rev |
line source |
alpar@9
|
1 /* glpbfd.c (LP basis factorization driver) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 typedef struct BFD BFD;
|
alpar@9
|
26
|
alpar@9
|
27 #define GLPBFD_PRIVATE
|
alpar@9
|
28 #include "glpapi.h"
|
alpar@9
|
29 #include "glpfhv.h"
|
alpar@9
|
30 #include "glplpf.h"
|
alpar@9
|
31
|
alpar@9
|
32 /* CAUTION: DO NOT CHANGE THE LIMIT BELOW */
|
alpar@9
|
33
|
alpar@9
|
34 #define M_MAX 100000000 /* = 100*10^6 */
|
alpar@9
|
35 /* maximal order of the basis matrix */
|
alpar@9
|
36
|
alpar@9
|
37 struct BFD
|
alpar@9
|
38 { /* LP basis factorization */
|
alpar@9
|
39 int valid;
|
alpar@9
|
40 /* factorization is valid only if this flag is set */
|
alpar@9
|
41 int type;
|
alpar@9
|
42 /* factorization type:
|
alpar@9
|
43 GLP_BF_FT - LUF + Forrest-Tomlin
|
alpar@9
|
44 GLP_BF_BG - LUF + Schur compl. + Bartels-Golub
|
alpar@9
|
45 GLP_BF_GR - LUF + Schur compl. + Givens rotation */
|
alpar@9
|
46 FHV *fhv;
|
alpar@9
|
47 /* LP basis factorization (GLP_BF_FT) */
|
alpar@9
|
48 LPF *lpf;
|
alpar@9
|
49 /* LP basis factorization (GLP_BF_BG, GLP_BF_GR) */
|
alpar@9
|
50 int lu_size; /* luf.sv_size */
|
alpar@9
|
51 double piv_tol; /* luf.piv_tol */
|
alpar@9
|
52 int piv_lim; /* luf.piv_lim */
|
alpar@9
|
53 int suhl; /* luf.suhl */
|
alpar@9
|
54 double eps_tol; /* luf.eps_tol */
|
alpar@9
|
55 double max_gro; /* luf.max_gro */
|
alpar@9
|
56 int nfs_max; /* fhv.hh_max */
|
alpar@9
|
57 double upd_tol; /* fhv.upd_tol */
|
alpar@9
|
58 int nrs_max; /* lpf.n_max */
|
alpar@9
|
59 int rs_size; /* lpf.v_size */
|
alpar@9
|
60 /* internal control parameters */
|
alpar@9
|
61 int upd_lim;
|
alpar@9
|
62 /* the factorization update limit */
|
alpar@9
|
63 int upd_cnt;
|
alpar@9
|
64 /* the factorization update count */
|
alpar@9
|
65 };
|
alpar@9
|
66
|
alpar@9
|
67 /***********************************************************************
|
alpar@9
|
68 * NAME
|
alpar@9
|
69 *
|
alpar@9
|
70 * bfd_create_it - create LP basis factorization
|
alpar@9
|
71 *
|
alpar@9
|
72 * SYNOPSIS
|
alpar@9
|
73 *
|
alpar@9
|
74 * #include "glpbfd.h"
|
alpar@9
|
75 * BFD *bfd_create_it(void);
|
alpar@9
|
76 *
|
alpar@9
|
77 * DESCRIPTION
|
alpar@9
|
78 *
|
alpar@9
|
79 * The routine bfd_create_it creates a program object, which represents
|
alpar@9
|
80 * a factorization of LP basis.
|
alpar@9
|
81 *
|
alpar@9
|
82 * RETURNS
|
alpar@9
|
83 *
|
alpar@9
|
84 * The routine bfd_create_it returns a pointer to the object created. */
|
alpar@9
|
85
|
alpar@9
|
86 BFD *bfd_create_it(void)
|
alpar@9
|
87 { BFD *bfd;
|
alpar@9
|
88 bfd = xmalloc(sizeof(BFD));
|
alpar@9
|
89 bfd->valid = 0;
|
alpar@9
|
90 bfd->type = GLP_BF_FT;
|
alpar@9
|
91 bfd->fhv = NULL;
|
alpar@9
|
92 bfd->lpf = NULL;
|
alpar@9
|
93 bfd->lu_size = 0;
|
alpar@9
|
94 bfd->piv_tol = 0.10;
|
alpar@9
|
95 bfd->piv_lim = 4;
|
alpar@9
|
96 bfd->suhl = 1;
|
alpar@9
|
97 bfd->eps_tol = 1e-15;
|
alpar@9
|
98 bfd->max_gro = 1e+10;
|
alpar@9
|
99 bfd->nfs_max = 100;
|
alpar@9
|
100 bfd->upd_tol = 1e-6;
|
alpar@9
|
101 bfd->nrs_max = 100;
|
alpar@9
|
102 bfd->rs_size = 1000;
|
alpar@9
|
103 bfd->upd_lim = -1;
|
alpar@9
|
104 bfd->upd_cnt = 0;
|
alpar@9
|
105 return bfd;
|
alpar@9
|
106 }
|
alpar@9
|
107
|
alpar@9
|
108 /**********************************************************************/
|
alpar@9
|
109
|
alpar@9
|
110 void bfd_set_parm(BFD *bfd, const void *_parm)
|
alpar@9
|
111 { /* change LP basis factorization control parameters */
|
alpar@9
|
112 const glp_bfcp *parm = _parm;
|
alpar@9
|
113 xassert(bfd != NULL);
|
alpar@9
|
114 bfd->type = parm->type;
|
alpar@9
|
115 bfd->lu_size = parm->lu_size;
|
alpar@9
|
116 bfd->piv_tol = parm->piv_tol;
|
alpar@9
|
117 bfd->piv_lim = parm->piv_lim;
|
alpar@9
|
118 bfd->suhl = parm->suhl;
|
alpar@9
|
119 bfd->eps_tol = parm->eps_tol;
|
alpar@9
|
120 bfd->max_gro = parm->max_gro;
|
alpar@9
|
121 bfd->nfs_max = parm->nfs_max;
|
alpar@9
|
122 bfd->upd_tol = parm->upd_tol;
|
alpar@9
|
123 bfd->nrs_max = parm->nrs_max;
|
alpar@9
|
124 bfd->rs_size = parm->rs_size;
|
alpar@9
|
125 return;
|
alpar@9
|
126 }
|
alpar@9
|
127
|
alpar@9
|
128 /***********************************************************************
|
alpar@9
|
129 * NAME
|
alpar@9
|
130 *
|
alpar@9
|
131 * bfd_factorize - compute LP basis factorization
|
alpar@9
|
132 *
|
alpar@9
|
133 * SYNOPSIS
|
alpar@9
|
134 *
|
alpar@9
|
135 * #include "glpbfd.h"
|
alpar@9
|
136 * int bfd_factorize(BFD *bfd, int m, int bh[], int (*col)(void *info,
|
alpar@9
|
137 * int j, int ind[], double val[]), void *info);
|
alpar@9
|
138 *
|
alpar@9
|
139 * DESCRIPTION
|
alpar@9
|
140 *
|
alpar@9
|
141 * The routine bfd_factorize computes the factorization of the basis
|
alpar@9
|
142 * matrix B specified by the routine col.
|
alpar@9
|
143 *
|
alpar@9
|
144 * The parameter bfd specified the basis factorization data structure
|
alpar@9
|
145 * created with the routine bfd_create_it.
|
alpar@9
|
146 *
|
alpar@9
|
147 * The parameter m specifies the order of B, m > 0.
|
alpar@9
|
148 *
|
alpar@9
|
149 * The array bh specifies the basis header: bh[j], 1 <= j <= m, is the
|
alpar@9
|
150 * number of j-th column of B in some original matrix. The array bh is
|
alpar@9
|
151 * optional and can be specified as NULL.
|
alpar@9
|
152 *
|
alpar@9
|
153 * The formal routine col specifies the matrix B to be factorized. To
|
alpar@9
|
154 * obtain j-th column of A the routine bfd_factorize calls the routine
|
alpar@9
|
155 * col with the parameter j (1 <= j <= n). In response the routine col
|
alpar@9
|
156 * should store row indices and numerical values of non-zero elements
|
alpar@9
|
157 * of j-th column of B to locations ind[1,...,len] and val[1,...,len],
|
alpar@9
|
158 * respectively, where len is the number of non-zeros in j-th column
|
alpar@9
|
159 * returned on exit. Neither zero nor duplicate elements are allowed.
|
alpar@9
|
160 *
|
alpar@9
|
161 * The parameter info is a transit pointer passed to the routine col.
|
alpar@9
|
162 *
|
alpar@9
|
163 * RETURNS
|
alpar@9
|
164 *
|
alpar@9
|
165 * 0 The factorization has been successfully computed.
|
alpar@9
|
166 *
|
alpar@9
|
167 * BFD_ESING
|
alpar@9
|
168 * The specified matrix is singular within the working precision.
|
alpar@9
|
169 *
|
alpar@9
|
170 * BFD_ECOND
|
alpar@9
|
171 * The specified matrix is ill-conditioned.
|
alpar@9
|
172 *
|
alpar@9
|
173 * For more details see comments to the routine luf_factorize. */
|
alpar@9
|
174
|
alpar@9
|
175 int bfd_factorize(BFD *bfd, int m, const int bh[], int (*col)
|
alpar@9
|
176 (void *info, int j, int ind[], double val[]), void *info)
|
alpar@9
|
177 { LUF *luf;
|
alpar@9
|
178 int nov, ret;
|
alpar@9
|
179 xassert(bfd != NULL);
|
alpar@9
|
180 xassert(1 <= m && m <= M_MAX);
|
alpar@9
|
181 /* invalidate the factorization */
|
alpar@9
|
182 bfd->valid = 0;
|
alpar@9
|
183 /* create the factorization, if necessary */
|
alpar@9
|
184 nov = 0;
|
alpar@9
|
185 switch (bfd->type)
|
alpar@9
|
186 { case GLP_BF_FT:
|
alpar@9
|
187 if (bfd->lpf != NULL)
|
alpar@9
|
188 lpf_delete_it(bfd->lpf), bfd->lpf = NULL;
|
alpar@9
|
189 if (bfd->fhv == NULL)
|
alpar@9
|
190 bfd->fhv = fhv_create_it(), nov = 1;
|
alpar@9
|
191 break;
|
alpar@9
|
192 case GLP_BF_BG:
|
alpar@9
|
193 case GLP_BF_GR:
|
alpar@9
|
194 if (bfd->fhv != NULL)
|
alpar@9
|
195 fhv_delete_it(bfd->fhv), bfd->fhv = NULL;
|
alpar@9
|
196 if (bfd->lpf == NULL)
|
alpar@9
|
197 bfd->lpf = lpf_create_it(), nov = 1;
|
alpar@9
|
198 break;
|
alpar@9
|
199 default:
|
alpar@9
|
200 xassert(bfd != bfd);
|
alpar@9
|
201 }
|
alpar@9
|
202 /* set control parameters specific to LUF */
|
alpar@9
|
203 if (bfd->fhv != NULL)
|
alpar@9
|
204 luf = bfd->fhv->luf;
|
alpar@9
|
205 else if (bfd->lpf != NULL)
|
alpar@9
|
206 luf = bfd->lpf->luf;
|
alpar@9
|
207 else
|
alpar@9
|
208 xassert(bfd != bfd);
|
alpar@9
|
209 if (nov) luf->new_sva = bfd->lu_size;
|
alpar@9
|
210 luf->piv_tol = bfd->piv_tol;
|
alpar@9
|
211 luf->piv_lim = bfd->piv_lim;
|
alpar@9
|
212 luf->suhl = bfd->suhl;
|
alpar@9
|
213 luf->eps_tol = bfd->eps_tol;
|
alpar@9
|
214 luf->max_gro = bfd->max_gro;
|
alpar@9
|
215 /* set control parameters specific to FHV */
|
alpar@9
|
216 if (bfd->fhv != NULL)
|
alpar@9
|
217 { if (nov) bfd->fhv->hh_max = bfd->nfs_max;
|
alpar@9
|
218 bfd->fhv->upd_tol = bfd->upd_tol;
|
alpar@9
|
219 }
|
alpar@9
|
220 /* set control parameters specific to LPF */
|
alpar@9
|
221 if (bfd->lpf != NULL)
|
alpar@9
|
222 { if (nov) bfd->lpf->n_max = bfd->nrs_max;
|
alpar@9
|
223 if (nov) bfd->lpf->v_size = bfd->rs_size;
|
alpar@9
|
224 }
|
alpar@9
|
225 /* try to factorize the basis matrix */
|
alpar@9
|
226 if (bfd->fhv != NULL)
|
alpar@9
|
227 { switch (fhv_factorize(bfd->fhv, m, col, info))
|
alpar@9
|
228 { case 0:
|
alpar@9
|
229 break;
|
alpar@9
|
230 case FHV_ESING:
|
alpar@9
|
231 ret = BFD_ESING;
|
alpar@9
|
232 goto done;
|
alpar@9
|
233 case FHV_ECOND:
|
alpar@9
|
234 ret = BFD_ECOND;
|
alpar@9
|
235 goto done;
|
alpar@9
|
236 default:
|
alpar@9
|
237 xassert(bfd != bfd);
|
alpar@9
|
238 }
|
alpar@9
|
239 }
|
alpar@9
|
240 else if (bfd->lpf != NULL)
|
alpar@9
|
241 { switch (lpf_factorize(bfd->lpf, m, bh, col, info))
|
alpar@9
|
242 { case 0:
|
alpar@9
|
243 /* set the Schur complement update type */
|
alpar@9
|
244 switch (bfd->type)
|
alpar@9
|
245 { case GLP_BF_BG:
|
alpar@9
|
246 /* Bartels-Golub update */
|
alpar@9
|
247 bfd->lpf->scf->t_opt = SCF_TBG;
|
alpar@9
|
248 break;
|
alpar@9
|
249 case GLP_BF_GR:
|
alpar@9
|
250 /* Givens rotation update */
|
alpar@9
|
251 bfd->lpf->scf->t_opt = SCF_TGR;
|
alpar@9
|
252 break;
|
alpar@9
|
253 default:
|
alpar@9
|
254 xassert(bfd != bfd);
|
alpar@9
|
255 }
|
alpar@9
|
256 break;
|
alpar@9
|
257 case LPF_ESING:
|
alpar@9
|
258 ret = BFD_ESING;
|
alpar@9
|
259 goto done;
|
alpar@9
|
260 case LPF_ECOND:
|
alpar@9
|
261 ret = BFD_ECOND;
|
alpar@9
|
262 goto done;
|
alpar@9
|
263 default:
|
alpar@9
|
264 xassert(bfd != bfd);
|
alpar@9
|
265 }
|
alpar@9
|
266 }
|
alpar@9
|
267 else
|
alpar@9
|
268 xassert(bfd != bfd);
|
alpar@9
|
269 /* the basis matrix has been successfully factorized */
|
alpar@9
|
270 bfd->valid = 1;
|
alpar@9
|
271 bfd->upd_cnt = 0;
|
alpar@9
|
272 ret = 0;
|
alpar@9
|
273 done: /* return to the calling program */
|
alpar@9
|
274 return ret;
|
alpar@9
|
275 }
|
alpar@9
|
276
|
alpar@9
|
277 /***********************************************************************
|
alpar@9
|
278 * NAME
|
alpar@9
|
279 *
|
alpar@9
|
280 * bfd_ftran - perform forward transformation (solve system B*x = b)
|
alpar@9
|
281 *
|
alpar@9
|
282 * SYNOPSIS
|
alpar@9
|
283 *
|
alpar@9
|
284 * #include "glpbfd.h"
|
alpar@9
|
285 * void bfd_ftran(BFD *bfd, double x[]);
|
alpar@9
|
286 *
|
alpar@9
|
287 * DESCRIPTION
|
alpar@9
|
288 *
|
alpar@9
|
289 * The routine bfd_ftran performs forward transformation, i.e. solves
|
alpar@9
|
290 * the system B*x = b, where B is the basis matrix, x is the vector of
|
alpar@9
|
291 * unknowns to be computed, b is the vector of right-hand sides.
|
alpar@9
|
292 *
|
alpar@9
|
293 * On entry elements of the vector b should be stored in dense format
|
alpar@9
|
294 * in locations x[1], ..., x[m], where m is the number of rows. On exit
|
alpar@9
|
295 * the routine stores elements of the vector x in the same locations. */
|
alpar@9
|
296
|
alpar@9
|
297 void bfd_ftran(BFD *bfd, double x[])
|
alpar@9
|
298 { xassert(bfd != NULL);
|
alpar@9
|
299 xassert(bfd->valid);
|
alpar@9
|
300 if (bfd->fhv != NULL)
|
alpar@9
|
301 fhv_ftran(bfd->fhv, x);
|
alpar@9
|
302 else if (bfd->lpf != NULL)
|
alpar@9
|
303 lpf_ftran(bfd->lpf, x);
|
alpar@9
|
304 else
|
alpar@9
|
305 xassert(bfd != bfd);
|
alpar@9
|
306 return;
|
alpar@9
|
307 }
|
alpar@9
|
308
|
alpar@9
|
309 /***********************************************************************
|
alpar@9
|
310 * NAME
|
alpar@9
|
311 *
|
alpar@9
|
312 * bfd_btran - perform backward transformation (solve system B'*x = b)
|
alpar@9
|
313 *
|
alpar@9
|
314 * SYNOPSIS
|
alpar@9
|
315 *
|
alpar@9
|
316 * #include "glpbfd.h"
|
alpar@9
|
317 * void bfd_btran(BFD *bfd, double x[]);
|
alpar@9
|
318 *
|
alpar@9
|
319 * DESCRIPTION
|
alpar@9
|
320 *
|
alpar@9
|
321 * The routine bfd_btran performs backward transformation, i.e. solves
|
alpar@9
|
322 * the system B'*x = b, where B' is a matrix transposed to the basis
|
alpar@9
|
323 * matrix B, x is the vector of unknowns to be computed, b is the vector
|
alpar@9
|
324 * of right-hand sides.
|
alpar@9
|
325 *
|
alpar@9
|
326 * On entry elements of the vector b should be stored in dense format
|
alpar@9
|
327 * in locations x[1], ..., x[m], where m is the number of rows. On exit
|
alpar@9
|
328 * the routine stores elements of the vector x in the same locations. */
|
alpar@9
|
329
|
alpar@9
|
330 void bfd_btran(BFD *bfd, double x[])
|
alpar@9
|
331 { xassert(bfd != NULL);
|
alpar@9
|
332 xassert(bfd->valid);
|
alpar@9
|
333 if (bfd->fhv != NULL)
|
alpar@9
|
334 fhv_btran(bfd->fhv, x);
|
alpar@9
|
335 else if (bfd->lpf != NULL)
|
alpar@9
|
336 lpf_btran(bfd->lpf, x);
|
alpar@9
|
337 else
|
alpar@9
|
338 xassert(bfd != bfd);
|
alpar@9
|
339 return;
|
alpar@9
|
340 }
|
alpar@9
|
341
|
alpar@9
|
342 /***********************************************************************
|
alpar@9
|
343 * NAME
|
alpar@9
|
344 *
|
alpar@9
|
345 * bfd_update_it - update LP basis factorization
|
alpar@9
|
346 *
|
alpar@9
|
347 * SYNOPSIS
|
alpar@9
|
348 *
|
alpar@9
|
349 * #include "glpbfd.h"
|
alpar@9
|
350 * int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[],
|
alpar@9
|
351 * const double val[]);
|
alpar@9
|
352 *
|
alpar@9
|
353 * DESCRIPTION
|
alpar@9
|
354 *
|
alpar@9
|
355 * The routine bfd_update_it updates the factorization of the basis
|
alpar@9
|
356 * matrix B after replacing its j-th column by a new vector.
|
alpar@9
|
357 *
|
alpar@9
|
358 * The parameter j specifies the number of column of B, which has been
|
alpar@9
|
359 * replaced, 1 <= j <= m, where m is the order of B.
|
alpar@9
|
360 *
|
alpar@9
|
361 * The parameter bh specifies the basis header entry for the new column
|
alpar@9
|
362 * of B, which is the number of the new column in some original matrix.
|
alpar@9
|
363 * This parameter is optional and can be specified as 0.
|
alpar@9
|
364 *
|
alpar@9
|
365 * Row indices and numerical values of non-zero elements of the new
|
alpar@9
|
366 * column of B should be placed in locations ind[1], ..., ind[len] and
|
alpar@9
|
367 * val[1], ..., val[len], resp., where len is the number of non-zeros
|
alpar@9
|
368 * in the column. Neither zero nor duplicate elements are allowed.
|
alpar@9
|
369 *
|
alpar@9
|
370 * RETURNS
|
alpar@9
|
371 *
|
alpar@9
|
372 * 0 The factorization has been successfully updated.
|
alpar@9
|
373 *
|
alpar@9
|
374 * BFD_ESING
|
alpar@9
|
375 * New basis matrix is singular within the working precision.
|
alpar@9
|
376 *
|
alpar@9
|
377 * BFD_ECHECK
|
alpar@9
|
378 * The factorization is inaccurate.
|
alpar@9
|
379 *
|
alpar@9
|
380 * BFD_ELIMIT
|
alpar@9
|
381 * Factorization update limit has been reached.
|
alpar@9
|
382 *
|
alpar@9
|
383 * BFD_EROOM
|
alpar@9
|
384 * Overflow of the sparse vector area.
|
alpar@9
|
385 *
|
alpar@9
|
386 * In case of non-zero return code the factorization becomes invalid.
|
alpar@9
|
387 * It should not be used until it has been recomputed with the routine
|
alpar@9
|
388 * bfd_factorize. */
|
alpar@9
|
389
|
alpar@9
|
390 int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[],
|
alpar@9
|
391 const double val[])
|
alpar@9
|
392 { int ret;
|
alpar@9
|
393 xassert(bfd != NULL);
|
alpar@9
|
394 xassert(bfd->valid);
|
alpar@9
|
395 /* try to update the factorization */
|
alpar@9
|
396 if (bfd->fhv != NULL)
|
alpar@9
|
397 { switch (fhv_update_it(bfd->fhv, j, len, ind, val))
|
alpar@9
|
398 { case 0:
|
alpar@9
|
399 break;
|
alpar@9
|
400 case FHV_ESING:
|
alpar@9
|
401 bfd->valid = 0;
|
alpar@9
|
402 ret = BFD_ESING;
|
alpar@9
|
403 goto done;
|
alpar@9
|
404 case FHV_ECHECK:
|
alpar@9
|
405 bfd->valid = 0;
|
alpar@9
|
406 ret = BFD_ECHECK;
|
alpar@9
|
407 goto done;
|
alpar@9
|
408 case FHV_ELIMIT:
|
alpar@9
|
409 bfd->valid = 0;
|
alpar@9
|
410 ret = BFD_ELIMIT;
|
alpar@9
|
411 goto done;
|
alpar@9
|
412 case FHV_EROOM:
|
alpar@9
|
413 bfd->valid = 0;
|
alpar@9
|
414 ret = BFD_EROOM;
|
alpar@9
|
415 goto done;
|
alpar@9
|
416 default:
|
alpar@9
|
417 xassert(bfd != bfd);
|
alpar@9
|
418 }
|
alpar@9
|
419 }
|
alpar@9
|
420 else if (bfd->lpf != NULL)
|
alpar@9
|
421 { switch (lpf_update_it(bfd->lpf, j, bh, len, ind, val))
|
alpar@9
|
422 { case 0:
|
alpar@9
|
423 break;
|
alpar@9
|
424 case LPF_ESING:
|
alpar@9
|
425 bfd->valid = 0;
|
alpar@9
|
426 ret = BFD_ESING;
|
alpar@9
|
427 goto done;
|
alpar@9
|
428 case LPF_ELIMIT:
|
alpar@9
|
429 bfd->valid = 0;
|
alpar@9
|
430 ret = BFD_ELIMIT;
|
alpar@9
|
431 goto done;
|
alpar@9
|
432 default:
|
alpar@9
|
433 xassert(bfd != bfd);
|
alpar@9
|
434 }
|
alpar@9
|
435 }
|
alpar@9
|
436 else
|
alpar@9
|
437 xassert(bfd != bfd);
|
alpar@9
|
438 /* the factorization has been successfully updated */
|
alpar@9
|
439 /* increase the update count */
|
alpar@9
|
440 bfd->upd_cnt++;
|
alpar@9
|
441 ret = 0;
|
alpar@9
|
442 done: /* return to the calling program */
|
alpar@9
|
443 return ret;
|
alpar@9
|
444 }
|
alpar@9
|
445
|
alpar@9
|
446 /**********************************************************************/
|
alpar@9
|
447
|
alpar@9
|
448 int bfd_get_count(BFD *bfd)
|
alpar@9
|
449 { /* determine factorization update count */
|
alpar@9
|
450 xassert(bfd != NULL);
|
alpar@9
|
451 xassert(bfd->valid);
|
alpar@9
|
452 return bfd->upd_cnt;
|
alpar@9
|
453 }
|
alpar@9
|
454
|
alpar@9
|
455 /***********************************************************************
|
alpar@9
|
456 * NAME
|
alpar@9
|
457 *
|
alpar@9
|
458 * bfd_delete_it - delete LP basis factorization
|
alpar@9
|
459 *
|
alpar@9
|
460 * SYNOPSIS
|
alpar@9
|
461 *
|
alpar@9
|
462 * #include "glpbfd.h"
|
alpar@9
|
463 * void bfd_delete_it(BFD *bfd);
|
alpar@9
|
464 *
|
alpar@9
|
465 * DESCRIPTION
|
alpar@9
|
466 *
|
alpar@9
|
467 * The routine bfd_delete_it deletes LP basis factorization specified
|
alpar@9
|
468 * by the parameter fhv and frees all memory allocated to this program
|
alpar@9
|
469 * object. */
|
alpar@9
|
470
|
alpar@9
|
471 void bfd_delete_it(BFD *bfd)
|
alpar@9
|
472 { xassert(bfd != NULL);
|
alpar@9
|
473 if (bfd->fhv != NULL)
|
alpar@9
|
474 fhv_delete_it(bfd->fhv);
|
alpar@9
|
475 if (bfd->lpf != NULL)
|
alpar@9
|
476 lpf_delete_it(bfd->lpf);
|
alpar@9
|
477 xfree(bfd);
|
alpar@9
|
478 return;
|
alpar@9
|
479 }
|
alpar@9
|
480
|
alpar@9
|
481 /* eof */
|