rev |
line source |
alpar@9
|
1 /* glpfhv.h (LP basis factorization, FHV eta file version) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #ifndef GLPFHV_H
|
alpar@9
|
26 #define GLPFHV_H
|
alpar@9
|
27
|
alpar@9
|
28 #include "glpluf.h"
|
alpar@9
|
29
|
alpar@9
|
30 /***********************************************************************
|
alpar@9
|
31 * The structure FHV defines the factorization of the basis mxm-matrix
|
alpar@9
|
32 * B, where m is the number of rows in corresponding problem instance.
|
alpar@9
|
33 *
|
alpar@9
|
34 * This factorization is the following sextet:
|
alpar@9
|
35 *
|
alpar@9
|
36 * [B] = (F, H, V, P0, P, Q), (1)
|
alpar@9
|
37 *
|
alpar@9
|
38 * where F, H, and V are such matrices that
|
alpar@9
|
39 *
|
alpar@9
|
40 * B = F * H * V, (2)
|
alpar@9
|
41 *
|
alpar@9
|
42 * and P0, P, and Q are such permutation matrices that the matrix
|
alpar@9
|
43 *
|
alpar@9
|
44 * L = P0 * F * inv(P0) (3)
|
alpar@9
|
45 *
|
alpar@9
|
46 * is lower triangular with unity diagonal, and the matrix
|
alpar@9
|
47 *
|
alpar@9
|
48 * U = P * V * Q (4)
|
alpar@9
|
49 *
|
alpar@9
|
50 * is upper triangular. All the matrices have the same order m, which
|
alpar@9
|
51 * is the order of the basis matrix B.
|
alpar@9
|
52 *
|
alpar@9
|
53 * The matrices F, V, P, and Q are stored in the structure LUF (see the
|
alpar@9
|
54 * module GLPLUF), which is a member of the structure FHV.
|
alpar@9
|
55 *
|
alpar@9
|
56 * The matrix H is stored in the form of eta file using row-like format
|
alpar@9
|
57 * as follows:
|
alpar@9
|
58 *
|
alpar@9
|
59 * H = H[1] * H[2] * ... * H[nfs], (5)
|
alpar@9
|
60 *
|
alpar@9
|
61 * where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs
|
alpar@9
|
62 * from the unity matrix only by one row, nfs is current number of row-
|
alpar@9
|
63 * like factors. After the factorization has been built for some given
|
alpar@9
|
64 * basis matrix B the matrix H has no factors and thus it is the unity
|
alpar@9
|
65 * matrix. Then each time when the factorization is recomputed for an
|
alpar@9
|
66 * adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built
|
alpar@9
|
67 * and added to the end of the eta file H.
|
alpar@9
|
68 *
|
alpar@9
|
69 * Being sparse vectors non-trivial rows of the factors H[k] are stored
|
alpar@9
|
70 * in the right part of the sparse vector area (SVA) in the same manner
|
alpar@9
|
71 * as rows and columns of the matrix F.
|
alpar@9
|
72 *
|
alpar@9
|
73 * For more details see the program documentation. */
|
alpar@9
|
74
|
alpar@9
|
75 typedef struct FHV FHV;
|
alpar@9
|
76
|
alpar@9
|
77 struct FHV
|
alpar@9
|
78 { /* LP basis factorization */
|
alpar@9
|
79 int m_max;
|
alpar@9
|
80 /* maximal value of m (increased automatically, if necessary) */
|
alpar@9
|
81 int m;
|
alpar@9
|
82 /* the order of matrices B, F, H, V, P0, P, Q */
|
alpar@9
|
83 int valid;
|
alpar@9
|
84 /* the factorization is valid only if this flag is set */
|
alpar@9
|
85 LUF *luf;
|
alpar@9
|
86 /* LU-factorization (contains the matrices F, V, P, Q) */
|
alpar@9
|
87 /*--------------------------------------------------------------*/
|
alpar@9
|
88 /* matrix H in the form of eta file */
|
alpar@9
|
89 int hh_max;
|
alpar@9
|
90 /* maximal number of row-like factors (which limits the number of
|
alpar@9
|
91 updates of the factorization) */
|
alpar@9
|
92 int hh_nfs;
|
alpar@9
|
93 /* current number of row-like factors (0 <= hh_nfs <= hh_max) */
|
alpar@9
|
94 int *hh_ind; /* int hh_ind[1+hh_max]; */
|
alpar@9
|
95 /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row
|
alpar@9
|
96 of factor H[k] */
|
alpar@9
|
97 int *hh_ptr; /* int hh_ptr[1+hh_max]; */
|
alpar@9
|
98 /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element
|
alpar@9
|
99 of the non-trivial row of factor H[k] in the SVA */
|
alpar@9
|
100 int *hh_len; /* int hh_len[1+hh_max]; */
|
alpar@9
|
101 /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements
|
alpar@9
|
102 in the non-trivial row of factor H[k] */
|
alpar@9
|
103 /*--------------------------------------------------------------*/
|
alpar@9
|
104 /* matrix P0 */
|
alpar@9
|
105 int *p0_row; /* int p0_row[1+m_max]; */
|
alpar@9
|
106 /* p0_row[i] = j means that p0[i,j] = 1 */
|
alpar@9
|
107 int *p0_col; /* int p0_col[1+m_max]; */
|
alpar@9
|
108 /* p0_col[j] = i means that p0[i,j] = 1 */
|
alpar@9
|
109 /* if i-th row or column of the matrix F corresponds to i'-th row
|
alpar@9
|
110 or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i
|
alpar@9
|
111 and p0_col[i] = i' */
|
alpar@9
|
112 /*--------------------------------------------------------------*/
|
alpar@9
|
113 /* working arrays */
|
alpar@9
|
114 int *cc_ind; /* int cc_ind[1+m_max]; */
|
alpar@9
|
115 /* integer working array */
|
alpar@9
|
116 double *cc_val; /* double cc_val[1+m_max]; */
|
alpar@9
|
117 /* floating-point working array */
|
alpar@9
|
118 /*--------------------------------------------------------------*/
|
alpar@9
|
119 /* control parameters */
|
alpar@9
|
120 double upd_tol;
|
alpar@9
|
121 /* update tolerance; if after updating the factorization absolute
|
alpar@9
|
122 value of some diagonal element u[k,k] of matrix U = P*V*Q is
|
alpar@9
|
123 less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization
|
alpar@9
|
124 is considered as inaccurate */
|
alpar@9
|
125 /*--------------------------------------------------------------*/
|
alpar@9
|
126 /* some statistics */
|
alpar@9
|
127 int nnz_h;
|
alpar@9
|
128 /* current number of non-zeros in all factors of matrix H */
|
alpar@9
|
129 };
|
alpar@9
|
130
|
alpar@9
|
131 /* return codes: */
|
alpar@9
|
132 #define FHV_ESING 1 /* singular matrix */
|
alpar@9
|
133 #define FHV_ECOND 2 /* ill-conditioned matrix */
|
alpar@9
|
134 #define FHV_ECHECK 3 /* insufficient accuracy */
|
alpar@9
|
135 #define FHV_ELIMIT 4 /* update limit reached */
|
alpar@9
|
136 #define FHV_EROOM 5 /* SVA overflow */
|
alpar@9
|
137
|
alpar@9
|
138 #define fhv_create_it _glp_fhv_create_it
|
alpar@9
|
139 FHV *fhv_create_it(void);
|
alpar@9
|
140 /* create LP basis factorization */
|
alpar@9
|
141
|
alpar@9
|
142 #define fhv_factorize _glp_fhv_factorize
|
alpar@9
|
143 int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,
|
alpar@9
|
144 int ind[], double val[]), void *info);
|
alpar@9
|
145 /* compute LP basis factorization */
|
alpar@9
|
146
|
alpar@9
|
147 #define fhv_h_solve _glp_fhv_h_solve
|
alpar@9
|
148 void fhv_h_solve(FHV *fhv, int tr, double x[]);
|
alpar@9
|
149 /* solve system H*x = b or H'*x = b */
|
alpar@9
|
150
|
alpar@9
|
151 #define fhv_ftran _glp_fhv_ftran
|
alpar@9
|
152 void fhv_ftran(FHV *fhv, double x[]);
|
alpar@9
|
153 /* perform forward transformation (solve system B*x = b) */
|
alpar@9
|
154
|
alpar@9
|
155 #define fhv_btran _glp_fhv_btran
|
alpar@9
|
156 void fhv_btran(FHV *fhv, double x[]);
|
alpar@9
|
157 /* perform backward transformation (solve system B'*x = b) */
|
alpar@9
|
158
|
alpar@9
|
159 #define fhv_update_it _glp_fhv_update_it
|
alpar@9
|
160 int fhv_update_it(FHV *fhv, int j, int len, const int ind[],
|
alpar@9
|
161 const double val[]);
|
alpar@9
|
162 /* update LP basis factorization */
|
alpar@9
|
163
|
alpar@9
|
164 #define fhv_delete_it _glp_fhv_delete_it
|
alpar@9
|
165 void fhv_delete_it(FHV *fhv);
|
alpar@9
|
166 /* delete LP basis factorization */
|
alpar@9
|
167
|
alpar@9
|
168 #endif
|
alpar@9
|
169
|
alpar@9
|
170 /* eof */
|