alpar@9
|
189 };
|
alpar@9
|
190
|
alpar@9
|
191 static int rcv_geq_row(NPP *npp, void *info);
|
alpar@9
|
192
|
alpar@9
|
193 void npp_geq_row(NPP *npp, NPPROW *p)
|
alpar@9
|
194 { /* process row of 'not less than' type */
|
alpar@9
|
195 struct ineq_row *info;
|
alpar@9
|
196 NPPCOL *s;
|
alpar@9
|
197 /* the row must have lower bound */
|
alpar@9
|
198 xassert(p->lb != -DBL_MAX);
|
alpar@9
|
199 xassert(p->lb < p->ub);
|
alpar@9
|
200 /* create column for surplus variable */
|
alpar@9
|
201 s = npp_add_col(npp);
|
alpar@9
|
202 s->lb = 0.0;
|
alpar@9
|
203 s->ub = (p->ub == +DBL_MAX ? +DBL_MAX : p->ub - p->lb);
|
alpar@9
|
204 /* and add it to the transformed problem */
|
alpar@9
|
205 npp_add_aij(npp, p, s, -1.0);
|
alpar@9
|
206 /* create transformation stack entry */
|
alpar@9
|
207 info = npp_push_tse(npp,
|
alpar@9
|
208 rcv_geq_row, sizeof(struct ineq_row));
|
alpar@9
|
209 info->p = p->i;
|
alpar@9
|
210 info->s = s->j;
|
alpar@9
|
211 /* replace the row by equality constraint */
|
alpar@9
|
212 p->ub = p->lb;
|
alpar@9
|
213 return;
|
alpar@9
|
214 }
|
alpar@9
|
215
|
alpar@9
|
216 static int rcv_geq_row(NPP *npp, void *_info)
|
alpar@9
|
217 { /* recover row of 'not less than' type */
|
alpar@9
|
218 struct ineq_row *info = _info;
|
alpar@9
|
219 if (npp->sol == GLP_SOL)
|
alpar@9
|
220 { if (npp->r_stat[info->p] == GLP_BS)
|
alpar@9
|
221 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
222 { npp_error();
|
alpar@9
|
223 return 1;
|
alpar@9
|
224 }
|
alpar@9
|
225 else if (npp->c_stat[info->s] == GLP_NL ||
|
alpar@9
|
226 npp->c_stat[info->s] == GLP_NU)
|
alpar@9
|
227 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
228 else
|
alpar@9
|
229 { npp_error();
|
alpar@9
|
230 return 1;
|
alpar@9
|
231 }
|
alpar@9
|
232 }
|
alpar@9
|
233 else if (npp->r_stat[info->p] == GLP_NS)
|
alpar@9
|
234 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
235 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
236 else if (npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
237 npp->r_stat[info->p] = GLP_NL;
|
alpar@9
|
238 else if (npp->c_stat[info->s] == GLP_NU)
|
alpar@9
|
239 npp->r_stat[info->p] = GLP_NU;
|
alpar@9
|
240 else
|
alpar@9
|
241 { npp_error();
|
alpar@9
|
242 return 1;
|
alpar@9
|
243 }
|
alpar@9
|
244 }
|
alpar@9
|
245 else
|
alpar@9
|
246 { npp_error();
|
alpar@9
|
247 return 1;
|
alpar@9
|
248 }
|
alpar@9
|
249 }
|
alpar@9
|
250 return 0;
|
alpar@9
|
251 }
|
alpar@9
|
252
|
alpar@9
|
253 /***********************************************************************
|
alpar@9
|
254 * NAME
|
alpar@9
|
255 *
|
alpar@9
|
256 * npp_leq_row - process row of 'not greater than' type
|
alpar@9
|
257 *
|
alpar@9
|
258 * SYNOPSIS
|
alpar@9
|
259 *
|
alpar@9
|
260 * #include "glpnpp.h"
|
alpar@9
|
261 * void npp_leq_row(NPP *npp, NPPROW *p);
|
alpar@9
|
262 *
|
alpar@9
|
263 * DESCRIPTION
|
alpar@9
|
264 *
|
alpar@9
|
265 * The routine npp_leq_row processes row p, which is 'not greater than'
|
alpar@9
|
266 * inequality constraint:
|
alpar@9
|
267 *
|
alpar@9
|
268 * (L[p] <=) sum a[p,j] x[j] <= U[p], (1)
|
alpar@9
|
269 * j
|
alpar@9
|
270 *
|
alpar@9
|
271 * where L[p] < U[p], and lower bound may not exist (L[p] = +oo).
|
alpar@9
|
272 *
|
alpar@9
|
273 * PROBLEM TRANSFORMATION
|
alpar@9
|
274 *
|
alpar@9
|
275 * Constraint (1) can be replaced by equality constraint:
|
alpar@9
|
276 *
|
alpar@9
|
277 * sum a[p,j] x[j] + s = L[p], (2)
|
alpar@9
|
278 * j
|
alpar@9
|
279 *
|
alpar@9
|
280 * where
|
alpar@9
|
281 *
|
alpar@9
|
282 * 0 <= s (<= U[p] - L[p]) (3)
|
alpar@9
|
283 *
|
alpar@9
|
284 * is a non-negative slack variable.
|
alpar@9
|
285 *
|
alpar@9
|
286 * Since in the primal system there appears column s having the only
|
alpar@9
|
287 * non-zero coefficient in row p, in the dual system there appears a
|
alpar@9
|
288 * new row:
|
alpar@9
|
289 *
|
alpar@9
|
290 * (+1) pi[p] + lambda = 0, (4)
|
alpar@9
|
291 *
|
alpar@9
|
292 * where (+1) is coefficient of column s in row p, pi[p] is multiplier
|
alpar@9
|
293 * of row p, lambda is multiplier of column q, 0 is coefficient of
|
alpar@9
|
294 * column s in the objective row.
|
alpar@9
|
295 *
|
alpar@9
|
296 * RECOVERING BASIC SOLUTION
|
alpar@9
|
297 *
|
alpar@9
|
298 * Status of row p in solution to the original problem is determined
|
alpar@9
|
299 * by its status and status of column q in solution to the transformed
|
alpar@9
|
300 * problem as follows:
|
alpar@9
|
301 *
|
alpar@9
|
302 * +--------------------------------------+------------------+
|
alpar@9
|
303 * | Transformed problem | Original problem |
|
alpar@9
|
304 * +-----------------+--------------------+------------------+
|
alpar@9
|
305 * | Status of row p | Status of column s | Status of row p |
|
alpar@9
|
306 * +-----------------+--------------------+------------------+
|
alpar@9
|
307 * | GLP_BS | GLP_BS | N/A |
|
alpar@9
|
308 * | GLP_BS | GLP_NL | GLP_BS |
|
alpar@9
|
309 * | GLP_BS | GLP_NU | GLP_BS |
|
alpar@9
|
310 * | GLP_NS | GLP_BS | GLP_BS |
|
alpar@9
|
311 * | GLP_NS | GLP_NL | GLP_NU |
|
alpar@9
|
312 * | GLP_NS | GLP_NU | GLP_NL |
|
alpar@9
|
313 * +-----------------+--------------------+------------------+
|
alpar@9
|
314 *
|
alpar@9
|
315 * Value of row multiplier pi[p] in solution to the original problem
|
alpar@9
|
316 * is the same as in solution to the transformed problem.
|
alpar@9
|
317 *
|
alpar@9
|
318 * 1. In solution to the transformed problem row p and column q cannot
|
alpar@9
|
319 * be basic at the same time; otherwise the basis matrix would have
|
alpar@9
|
320 * two linear dependent columns: unity column of auxiliary variable
|
alpar@9
|
321 * of row p and unity column of variable s.
|
alpar@9
|
322 *
|
alpar@9
|
323 * 2. Though in the transformed problem row p is equality constraint,
|
alpar@9
|
324 * it may be basic due to primal degeneracy.
|
alpar@9
|
325 *
|
alpar@9
|
326 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
327 *
|
alpar@9
|
328 * Value of row multiplier pi[p] in solution to the original problem
|
alpar@9
|
329 * is the same as in solution to the transformed problem.
|
alpar@9
|
330 *
|
alpar@9
|
331 * RECOVERING MIP SOLUTION
|
alpar@9
|
332 *
|
alpar@9
|
333 * None needed. */
|
alpar@9
|
334
|
alpar@9
|
335 static int rcv_leq_row(NPP *npp, void *info);
|
alpar@9
|
336
|
alpar@9
|
337 void npp_leq_row(NPP *npp, NPPROW *p)
|
alpar@9
|
338 { /* process row of 'not greater than' type */
|
alpar@9
|
339 struct ineq_row *info;
|
alpar@9
|
340 NPPCOL *s;
|
alpar@9
|
341 /* the row must have upper bound */
|
alpar@9
|
342 xassert(p->ub != +DBL_MAX);
|
alpar@9
|
343 xassert(p->lb < p->ub);
|
alpar@9
|
344 /* create column for slack variable */
|
alpar@9
|
345 s = npp_add_col(npp);
|
alpar@9
|
346 s->lb = 0.0;
|
alpar@9
|
347 s->ub = (p->lb == -DBL_MAX ? +DBL_MAX : p->ub - p->lb);
|
alpar@9
|
348 /* and add it to the transformed problem */
|
alpar@9
|
349 npp_add_aij(npp, p, s, +1.0);
|
alpar@9
|
350 /* create transformation stack entry */
|
alpar@9
|
351 info = npp_push_tse(npp,
|
alpar@9
|
352 rcv_leq_row, sizeof(struct ineq_row));
|
alpar@9
|
353 info->p = p->i;
|
alpar@9
|
354 info->s = s->j;
|
alpar@9
|
355 /* replace the row by equality constraint */
|
alpar@9
|
356 p->lb = p->ub;
|
alpar@9
|
357 return;
|
alpar@9
|
358 }
|
alpar@9
|
359
|
alpar@9
|
360 static int rcv_leq_row(NPP *npp, void *_info)
|
alpar@9
|
361 { /* recover row of 'not greater than' type */
|
alpar@9
|
362 struct ineq_row *info = _info;
|
alpar@9
|
363 if (npp->sol == GLP_SOL)
|
alpar@9
|
364 { if (npp->r_stat[info->p] == GLP_BS)
|
alpar@9
|
365 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
366 { npp_error();
|
alpar@9
|
367 return 1;
|
alpar@9
|
368 }
|
alpar@9
|
369 else if (npp->c_stat[info->s] == GLP_NL ||
|
alpar@9
|
370 npp->c_stat[info->s] == GLP_NU)
|
alpar@9
|
371 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
372 else
|
alpar@9
|
373 { npp_error();
|
alpar@9
|
374 return 1;
|
alpar@9
|
375 }
|
alpar@9
|
376 }
|
alpar@9
|
377 else if (npp->r_stat[info->p] == GLP_NS)
|
alpar@9
|
378 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
379 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
380 else if (npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
381 npp->r_stat[info->p] = GLP_NU;
|
alpar@9
|
382 else if (npp->c_stat[info->s] == GLP_NU)
|
alpar@9
|
383 npp->r_stat[info->p] = GLP_NL;
|
alpar@9
|
384 else
|
alpar@9
|
385 { npp_error();
|
alpar@9
|
386 return 1;
|
alpar@9
|
387 }
|
alpar@9
|
388 }
|
alpar@9
|
389 else
|
alpar@9
|
390 { npp_error();
|
alpar@9
|
391 return 1;
|
alpar@9
|
392 }
|
alpar@9
|
393 }
|
alpar@9
|
394 return 0;
|
alpar@9
|
395 }
|
alpar@9
|
396
|
alpar@9
|
397 /***********************************************************************
|
alpar@9
|
398 * NAME
|
alpar@9
|
399 *
|
alpar@9
|
400 * npp_free_col - process free (unbounded) column
|
alpar@9
|
401 *
|
alpar@9
|
402 * SYNOPSIS
|
alpar@9
|
403 *
|
alpar@9
|
404 * #include "glpnpp.h"
|
alpar@9
|
405 * void npp_free_col(NPP *npp, NPPCOL *q);
|
alpar@9
|
406 *
|
alpar@9
|
407 * DESCRIPTION
|
alpar@9
|
408 *
|
alpar@9
|
409 * The routine npp_free_col processes column q, which is free (i.e. has
|
alpar@9
|
410 * no finite bounds):
|
alpar@9
|
411 *
|
alpar@9
|
412 * -oo < x[q] < +oo. (1)
|
alpar@9
|
413 *
|
alpar@9
|
414 * PROBLEM TRANSFORMATION
|
alpar@9
|
415 *
|
alpar@9
|
416 * Free (unbounded) variable can be replaced by the difference of two
|
alpar@9
|
417 * non-negative variables:
|
alpar@9
|
418 *
|
alpar@9
|
419 * x[q] = s' - s'', s', s'' >= 0. (2)
|
alpar@9
|
420 *
|
alpar@9
|
421 * Assuming that in the transformed problem x[q] becomes s',
|
alpar@9
|
422 * transformation (2) causes new column s'' to appear, which differs
|
alpar@9
|
423 * from column s' only in the sign of coefficients in constraint and
|
alpar@9
|
424 * objective rows. Thus, if in the dual system the following row
|
alpar@9
|
425 * corresponds to column s':
|
alpar@9
|
426 *
|
alpar@9
|
427 * sum a[i,q] pi[i] + lambda' = c[q], (3)
|
alpar@9
|
428 * i
|
alpar@9
|
429 *
|
alpar@9
|
430 * the row which corresponds to column s'' is the following:
|
alpar@9
|
431 *
|
alpar@9
|
432 * sum (-a[i,q]) pi[i] + lambda'' = -c[q]. (4)
|
alpar@9
|
433 * i
|
alpar@9
|
434 *
|
alpar@9
|
435 * Then from (3) and (4) it follows that:
|
alpar@9
|
436 *
|
alpar@9
|
437 * lambda' + lambda'' = 0 => lambda' = lmabda'' = 0, (5)
|
alpar@9
|
438 *
|
alpar@9
|
439 * where lambda' and lambda'' are multipliers for columns s' and s'',
|
alpar@9
|
440 * resp.
|
alpar@9
|
441 *
|
alpar@9
|
442 * RECOVERING BASIC SOLUTION
|
alpar@9
|
443 *
|
alpar@9
|
444 * With respect to (5) status of column q in solution to the original
|
alpar@9
|
445 * problem is determined by statuses of columns s' and s'' in solution
|
alpar@9
|
446 * to the transformed problem as follows:
|
alpar@9
|
447 *
|
alpar@9
|
448 * +--------------------------------------+------------------+
|
alpar@9
|
449 * | Transformed problem | Original problem |
|
alpar@9
|
450 * +------------------+-------------------+------------------+
|
alpar@9
|
451 * | Status of col s' | Status of col s'' | Status of col q |
|
alpar@9
|
452 * +------------------+-------------------+------------------+
|
alpar@9
|
453 * | GLP_BS | GLP_BS | N/A |
|
alpar@9
|
454 * | GLP_BS | GLP_NL | GLP_BS |
|
alpar@9
|
455 * | GLP_NL | GLP_BS | GLP_BS |
|
alpar@9
|
456 * | GLP_NL | GLP_NL | GLP_NF |
|
alpar@9
|
457 * +------------------+-------------------+------------------+
|
alpar@9
|
458 *
|
alpar@9
|
459 * Value of column q is computed with formula (2).
|
alpar@9
|
460 *
|
alpar@9
|
461 * 1. In solution to the transformed problem columns s' and s'' cannot
|
alpar@9
|
462 * be basic at the same time, because they differ only in the sign,
|
alpar@9
|
463 * hence, are linear dependent.
|
alpar@9
|
464 *
|
alpar@9
|
465 * 2. Though column q is free, it can be non-basic due to dual
|
alpar@9
|
466 * degeneracy.
|
alpar@9
|
467 *
|
alpar@9
|
468 * 3. If column q is integral, columns s' and s'' are also integral.
|
alpar@9
|
469 *
|
alpar@9
|
470 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
471 *
|
alpar@9
|
472 * Value of column q is computed with formula (2).
|
alpar@9
|
473 *
|
alpar@9
|
474 * RECOVERING MIP SOLUTION
|
alpar@9
|
475 *
|
alpar@9
|
476 * Value of column q is computed with formula (2). */
|
alpar@9
|
477
|
alpar@9
|
478 struct free_col
|
alpar@9
|
479 { /* free (unbounded) column */
|
alpar@9
|
480 int q;
|
alpar@9
|
481 /* column reference number for variables x[q] and s' */
|
alpar@9
|
482 int s;
|
alpar@9
|
483 /* column reference number for variable s'' */
|
alpar@9
|
484 };
|
alpar@9
|
485
|
alpar@9
|
486 static int rcv_free_col(NPP *npp, void *info);
|
alpar@9
|
487
|
alpar@9
|
488 void npp_free_col(NPP *npp, NPPCOL *q)
|
alpar@9
|
489 { /* process free (unbounded) column */
|
alpar@9
|
490 struct free_col *info;
|
alpar@9
|
491 NPPCOL *s;
|
alpar@9
|
492 NPPAIJ *aij;
|
alpar@9
|
493 /* the column must be free */
|
alpar@9
|
494 xassert(q->lb == -DBL_MAX && q->ub == +DBL_MAX);
|
alpar@9
|
495 /* variable x[q] becomes s' */
|
alpar@9
|
496 q->lb = 0.0, q->ub = +DBL_MAX;
|
alpar@9
|
497 /* create variable s'' */
|
alpar@9
|
498 s = npp_add_col(npp);
|
alpar@9
|
499 s->is_int = q->is_int;
|
alpar@9
|
500 s->lb = 0.0, s->ub = +DBL_MAX;
|
alpar@9
|
501 /* duplicate objective coefficient */
|
alpar@9
|
502 s->coef = -q->coef;
|
alpar@9
|
503 /* duplicate column of the constraint matrix */
|
alpar@9
|
504 for (aij = q->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
505 npp_add_aij(npp, aij->row, s, -aij->val);
|
alpar@9
|
506 /* create transformation stack entry */
|
alpar@9
|
507 info = npp_push_tse(npp,
|
alpar@9
|
508 rcv_free_col, sizeof(struct free_col));
|
alpar@9
|
509 info->q = q->j;
|
alpar@9
|
510 info->s = s->j;
|
alpar@9
|
511 return;
|
alpar@9
|
512 }
|
alpar@9
|
513
|
alpar@9
|
514 static int rcv_free_col(NPP *npp, void *_info)
|
alpar@9
|
515 { /* recover free (unbounded) column */
|
alpar@9
|
516 struct free_col *info = _info;
|
alpar@9
|
517 if (npp->sol == GLP_SOL)
|
alpar@9
|
518 { if (npp->c_stat[info->q] == GLP_BS)
|
alpar@9
|
519 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
520 { npp_error();
|
alpar@9
|
521 return 1;
|
alpar@9
|
522 }
|
alpar@9
|
523 else if (npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
524 npp->c_stat[info->q] = GLP_BS;
|
alpar@9
|
525 else
|
alpar@9
|
526 { npp_error();
|
alpar@9
|
527 return -1;
|
alpar@9
|
528 }
|
alpar@9
|
529 }
|
alpar@9
|
530 else if (npp->c_stat[info->q] == GLP_NL)
|
alpar@9
|
531 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
532 npp->c_stat[info->q] = GLP_BS;
|
alpar@9
|
533 else if (npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
534 npp->c_stat[info->q] = GLP_NF;
|
alpar@9
|
535 else
|
alpar@9
|
536 { npp_error();
|
alpar@9
|
537 return -1;
|
alpar@9
|
538 }
|
alpar@9
|
539 }
|
alpar@9
|
540 else
|
alpar@9
|
541 { npp_error();
|
alpar@9
|
542 return -1;
|
alpar@9
|
543 }
|
alpar@9
|
544 }
|
alpar@9
|
545 /* compute value of x[q] with formula (2) */
|
alpar@9
|
546 npp->c_value[info->q] -= npp->c_value[info->s];
|
alpar@9
|
547 return 0;
|
alpar@9
|
548 }
|
alpar@9
|
549
|
alpar@9
|
550 /***********************************************************************
|
alpar@9
|
551 * NAME
|
alpar@9
|
552 *
|
alpar@9
|
553 * npp_lbnd_col - process column with (non-zero) lower bound
|
alpar@9
|
554 *
|
alpar@9
|
555 * SYNOPSIS
|
alpar@9
|
556 *
|
alpar@9
|
557 * #include "glpnpp.h"
|
alpar@9
|
558 * void npp_lbnd_col(NPP *npp, NPPCOL *q);
|
alpar@9
|
559 *
|
alpar@9
|
560 * DESCRIPTION
|
alpar@9
|
561 *
|
alpar@9
|
562 * The routine npp_lbnd_col processes column q, which has (non-zero)
|
alpar@9
|
563 * lower bound:
|
alpar@9
|
564 *
|
alpar@9
|
565 * l[q] <= x[q] (<= u[q]), (1)
|
alpar@9
|
566 *
|
alpar@9
|
567 * where l[q] < u[q], and upper bound may not exist (u[q] = +oo).
|
alpar@9
|
568 *
|
alpar@9
|
569 * PROBLEM TRANSFORMATION
|
alpar@9
|
570 *
|
alpar@9
|
571 * Column q can be replaced as follows:
|
alpar@9
|
572 *
|
alpar@9
|
573 * x[q] = l[q] + s, (2)
|
alpar@9
|
574 *
|
alpar@9
|
575 * where
|
alpar@9
|
576 *
|
alpar@9
|
577 * 0 <= s (<= u[q] - l[q]) (3)
|
alpar@9
|
578 *
|
alpar@9
|
579 * is a non-negative variable.
|
alpar@9
|
580 *
|
alpar@9
|
581 * Substituting x[q] from (2) into the objective row, we have:
|
alpar@9
|
582 *
|
alpar@9
|
583 * z = sum c[j] x[j] + c0 =
|
alpar@9
|
584 * j
|
alpar@9
|
585 *
|
alpar@9
|
586 * = sum c[j] x[j] + c[q] x[q] + c0 =
|
alpar@9
|
587 * j!=q
|
alpar@9
|
588 *
|
alpar@9
|
589 * = sum c[j] x[j] + c[q] (l[q] + s) + c0 =
|
alpar@9
|
590 * j!=q
|
alpar@9
|
591 *
|
alpar@9
|
592 * = sum c[j] x[j] + c[q] s + c~0,
|
alpar@9
|
593 *
|
alpar@9
|
594 * where
|
alpar@9
|
595 *
|
alpar@9
|
596 * c~0 = c0 + c[q] l[q] (4)
|
alpar@9
|
597 *
|
alpar@9
|
598 * is the constant term of the objective in the transformed problem.
|
alpar@9
|
599 * Similarly, substituting x[q] into constraint row i, we have:
|
alpar@9
|
600 *
|
alpar@9
|
601 * L[i] <= sum a[i,j] x[j] <= U[i] ==>
|
alpar@9
|
602 * j
|
alpar@9
|
603 *
|
alpar@9
|
604 * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
|
alpar@9
|
605 * j!=q
|
alpar@9
|
606 *
|
alpar@9
|
607 * L[i] <= sum a[i,j] x[j] + a[i,q] (l[q] + s) <= U[i] ==>
|
alpar@9
|
608 * j!=q
|
alpar@9
|
609 *
|
alpar@9
|
610 * L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i],
|
alpar@9
|
611 * j!=q
|
alpar@9
|
612 *
|
alpar@9
|
613 * where
|
alpar@9
|
614 *
|
alpar@9
|
615 * L~[i] = L[i] - a[i,q] l[q], U~[i] = U[i] - a[i,q] l[q] (5)
|
alpar@9
|
616 *
|
alpar@9
|
617 * are lower and upper bounds of row i in the transformed problem,
|
alpar@9
|
618 * resp.
|
alpar@9
|
619 *
|
alpar@9
|
620 * Transformation (2) does not affect the dual system.
|
alpar@9
|
621 *
|
alpar@9
|
622 * RECOVERING BASIC SOLUTION
|
alpar@9
|
623 *
|
alpar@9
|
624 * Status of column q in solution to the original problem is the same
|
alpar@9
|
625 * as in solution to the transformed problem (GLP_BS, GLP_NL or GLP_NU).
|
alpar@9
|
626 * Value of column q is computed with formula (2).
|
alpar@9
|
627 *
|
alpar@9
|
628 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
629 *
|
alpar@9
|
630 * Value of column q is computed with formula (2).
|
alpar@9
|
631 *
|
alpar@9
|
632 * RECOVERING MIP SOLUTION
|
alpar@9
|
633 *
|
alpar@9
|
634 * Value of column q is computed with formula (2). */
|
alpar@9
|
635
|
alpar@9
|
636 struct bnd_col
|
alpar@9
|
637 { /* bounded column */
|
alpar@9
|
638 int q;
|
alpar@9
|
639 /* column reference number for variables x[q] and s */
|
alpar@9
|
640 double bnd;
|
alpar@9
|
641 /* lower/upper bound l[q] or u[q] */
|
alpar@9
|
642 };
|
alpar@9
|
643
|
alpar@9
|
644 static int rcv_lbnd_col(NPP *npp, void *info);
|
alpar@9
|
645
|
alpar@9
|
646 void npp_lbnd_col(NPP *npp, NPPCOL *q)
|
alpar@9
|
647 { /* process column with (non-zero) lower bound */
|
alpar@9
|
648 struct bnd_col *info;
|
alpar@9
|
649 NPPROW *i;
|
alpar@9
|
650 NPPAIJ *aij;
|
alpar@9
|
651 /* the column must have non-zero lower bound */
|
alpar@9
|
652 xassert(q->lb != 0.0);
|
alpar@9
|
653 xassert(q->lb != -DBL_MAX);
|
alpar@9
|
654 xassert(q->lb < q->ub);
|
alpar@9
|
655 /* create transformation stack entry */
|
alpar@9
|
656 info = npp_push_tse(npp,
|
alpar@9
|
657 rcv_lbnd_col, sizeof(struct bnd_col));
|
alpar@9
|
658 info->q = q->j;
|
alpar@9
|
659 info->bnd = q->lb;
|
alpar@9
|
660 /* substitute x[q] into objective row */
|
alpar@9
|
661 npp->c0 += q->coef * q->lb;
|
alpar@9
|
662 /* substitute x[q] into constraint rows */
|
alpar@9
|
663 for (aij = q->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
664 { i = aij->row;
|
alpar@9
|
665 if (i->lb == i->ub)
|
alpar@9
|
666 i->ub = (i->lb -= aij->val * q->lb);
|
alpar@9
|
667 else
|
alpar@9
|
668 { if (i->lb != -DBL_MAX)
|
alpar@9
|
669 i->lb -= aij->val * q->lb;
|
alpar@9
|
670 if (i->ub != +DBL_MAX)
|
alpar@9
|
671 i->ub -= aij->val * q->lb;
|
alpar@9
|
672 }
|
alpar@9
|
673 }
|
alpar@9
|
674 /* column x[q] becomes column s */
|
alpar@9
|
675 if (q->ub != +DBL_MAX)
|
alpar@9
|
676 q->ub -= q->lb;
|
alpar@9
|
677 q->lb = 0.0;
|
alpar@9
|
678 return;
|
alpar@9
|
679 }
|
alpar@9
|
680
|
alpar@9
|
681 static int rcv_lbnd_col(NPP *npp, void *_info)
|
alpar@9
|
682 { /* recover column with (non-zero) lower bound */
|
alpar@9
|
683 struct bnd_col *info = _info;
|
alpar@9
|
684 if (npp->sol == GLP_SOL)
|
alpar@9
|
685 { if (npp->c_stat[info->q] == GLP_BS ||
|
alpar@9
|
686 npp->c_stat[info->q] == GLP_NL ||
|
alpar@9
|
687 npp->c_stat[info->q] == GLP_NU)
|
alpar@9
|
688 npp->c_stat[info->q] = npp->c_stat[info->q];
|
alpar@9
|
689 else
|
alpar@9
|
690 { npp_error();
|
alpar@9
|
691 return 1;
|
alpar@9
|
692 }
|
alpar@9
|
693 }
|
alpar@9
|
694 /* compute value of x[q] with formula (2) */
|
alpar@9
|
695 npp->c_value[info->q] = info->bnd + npp->c_value[info->q];
|
alpar@9
|
696 return 0;
|
alpar@9
|
697 }
|
alpar@9
|
698
|
alpar@9
|
699 /***********************************************************************
|
alpar@9
|
700 * NAME
|
alpar@9
|
701 *
|
alpar@9
|
702 * npp_ubnd_col - process column with upper bound
|
alpar@9
|
703 *
|
alpar@9
|
704 * SYNOPSIS
|
alpar@9
|
705 *
|
alpar@9
|
706 * #include "glpnpp.h"
|
alpar@9
|
707 * void npp_ubnd_col(NPP *npp, NPPCOL *q);
|
alpar@9
|
708 *
|
alpar@9
|
709 * DESCRIPTION
|
alpar@9
|
710 *
|
alpar@9
|
711 * The routine npp_ubnd_col processes column q, which has upper bound:
|
alpar@9
|
712 *
|
alpar@9
|
713 * (l[q] <=) x[q] <= u[q], (1)
|
alpar@9
|
714 *
|
alpar@9
|
715 * where l[q] < u[q], and lower bound may not exist (l[q] = -oo).
|
alpar@9
|
716 *
|
alpar@9
|
717 * PROBLEM TRANSFORMATION
|
alpar@9
|
718 *
|
alpar@9
|
719 * Column q can be replaced as follows:
|
alpar@9
|
720 *
|
alpar@9
|
721 * x[q] = u[q] - s, (2)
|
alpar@9
|
722 *
|
alpar@9
|
723 * where
|
alpar@9
|
724 *
|
alpar@9
|
725 * 0 <= s (<= u[q] - l[q]) (3)
|
alpar@9
|
726 *
|
alpar@9
|
727 * is a non-negative variable.
|
alpar@9
|
728 *
|
alpar@9
|
729 * Substituting x[q] from (2) into the objective row, we have:
|
alpar@9
|
730 *
|
alpar@9
|
731 * z = sum c[j] x[j] + c0 =
|
alpar@9
|
732 * j
|
alpar@9
|
733 *
|
alpar@9
|
734 * = sum c[j] x[j] + c[q] x[q] + c0 =
|
alpar@9
|
735 * j!=q
|
alpar@9
|
736 *
|
alpar@9
|
737 * = sum c[j] x[j] + c[q] (u[q] - s) + c0 =
|
alpar@9
|
738 * j!=q
|
alpar@9
|
739 *
|
alpar@9
|
740 * = sum c[j] x[j] - c[q] s + c~0,
|
alpar@9
|
741 *
|
alpar@9
|
742 * where
|
alpar@9
|
743 *
|
alpar@9
|
744 * c~0 = c0 + c[q] u[q] (4)
|
alpar@9
|
745 *
|
alpar@9
|
746 * is the constant term of the objective in the transformed problem.
|
alpar@9
|
747 * Similarly, substituting x[q] into constraint row i, we have:
|
alpar@9
|
748 *
|
alpar@9
|
749 * L[i] <= sum a[i,j] x[j] <= U[i] ==>
|
alpar@9
|
750 * j
|
alpar@9
|
751 *
|
alpar@9
|
752 * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
|
alpar@9
|
753 * j!=q
|
alpar@9
|
754 *
|
alpar@9
|
755 * L[i] <= sum a[i,j] x[j] + a[i,q] (u[q] - s) <= U[i] ==>
|
alpar@9
|
756 * j!=q
|
alpar@9
|
757 *
|
alpar@9
|
758 * L~[i] <= sum a[i,j] x[j] - a[i,q] s <= U~[i],
|
alpar@9
|
759 * j!=q
|
alpar@9
|
760 *
|
alpar@9
|
761 * where
|
alpar@9
|
762 *
|
alpar@9
|
763 * L~[i] = L[i] - a[i,q] u[q], U~[i] = U[i] - a[i,q] u[q] (5)
|
alpar@9
|
764 *
|
alpar@9
|
765 * are lower and upper bounds of row i in the transformed problem,
|
alpar@9
|
766 * resp.
|
alpar@9
|
767 *
|
alpar@9
|
768 * Note that in the transformed problem coefficients c[q] and a[i,q]
|
alpar@9
|
769 * change their sign. Thus, the row of the dual system corresponding to
|
alpar@9
|
770 * column q:
|
alpar@9
|
771 *
|
alpar@9
|
772 * sum a[i,q] pi[i] + lambda[q] = c[q] (6)
|
alpar@9
|
773 * i
|
alpar@9
|
774 *
|
alpar@9
|
775 * in the transformed problem becomes the following:
|
alpar@9
|
776 *
|
alpar@9
|
777 * sum (-a[i,q]) pi[i] + lambda[s] = -c[q]. (7)
|
alpar@9
|
778 * i
|
alpar@9
|
779 *
|
alpar@9
|
780 * Therefore:
|
alpar@9
|
781 *
|
alpar@9
|
782 * lambda[q] = - lambda[s], (8)
|
alpar@9
|
783 *
|
alpar@9
|
784 * where lambda[q] is multiplier for column q, lambda[s] is multiplier
|
alpar@9
|
785 * for column s.
|
alpar@9
|
786 *
|
alpar@9
|
787 * RECOVERING BASIC SOLUTION
|
alpar@9
|
788 *
|
alpar@9
|
789 * With respect to (8) status of column q in solution to the original
|
alpar@9
|
790 * problem is determined by status of column s in solution to the
|
alpar@9
|
791 * transformed problem as follows:
|
alpar@9
|
792 *
|
alpar@9
|
793 * +-----------------------+--------------------+
|
alpar@9
|
794 * | Status of column s | Status of column q |
|
alpar@9
|
795 * | (transformed problem) | (original problem) |
|
alpar@9
|
796 * +-----------------------+--------------------+
|
alpar@9
|
797 * | GLP_BS | GLP_BS |
|
alpar@9
|
798 * | GLP_NL | GLP_NU |
|
alpar@9
|
799 * | GLP_NU | GLP_NL |
|
alpar@9
|
800 * +-----------------------+--------------------+
|
alpar@9
|
801 *
|
alpar@9
|
802 * Value of column q is computed with formula (2).
|
alpar@9
|
803 *
|
alpar@9
|
804 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
805 *
|
alpar@9
|
806 * Value of column q is computed with formula (2).
|
alpar@9
|
807 *
|
alpar@9
|
808 * RECOVERING MIP SOLUTION
|
alpar@9
|
809 *
|
alpar@9
|
810 * Value of column q is computed with formula (2). */
|
alpar@9
|
811
|
alpar@9
|
812 static int rcv_ubnd_col(NPP *npp, void *info);
|
alpar@9
|
813
|
alpar@9
|
814 void npp_ubnd_col(NPP *npp, NPPCOL *q)
|
alpar@9
|
815 { /* process column with upper bound */
|
alpar@9
|
816 struct bnd_col *info;
|
alpar@9
|
817 NPPROW *i;
|
alpar@9
|
818 NPPAIJ *aij;
|
alpar@9
|
819 /* the column must have upper bound */
|
alpar@9
|
820 xassert(q->ub != +DBL_MAX);
|
alpar@9
|
821 xassert(q->lb < q->ub);
|
alpar@9
|
822 /* create transformation stack entry */
|
alpar@9
|
823 info = npp_push_tse(npp,
|
alpar@9
|
824 rcv_ubnd_col, sizeof(struct bnd_col));
|
alpar@9
|
825 info->q = q->j;
|
alpar@9
|
826 info->bnd = q->ub;
|
alpar@9
|
827 /* substitute x[q] into objective row */
|
alpar@9
|
828 npp->c0 += q->coef * q->ub;
|
alpar@9
|
829 q->coef = -q->coef;
|
alpar@9
|
830 /* substitute x[q] into constraint rows */
|
alpar@9
|
831 for (aij = q->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
832 { i = aij->row;
|
alpar@9
|
833 if (i->lb == i->ub)
|
alpar@9
|
834 i->ub = (i->lb -= aij->val * q->ub);
|
alpar@9
|
835 else
|
alpar@9
|
836 { if (i->lb != -DBL_MAX)
|
alpar@9
|
837 i->lb -= aij->val * q->ub;
|
alpar@9
|
838 if (i->ub != +DBL_MAX)
|
alpar@9
|
839 i->ub -= aij->val * q->ub;
|
alpar@9
|
840 }
|
alpar@9
|
841 aij->val = -aij->val;
|
alpar@9
|
842 }
|
alpar@9
|
843 /* column x[q] becomes column s */
|
alpar@9
|
844 if (q->lb != -DBL_MAX)
|
alpar@9
|
845 q->ub -= q->lb;
|
alpar@9
|
846 else
|
alpar@9
|
847 q->ub = +DBL_MAX;
|
alpar@9
|
848 q->lb = 0.0;
|
alpar@9
|
849 return;
|
alpar@9
|
850 }
|
alpar@9
|
851
|
alpar@9
|
852 static int rcv_ubnd_col(NPP *npp, void *_info)
|
alpar@9
|
853 { /* recover column with upper bound */
|
alpar@9
|
854 struct bnd_col *info = _info;
|
alpar@9
|
855 if (npp->sol == GLP_BS)
|
alpar@9
|
856 { if (npp->c_stat[info->q] == GLP_BS)
|
alpar@9
|
857 npp->c_stat[info->q] = GLP_BS;
|
alpar@9
|
858 else if (npp->c_stat[info->q] == GLP_NL)
|
alpar@9
|
859 npp->c_stat[info->q] = GLP_NU;
|
alpar@9
|
860 else if (npp->c_stat[info->q] == GLP_NU)
|
alpar@9
|
861 npp->c_stat[info->q] = GLP_NL;
|
alpar@9
|
862 else
|
alpar@9
|
863 { npp_error();
|
alpar@9
|
864 return 1;
|
alpar@9
|
865 }
|
alpar@9
|
866 }
|
alpar@9
|
867 /* compute value of x[q] with formula (2) */
|
alpar@9
|
868 npp->c_value[info->q] = info->bnd - npp->c_value[info->q];
|
alpar@9
|
869 return 0;
|
alpar@9
|
870 }
|
alpar@9
|
871
|
alpar@9
|
872 /***********************************************************************
|
alpar@9
|
873 * NAME
|
alpar@9
|
874 *
|
alpar@9
|
875 * npp_dbnd_col - process non-negative column with upper bound
|
alpar@9
|
876 *
|
alpar@9
|
877 * SYNOPSIS
|
alpar@9
|
878 *
|
alpar@9
|
879 * #include "glpnpp.h"
|
alpar@9
|
880 * void npp_dbnd_col(NPP *npp, NPPCOL *q);
|
alpar@9
|
881 *
|
alpar@9
|
882 * DESCRIPTION
|
alpar@9
|
883 *
|
alpar@9
|
884 * The routine npp_dbnd_col processes column q, which is non-negative
|
alpar@9
|
885 * and has upper bound:
|
alpar@9
|
886 *
|
alpar@9
|
887 * 0 <= x[q] <= u[q], (1)
|
alpar@9
|
888 *
|
alpar@9
|
889 * where u[q] > 0.
|
alpar@9
|
890 *
|
alpar@9
|
891 * PROBLEM TRANSFORMATION
|
alpar@9
|
892 *
|
alpar@9
|
893 * Upper bound of column q can be replaced by the following equality
|
alpar@9
|
894 * constraint:
|
alpar@9
|
895 *
|
alpar@9
|
896 * x[q] + s = u[q], (2)
|
alpar@9
|
897 *
|
alpar@9
|
898 * where s >= 0 is a non-negative complement variable.
|
alpar@9
|
899 *
|
alpar@9
|
900 * Since in the primal system along with new row (2) there appears a
|
alpar@9
|
901 * new column s having the only non-zero coefficient in this row, in
|
alpar@9
|
902 * the dual system there appears a new row:
|
alpar@9
|
903 *
|
alpar@9
|
904 * (+1)pi + lambda[s] = 0, (3)
|
alpar@9
|
905 *
|
alpar@9
|
906 * where (+1) is coefficient at column s in row (2), pi is multiplier
|
alpar@9
|
907 * for row (2), lambda[s] is multiplier for column s, 0 is coefficient
|
alpar@9
|
908 * at column s in the objective row.
|
alpar@9
|
909 *
|
alpar@9
|
910 * RECOVERING BASIC SOLUTION
|
alpar@9
|
911 *
|
alpar@9
|
912 * Status of column q in solution to the original problem is determined
|
alpar@9
|
913 * by its status and status of column s in solution to the transformed
|
alpar@9
|
914 * problem as follows:
|
alpar@9
|
915 *
|
alpar@9
|
916 * +-----------------------------------+------------------+
|
alpar@9
|
917 * | Transformed problem | Original problem |
|
alpar@9
|
918 * +-----------------+-----------------+------------------+
|
alpar@9
|
919 * | Status of col q | Status of col s | Status of col q |
|
alpar@9
|
920 * +-----------------+-----------------+------------------+
|
alpar@9
|
921 * | GLP_BS | GLP_BS | GLP_BS |
|
alpar@9
|
922 * | GLP_BS | GLP_NL | GLP_NU |
|
alpar@9
|
923 * | GLP_NL | GLP_BS | GLP_NL |
|
alpar@9
|
924 * | GLP_NL | GLP_NL | GLP_NL (*) |
|
alpar@9
|
925 * +-----------------+-----------------+------------------+
|
alpar@9
|
926 *
|
alpar@9
|
927 * Value of column q in solution to the original problem is the same as
|
alpar@9
|
928 * in solution to the transformed problem.
|
alpar@9
|
929 *
|
alpar@9
|
930 * 1. Formally, in solution to the transformed problem columns q and s
|
alpar@9
|
931 * cannot be non-basic at the same time, since the constraint (2)
|
alpar@9
|
932 * would be violated. However, if u[q] is close to zero, violation
|
alpar@9
|
933 * may be less than a working precision even if both columns q and s
|
alpar@9
|
934 * are non-basic. In this degenerate case row (2) can be only basic,
|
alpar@9
|
935 * i.e. non-active constraint (otherwise corresponding row of the
|
alpar@9
|
936 * basis matrix would be zero). This allows to pivot out auxiliary
|
alpar@9
|
937 * variable and pivot in column s, in which case the row becomes
|
alpar@9
|
938 * active while column s becomes basic.
|
alpar@9
|
939 *
|
alpar@9
|
940 * 2. If column q is integral, column s is also integral.
|
alpar@9
|
941 *
|
alpar@9
|
942 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
943 *
|
alpar@9
|
944 * Value of column q in solution to the original problem is the same as
|
alpar@9
|
945 * in solution to the transformed problem.
|
alpar@9
|
946 *
|
alpar@9
|
947 * RECOVERING MIP SOLUTION
|
alpar@9
|
948 *
|
alpar@9
|
949 * Value of column q in solution to the original problem is the same as
|
alpar@9
|
950 * in solution to the transformed problem. */
|
alpar@9
|
951
|
alpar@9
|
952 struct dbnd_col
|
alpar@9
|
953 { /* double-bounded column */
|
alpar@9
|
954 int q;
|
alpar@9
|
955 /* column reference number for variable x[q] */
|
alpar@9
|
956 int s;
|
alpar@9
|
957 /* column reference number for complement variable s */
|
alpar@9
|
958 };
|
alpar@9
|
959
|
alpar@9
|
960 static int rcv_dbnd_col(NPP *npp, void *info);
|
alpar@9
|
961
|
alpar@9
|
962 void npp_dbnd_col(NPP *npp, NPPCOL *q)
|
alpar@9
|
963 { /* process non-negative column with upper bound */
|
alpar@9
|
964 struct dbnd_col *info;
|
alpar@9
|
965 NPPROW *p;
|
alpar@9
|
966 NPPCOL *s;
|
alpar@9
|
967 /* the column must be non-negative with upper bound */
|
alpar@9
|
968 xassert(q->lb == 0.0);
|
alpar@9
|
969 xassert(q->ub > 0.0);
|
alpar@9
|
970 xassert(q->ub != +DBL_MAX);
|
alpar@9
|
971 /* create variable s */
|
alpar@9
|
972 s = npp_add_col(npp);
|
alpar@9
|
973 s->is_int = q->is_int;
|
alpar@9
|
974 s->lb = 0.0, s->ub = +DBL_MAX;
|
alpar@9
|
975 /* create equality constraint (2) */
|
alpar@9
|
976 p = npp_add_row(npp);
|
alpar@9
|
977 p->lb = p->ub = q->ub;
|
alpar@9
|
978 npp_add_aij(npp, p, q, +1.0);
|
alpar@9
|
979 npp_add_aij(npp, p, s, +1.0);
|
alpar@9
|
980 /* create transformation stack entry */
|
alpar@9
|
981 info = npp_push_tse(npp,
|
alpar@9
|
982 rcv_dbnd_col, sizeof(struct dbnd_col));
|
alpar@9
|
983 info->q = q->j;
|
alpar@9
|
984 info->s = s->j;
|
alpar@9
|
985 /* remove upper bound of x[q] */
|
alpar@9
|
986 q->ub = +DBL_MAX;
|
alpar@9
|
987 return;
|
alpar@9
|
988 }
|
alpar@9
|
989
|
alpar@9
|
990 static int rcv_dbnd_col(NPP *npp, void *_info)
|
alpar@9
|
991 { /* recover non-negative column with upper bound */
|
alpar@9
|
992 struct dbnd_col *info = _info;
|
alpar@9
|
993 if (npp->sol == GLP_BS)
|
alpar@9
|
994 { if (npp->c_stat[info->q] == GLP_BS)
|
alpar@9
|
995 { if (npp->c_stat[info->s] == GLP_BS)
|
alpar@9
|
996 npp->c_stat[info->q] = GLP_BS;
|
alpar@9
|
997 else if (npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
998 npp->c_stat[info->q] = GLP_NU;
|
alpar@9
|
999 else
|
alpar@9
|
1000 { npp_error();
|
alpar@9
|
1001 return 1;
|
alpar@9
|
1002 }
|
alpar@9
|
1003 }
|
alpar@9
|
1004 else if (npp->c_stat[info->q] == GLP_NL)
|
alpar@9
|
1005 { if (npp->c_stat[info->s] == GLP_BS ||
|
alpar@9
|
1006 npp->c_stat[info->s] == GLP_NL)
|
alpar@9
|
1007 npp->c_stat[info->q] = GLP_NL;
|
alpar@9
|
1008 else
|
alpar@9
|
1009 { npp_error();
|
alpar@9
|
1010 return 1;
|
alpar@9
|
1011 }
|
alpar@9
|
1012 }
|
alpar@9
|
1013 else
|
alpar@9
|
1014 { npp_error();
|
alpar@9
|
1015 return 1;
|
alpar@9
|
1016 }
|
alpar@9
|
1017 }
|
alpar@9
|
1018 return 0;
|
alpar@9
|
1019 }
|
alpar@9
|
1020
|
alpar@9
|
1021 /***********************************************************************
|
alpar@9
|
1022 * NAME
|
alpar@9
|
1023 *
|
alpar@9
|
1024 * npp_fixed_col - process fixed column
|
alpar@9
|
1025 *
|
alpar@9
|
1026 * SYNOPSIS
|
alpar@9
|
1027 *
|
alpar@9
|
1028 * #include "glpnpp.h"
|
alpar@9
|
1029 * void npp_fixed_col(NPP *npp, NPPCOL *q);
|
alpar@9
|
1030 *
|
alpar@9
|
1031 * DESCRIPTION
|
alpar@9
|
1032 *
|
alpar@9
|
1033 * The routine npp_fixed_col processes column q, which is fixed:
|
alpar@9
|
1034 *
|
alpar@9
|
1035 * x[q] = s[q], (1)
|
alpar@9
|
1036 *
|
alpar@9
|
1037 * where s[q] is a fixed column value.
|
alpar@9
|
1038 *
|
alpar@9
|
1039 * PROBLEM TRANSFORMATION
|
alpar@9
|
1040 *
|
alpar@9
|
1041 * The value of a fixed column can be substituted into the objective
|
alpar@9
|
1042 * and constraint rows that allows removing the column from the problem.
|
alpar@9
|
1043 *
|
alpar@9
|
1044 * Substituting x[q] = s[q] into the objective row, we have:
|
alpar@9
|
1045 *
|
alpar@9
|
1046 * z = sum c[j] x[j] + c0 =
|
alpar@9
|
1047 * j
|
alpar@9
|
1048 *
|
alpar@9
|
1049 * = sum c[j] x[j] + c[q] x[q] + c0 =
|
alpar@9
|
1050 * j!=q
|
alpar@9
|
1051 *
|
alpar@9
|
1052 * = sum c[j] x[j] + c[q] s[q] + c0 =
|
alpar@9
|
1053 * j!=q
|
alpar@9
|
1054 *
|
alpar@9
|
1055 * = sum c[j] x[j] + c~0,
|
alpar@9
|
1056 * j!=q
|
alpar@9
|
1057 *
|
alpar@9
|
1058 * where
|
alpar@9
|
1059 *
|
alpar@9
|
1060 * c~0 = c0 + c[q] s[q] (2)
|
alpar@9
|
1061 *
|
alpar@9
|
1062 * is the constant term of the objective in the transformed problem.
|
alpar@9
|
1063 * Similarly, substituting x[q] = s[q] into constraint row i, we have:
|
alpar@9
|
1064 *
|
alpar@9
|
1065 * L[i] <= sum a[i,j] x[j] <= U[i] ==>
|
alpar@9
|
1066 * j
|
alpar@9
|
1067 *
|
alpar@9
|
1068 * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
|
alpar@9
|
1069 * j!=q
|
alpar@9
|
1070 *
|
alpar@9
|
1071 * L[i] <= sum a[i,j] x[j] + a[i,q] s[q] <= U[i] ==>
|
alpar@9
|
1072 * j!=q
|
alpar@9
|
1073 *
|
alpar@9
|
1074 * L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i],
|
alpar@9
|
1075 * j!=q
|
alpar@9
|
1076 *
|
alpar@9
|
1077 * where
|
alpar@9
|
1078 *
|
alpar@9
|
1079 * L~[i] = L[i] - a[i,q] s[q], U~[i] = U[i] - a[i,q] s[q] (3)
|
alpar@9
|
1080 *
|
alpar@9
|
1081 * are lower and upper bounds of row i in the transformed problem,
|
alpar@9
|
1082 * resp.
|
alpar@9
|
1083 *
|
alpar@9
|
1084 * RECOVERING BASIC SOLUTION
|
alpar@9
|
1085 *
|
alpar@9
|
1086 * Column q is assigned status GLP_NS and its value is assigned s[q].
|
alpar@9
|
1087 *
|
alpar@9
|
1088 * RECOVERING INTERIOR-POINT SOLUTION
|
alpar@9
|
1089 *
|
alpar@9
|
1090 * Value of column q is assigned s[q].
|
alpar@9
|
1091 *
|
alpar@9
|
1092 * RECOVERING MIP SOLUTION
|
alpar@9
|
1093 *
|
alpar@9
|
1094 * Value of column q is assigned s[q]. */
|
alpar@9
|
1095
|
alpar@9
|
1096 struct fixed_col
|
alpar@9
|
1097 { /* fixed column */
|
alpar@9
|
1098 int q;
|
alpar@9
|
1099 /* column reference number for variable x[q] */
|
alpar@9
|
1100 double s;
|
alpar@9
|
1101 /* value, at which x[q] is fixed */
|
alpar@9
|
1102 };
|
alpar@9
|
1103
|
alpar@9
|
1104 static int rcv_fixed_col(NPP *npp, void *info);
|
alpar@9
|
1105
|
alpar@9
|
1106 void npp_fixed_col(NPP *npp, NPPCOL *q)
|
alpar@9
|
1107 { /* process fixed column */
|
alpar@9
|
1108 struct fixed_col *info;
|
alpar@9
|
1109 NPPROW *i;
|
alpar@9
|
1110 NPPAIJ *aij;
|
alpar@9
|
1111 /* the column must be fixed */
|
alpar@9
|
1112 xassert(q->lb == q->ub);
|
alpar@9
|
1113 /* create transformation stack entry */
|
alpar@9
|
1114 info = npp_push_tse(npp,
|
alpar@9
|
1115 rcv_fixed_col, sizeof(struct fixed_col));
|
alpar@9
|
1116 info->q = q->j;
|
alpar@9
|
1117 info->s = q->lb;
|
alpar@9
|
1118 /* substitute x[q] = s[q] into objective row */
|
alpar@9
|
1119 npp->c0 += q->coef * q->lb;
|
alpar@9
|
1120 /* substitute x[q] = s[q] into constraint rows */
|
alpar@9
|
1121 for (aij = q->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
1122 { i = aij->row;
|
alpar@9
|
1123 if (i->lb == i->ub)
|
alpar@9
|
1124 i->ub = (i->lb -= aij->val * q->lb);
|
alpar@9
|
1125 else
|
alpar@9
|
1126 { if (i->lb != -DBL_MAX)
|
alpar@9
|
1127 i->lb -= aij->val * q->lb;
|
alpar@9
|
1128 if (i->ub != +DBL_MAX)
|
alpar@9
|
1129 i->ub -= aij->val * q->lb;
|
alpar@9
|
1130 }
|
alpar@9
|
1131 }
|
alpar@9
|
1132 /* remove the column from the problem */
|
alpar@9
|
1133 npp_del_col(npp, q);
|
alpar@9
|
1134 return;
|
alpar@9
|
1135 }
|
alpar@9
|
1136
|
alpar@9
|
1137 static int rcv_fixed_col(NPP *npp, void *_info)
|
alpar@9
|
1138 { /* recover fixed column */
|
alpar@9
|
1139 struct fixed_col *info = _info;
|
alpar@9
|
1140 if (npp->sol == GLP_SOL)
|
alpar@9
|
1141 npp->c_stat[info->q] = GLP_NS;
|
alpar@9
|
1142 npp->c_value[info->q] = info->s;
|
alpar@9
|
1143 return 0;
|
alpar@9
|
1144 }
|
alpar@9
|
1145
|
alpar@9
|
1146 /***********************************************************************
|
alpar@9
|
1147 * NAME
|
alpar@9
|
1148 *
|
alpar@9
|
1149 * npp_make_equality - process row with almost identical bounds
|
alpar@9
|
1150 *
|
alpar@9
|
1151 * SYNOPSIS
|
alpar@9
|
1152 *
|
alpar@9
|
1153 * #include "glpnpp.h"
|
alpar@9
|
1154 * int npp_make_equality(NPP *npp, NPPROW *p);
|
alpar@9
|
1155 *
|
alpar@9
|
1156 * DESCRIPTION
|
alpar@9
|
1157 *
|
alpar@9
|
1158 * The routine npp_make_equality processes row p:
|
alpar@9
|
1159 *
|
alpar@9
|
1160 * L[p] <= sum a[p,j] x[j] <= U[p], (1)
|
alpar@9
|
1161 * j
|
alpar@9
|
1162 *
|
alpar@9
|
1163 * where -oo < L[p] < U[p] < +oo, i.e. which is double-sided inequality
|
alpar@9
|
1164 * constraint.
|
alpar@9
|
1165 *
|
alpar@9
|
1166 * RETURNS
|
alpar@9
|
1167 *
|
alpar@9
|
1168 * 0 - row bounds have not been changed;
|
alpar@9
|
1169 *
|
alpar@9
|
1170 * 1 - row has been replaced by equality constraint.
|
alpar@9
|
1171 *
|
alpar@9
|
1172 * PROBLEM TRANSFORMATION
|
alpar@9
|
1173 *
|
alpar@9
|
1174 * If bounds of row (1) are very close to each other:
|
alpar@9
|
1175 *
|
alpar@9
|
1176 * U[p] - L[p] <= eps, (2)
|
alpar@9
|
1177 *
|
alpar@9
|
1178 * where eps is an absolute tolerance for row value, the row can be
|
alpar@9
|
1179 * replaced by the following almost equivalent equiality constraint:
|
alpar@9
|
1180 *
|
alpar@9
|
1181 * sum a[p,j] x[j] = b, (3)
|
alpar@9
|
1182 * j
|
alpar@9
|
1183 *
|
alpar@9
|
1184 * where b = (L[p] + U[p]) / 2. If the right-hand side in (3) happens
|
alpar@9
|
1185 * to be very close to its nearest integer:
|
alpar@9
|
1186 *
|
alpar@9
|
1187 * |b - floor(b + 0.5)| <= eps, (4)
|
alpar@9
|
1188 *
|
alpar@9
|
1189 * it is reasonable to use this nearest integer as the right-hand side.
|
alpar@9
|
1190 *
|
alpar@9
|
1191 * RECOVERING BASIC SOLUTION
|
alpar@9
|
1192 *
|
alpar@9
|
1193 * Status of row p in solution to the original problem is determined
|
alpar@9
|
1194 * by its status and the sign of its multiplier pi[p] in solution to
|
alpar@9
|
1195 * the transformed problem as follows:
|
alpar@9
|
1196 *
|
alpar@9
|
1197 * +-----------------------+---------+--------------------+
|
alpar@9
|
1198 * | Status of row p | Sign of | Status of row p |
|
alpar@9
|
1199 * | (transformed problem) | pi[p] | (original problem) |
|
alpar@9
|
1200 * +-----------------------+---------+--------------------+
|
alpar@9
|
1201 * | GLP_BS | + / - | GLP_BS |
|
alpar@9
|
1202 * | GLP_NS | + | GLP_NL |
|
alpar@9
|
1203 * | GLP_NS | - | GLP_NU |
|
alpar@9
|
1204 * +-----------------------+---------+--------------------+
|
alpar@9
|
1205 *
|
alpar@9
|
1206 * Value of row multiplier pi[p] in solution to the original problem is
|
alpar@9
|
1207 * the same as in solution to the transformed problem.
|
alpar@9
|
1208 *
|
alpar@9
|
1209 * RECOVERING INTERIOR POINT SOLUTION
|
alpar@9
|
1210 *
|
alpar@9
|
1211 * Value of row multiplier pi[p] in solution to the original problem is
|
alpar@9
|
1212 * the same as in solution to the transformed problem.
|
alpar@9
|
1213 *
|
alpar@9
|
1214 * RECOVERING MIP SOLUTION
|
alpar@9
|
1215 *
|
alpar@9
|
1216 * None needed. */
|
alpar@9
|
1217
|
alpar@9
|
1218 struct make_equality
|
alpar@9
|
1219 { /* row with almost identical bounds */
|
alpar@9
|
1220 int p;
|
alpar@9
|
1221 /* row reference number */
|
alpar@9
|
1222 };
|
alpar@9
|
1223
|
alpar@9
|
1224 static int rcv_make_equality(NPP *npp, void *info);
|
alpar@9
|
1225
|
alpar@9
|
1226 int npp_make_equality(NPP *npp, NPPROW *p)
|
alpar@9
|
1227 { /* process row with almost identical bounds */
|
alpar@9
|
1228 struct make_equality *info;
|
alpar@9
|
1229 double b, eps, nint;
|
alpar@9
|
1230 /* the row must be double-sided inequality */
|
alpar@9
|
1231 xassert(p->lb != -DBL_MAX);
|
alpar@9
|
1232 xassert(p->ub != +DBL_MAX);
|
alpar@9
|
1233 xassert(p->lb < p->ub);
|
alpar@9
|
1234 /* check row bounds */
|
alpar@9
|
1235 eps = 1e-9 + 1e-12 * fabs(p->lb);
|
alpar@9
|
1236 if (p->ub - p->lb > eps) return 0;
|
alpar@9
|
1237 /* row bounds are very close to each other */
|
alpar@9
|
1238 /* create transformation stack entry */
|
alpar@9
|
1239 info = npp_push_tse(npp,
|
alpar@9
|
1240 rcv_make_equality, sizeof(struct make_equality));
|
alpar@9
|
1241 info->p = p->i;
|
alpar@9
|
1242 /* compute right-hand side */
|
alpar@9
|
1243 b = 0.5 * (p->ub + p->lb);
|
alpar@9
|
1244 nint = floor(b + 0.5);
|
alpar@9
|
1245 if (fabs(b - nint) <= eps) b = nint;
|
alpar@9
|
1246 /* replace row p by almost equivalent equality constraint */
|
alpar@9
|
1247 p->lb = p->ub = b;
|
alpar@9
|
1248 return 1;
|
alpar@9
|
1249 }
|
alpar@9
|
1250
|
alpar@9
|
1251 int rcv_make_equality(NPP *npp, void *_info)
|
alpar@9
|
1252 { /* recover row with almost identical bounds */
|
alpar@9
|
1253 struct make_equality *info = _info;
|
alpar@9
|
1254 if (npp->sol == GLP_SOL)
|
alpar@9
|
1255 { if (npp->r_stat[info->p] == GLP_BS)
|
alpar@9
|
1256 npp->r_stat[info->p] = GLP_BS;
|
alpar@9
|
1257 else if (npp->r_stat[info->p] == GLP_NS)
|
alpar@9
|
1258 { if (npp->r_pi[info->p] >= 0.0)
|
alpar@9
|
1259 npp->r_stat[info->p] = GLP_NL;
|
alpar@9
|
1260 else
|
alpar@9
|
1261 npp->r_stat[info->p] = GLP_NU;
|
alpar@9
|
1262 }
|
alpar@9
|
1263 else
|
alpar@9
|
1264 { npp_error();
|
alpar@9
|
1265 return 1;
|
alpar@9
|
1266 }
|
alpar@9
|
1267 }
|
alpar@9
|
1268 return 0;
|
alpar@9
|
1269 }
|
alpar@9
|
1270
|
alpar@9
|
1271 /***********************************************************************
|
alpar@9
|
1272 * NAME
|
alpar@9
|
1273 *
|
alpar@9
|
1274 * npp_make_fixed - process column with almost identical bounds
|
alpar@9
|
1275 *
|
alpar@9
|
1276 * SYNOPSIS
|
alpar@9
|
1277 *
|
alpar@9
|
1278 * #include "glpnpp.h"
|
alpar@9
|
1279 * int npp_make_fixed(NPP *npp, NPPCOL *q);
|
alpar@9
|
1280 *
|
alpar@9
|
1281 * DESCRIPTION
|
alpar@9
|
1282 *
|
alpar@9
|
1283 * The routine npp_make_fixed processes column q:
|
alpar@9
|
1284 *
|
alpar@9
|
1285 * l[q] <= x[q] <= u[q], (1)
|
alpar@9
|
1286 *
|
alpar@9
|
1287 * where -oo < l[q] < u[q] < +oo, i.e. which has both lower and upper
|
alpar@9
|
1288 * bounds.
|
alpar@9
|
1289 *
|
alpar@9
|
1290 * RETURNS
|
alpar@9
|
1291 *
|
alpar@9
|
1292 * 0 - column bounds have not been changed;
|
alpar@9
|
1293 *
|
alpar@9
|
1294 * 1 - column has been fixed.
|
alpar@9
|
1295 *
|
alpar@9
|
1296 * PROBLEM TRANSFORMATION
|
alpar@9
|
1297 *
|
alpar@9
|
1298 * If bounds of column (1) are very close to each other:
|
alpar@9
|
1299 *
|
alpar@9
|
1300 * u[q] - l[q] <= eps, (2)
|
alpar@9
|
1301 *
|
alpar@9
|
1302 * where eps is an absolute tolerance for column value, the column can
|
alpar@9
|
1303 * be fixed:
|
alpar@9
|
1304 *
|
alpar@9
|
1305 * x[q] = s[q], (3)
|
alpar@9
|
1306 *
|
alpar@9
|
1307 * where s[q] = (l[q] + u[q]) / 2. And if the fixed column value s[q]
|
alpar@9
|
1308 * happens to be very close to its nearest integer:
|
alpar@9
|
1309 *
|
alpar@9
|
1310 * |s[q] - floor(s[q] + 0.5)| <= eps, (4)
|
alpar@9
|
1311 *
|
alpar@9
|
1312 * it is reasonable to use this nearest integer as the fixed value.
|
alpar@9
|
1313 *
|
alpar@9
|
1314 * RECOVERING BASIC SOLUTION
|
alpar@9
|
1315 *
|
alpar@9
|
1316 * In the dual system of the original (as well as transformed) problem
|
alpar@9
|
1317 * column q corresponds to the following row:
|
alpar@9
|
1318 *
|
alpar@9
|
1319 * sum a[i,q] pi[i] + lambda[q] = c[q]. (5)
|
alpar@9
|
1320 * i
|
alpar@9
|
1321 *
|
alpar@9
|
1322 * Since multipliers pi[i] are known for all rows from solution to the
|
alpar@9
|
1323 * transformed problem, formula (5) allows computing value of multiplier
|
alpar@9
|
1324 * (reduced cost) for column q:
|
alpar@9
|
1325 *
|
alpar@9
|
1326 * lambda[q] = c[q] - sum a[i,q] pi[i]. (6)
|
alpar@9
|
1327 * i
|
alpar@9
|
1328 *
|
alpar@9
|
1329 * Status of column q in solution to the original problem is determined
|
alpar@9
|
1330 * by its status and the sign of its multiplier lambda[q] in solution to
|
alpar@9
|
1331 * the transformed problem as follows:
|
alpar@9
|
1332 *
|
alpar@9
|
1333 * +-----------------------+-----------+--------------------+
|
alpar@9
|
1334 * | Status of column q | Sign of | Status of column q |
|
alpar@9
|
1335 * | (transformed problem) | lambda[q] | (original problem) |
|
alpar@9
|
1336 * +-----------------------+-----------+--------------------+
|
alpar@9
|
1337 * | GLP_BS | + / - | GLP_BS |
|
alpar@9
|
1338 * | GLP_NS | + | GLP_NL |
|
alpar@9
|
1339 * | GLP_NS | - | GLP_NU |
|
alpar@9
|
1340 * +-----------------------+-----------+--------------------+
|
alpar@9
|
1341 *
|
alpar@9
|
1342 * Value of column q in solution to the original problem is the same as
|
alpar@9
|
1343 * in solution to the transformed problem.
|
alpar@9
|
1344 *
|
alpar@9
|
1345 * RECOVERING INTERIOR POINT SOLUTION
|
alpar@9
|
1346 *
|
alpar@9
|
1347 * Value of column q in solution to the original problem is the same as
|
alpar@9
|
1348 * in solution to the transformed problem.
|
alpar@9
|
1349 *
|
alpar@9
|
1350 * RECOVERING MIP SOLUTION
|
alpar@9
|
1351 *
|
alpar@9
|
1352 * None needed. */
|
alpar@9
|
1353
|
alpar@9
|
1354 struct make_fixed
|
alpar@9
|
1355 { /* column with almost identical bounds */
|
alpar@9
|
1356 int q;
|
alpar@9
|
1357 /* column reference number */
|
alpar@9
|
1358 double c;
|
alpar@9
|
1359 /* objective coefficient at x[q] */
|
alpar@9
|
1360 NPPLFE *ptr;
|
alpar@9
|
1361 /* list of non-zero coefficients a[i,q] */
|
alpar@9
|
1362 };
|
alpar@9
|
1363
|
alpar@9
|
1364 static int rcv_make_fixed(NPP *npp, void *info);
|
alpar@9
|
1365
|
alpar@9
|
1366 int npp_make_fixed(NPP *npp, NPPCOL *q)
|
alpar@9
|
1367 { /* process column with almost identical bounds */
|
alpar@9
|
1368 struct make_fixed *info;
|
alpar@9
|
1369 NPPAIJ *aij;
|
alpar@9
|
1370 NPPLFE *lfe;
|
alpar@9
|
1371 double s, eps, nint;
|
alpar@9
|
1372 /* the column must be double-bounded */
|
alpar@9
|
1373 xassert(q->lb != -DBL_MAX);
|
alpar@9
|
1374 xassert(q->ub != +DBL_MAX);
|
alpar@9
|
1375 xassert(q->lb < q->ub);
|
alpar@9
|
1376 /* check column bounds */
|
alpar@9
|
1377 eps = 1e-9 + 1e-12 * fabs(q->lb);
|
alpar@9
|
1378 if (q->ub - q->lb > eps) return 0;
|
alpar@9
|
1379 /* column bounds are very close to each other */
|
alpar@9
|
1380 /* create transformation stack entry */
|
alpar@9
|
1381 info = npp_push_tse(npp,
|
alpar@9
|
1382 rcv_make_fixed, sizeof(struct make_fixed));
|
alpar@9
|
1383 info->q = q->j;
|
alpar@9
|
1384 info->c = q->coef;
|
alpar@9
|
1385 info->ptr = NULL;
|
alpar@9
|
1386 /* save column coefficients a[i,q] (needed for basic solution
|
alpar@9
|
1387 only) */
|
alpar@9
|
1388 if (npp->sol == GLP_SOL)
|
alpar@9
|
1389 { for (aij = q->ptr; aij != NULL; aij = aij->c_next)
|
alpar@9
|
1390 { lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE));
|
alpar@9
|
1391 lfe->ref = aij->row->i;
|
alpar@9
|
1392 lfe->val = aij->val;
|
alpar@9
|
1393 lfe->next = info->ptr;
|
alpar@9
|
1394 info->ptr = lfe;
|
alpar@9
|
1395 }
|
alpar@9
|
1396 }
|
alpar@9
|
1397 /* compute column fixed value */
|
alpar@9
|
1398 s = 0.5 * (q->ub + q->lb);
|
alpar@9
|
1399 nint = floor(s + 0.5);
|
alpar@9
|
1400 if (fabs(s - nint) <= eps) s = nint;
|
alpar@9
|
1401 /* make column q fixed */
|
alpar@9
|
1402 q->lb = q->ub = s;
|
alpar@9
|
1403 return 1;
|
alpar@9
|
1404 }
|
alpar@9
|
1405
|
alpar@9
|
1406 static int rcv_make_fixed(NPP *npp, void *_info)
|
alpar@9
|
1407 { /* recover column with almost identical bounds */
|
alpar@9
|
1408 struct make_fixed *info = _info;
|
alpar@9
|
1409 NPPLFE *lfe;
|
alpar@9
|
1410 double lambda;
|
alpar@9
|
1411 if (npp->sol == GLP_SOL)
|
alpar@9
|
1412 { if (npp->c_stat[info->q] == GLP_BS)
|
alpar@9
|
1413 npp->c_stat[info->q] = GLP_BS;
|
alpar@9
|
1414 else if (npp->c_stat[info->q] == GLP_NS)
|
alpar@9
|
1415 { /* compute multiplier for column q with formula (6) */
|
alpar@9
|
1416 lambda = info->c;
|
alpar@9
|
1417 for (lfe = info->ptr; lfe != NULL; lfe = lfe->next)
|
alpar@9
|
1418 lambda -= lfe->val * npp->r_pi[lfe->ref];
|
alpar@9
|
1419 /* assign status to non-basic column */
|
alpar@9
|
1420 if (lambda >= 0.0)
|
alpar@9
|
1421 npp->c_stat[info->q] = GLP_NL;
|
alpar@9
|
1422 else
|
alpar@9
|
1423 npp->c_stat[info->q] = GLP_NU;
|
alpar@9
|
1424 }
|
alpar@9
|
1425 else
|
alpar@9
|
1426 { npp_error();
|
alpar@9
|
1427 return 1;
|
alpar@9
|
1428 }
|
alpar@9
|
1429 }
|
alpar@9
|
1430 return 0;
|
alpar@9
|
1431 }
|
alpar@9
|
1432
|
alpar@9
|
1433 /* eof */
|