rev |
line source |
alpar@9
|
1 /* glplpx02.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpapi.h"
|
alpar@9
|
26
|
alpar@9
|
27 /***********************************************************************
|
alpar@9
|
28 * NAME
|
alpar@9
|
29 *
|
alpar@9
|
30 * lpx_put_solution - store basic solution components
|
alpar@9
|
31 *
|
alpar@9
|
32 * SYNOPSIS
|
alpar@9
|
33 *
|
alpar@9
|
34 * void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
|
alpar@9
|
35 * const int *d_stat, const double *obj_val, const int r_stat[],
|
alpar@9
|
36 * const double r_prim[], const double r_dual[], const int c_stat[],
|
alpar@9
|
37 * const double c_prim[], const double c_dual[])
|
alpar@9
|
38 *
|
alpar@9
|
39 * DESCRIPTION
|
alpar@9
|
40 *
|
alpar@9
|
41 * The routine lpx_put_solution stores basic solution components to the
|
alpar@9
|
42 * specified problem object.
|
alpar@9
|
43 *
|
alpar@9
|
44 * The parameter inval is the basis factorization invalidity flag.
|
alpar@9
|
45 * If this flag is clear, the current status of the basis factorization
|
alpar@9
|
46 * remains unchanged. If this flag is set, the routine invalidates the
|
alpar@9
|
47 * basis factorization.
|
alpar@9
|
48 *
|
alpar@9
|
49 * The parameter p_stat is a pointer to the status of primal basic
|
alpar@9
|
50 * solution, which should be specified as follows:
|
alpar@9
|
51 *
|
alpar@9
|
52 * GLP_UNDEF - primal solution is undefined;
|
alpar@9
|
53 * GLP_FEAS - primal solution is feasible;
|
alpar@9
|
54 * GLP_INFEAS - primal solution is infeasible;
|
alpar@9
|
55 * GLP_NOFEAS - no primal feasible solution exists.
|
alpar@9
|
56 *
|
alpar@9
|
57 * If the parameter p_stat is NULL, the current status of primal basic
|
alpar@9
|
58 * solution remains unchanged.
|
alpar@9
|
59 *
|
alpar@9
|
60 * The parameter d_stat is a pointer to the status of dual basic
|
alpar@9
|
61 * solution, which should be specified as follows:
|
alpar@9
|
62 *
|
alpar@9
|
63 * GLP_UNDEF - dual solution is undefined;
|
alpar@9
|
64 * GLP_FEAS - dual solution is feasible;
|
alpar@9
|
65 * GLP_INFEAS - dual solution is infeasible;
|
alpar@9
|
66 * GLP_NOFEAS - no dual feasible solution exists.
|
alpar@9
|
67 *
|
alpar@9
|
68 * If the parameter d_stat is NULL, the current status of dual basic
|
alpar@9
|
69 * solution remains unchanged.
|
alpar@9
|
70 *
|
alpar@9
|
71 * The parameter obj_val is a pointer to the objective function value.
|
alpar@9
|
72 * If it is NULL, the current value of the objective function remains
|
alpar@9
|
73 * unchanged.
|
alpar@9
|
74 *
|
alpar@9
|
75 * The array element r_stat[i], 1 <= i <= m (where m is the number of
|
alpar@9
|
76 * rows in the problem object), specifies the status of i-th auxiliary
|
alpar@9
|
77 * variable, which should be specified as follows:
|
alpar@9
|
78 *
|
alpar@9
|
79 * GLP_BS - basic variable;
|
alpar@9
|
80 * GLP_NL - non-basic variable on lower bound;
|
alpar@9
|
81 * GLP_NU - non-basic variable on upper bound;
|
alpar@9
|
82 * GLP_NF - non-basic free variable;
|
alpar@9
|
83 * GLP_NS - non-basic fixed variable.
|
alpar@9
|
84 *
|
alpar@9
|
85 * If the parameter r_stat is NULL, the current statuses of auxiliary
|
alpar@9
|
86 * variables remain unchanged.
|
alpar@9
|
87 *
|
alpar@9
|
88 * The array element r_prim[i], 1 <= i <= m (where m is the number of
|
alpar@9
|
89 * rows in the problem object), specifies a primal value of i-th
|
alpar@9
|
90 * auxiliary variable. If the parameter r_prim is NULL, the current
|
alpar@9
|
91 * primal values of auxiliary variables remain unchanged.
|
alpar@9
|
92 *
|
alpar@9
|
93 * The array element r_dual[i], 1 <= i <= m (where m is the number of
|
alpar@9
|
94 * rows in the problem object), specifies a dual value (reduced cost)
|
alpar@9
|
95 * of i-th auxiliary variable. If the parameter r_dual is NULL, the
|
alpar@9
|
96 * current dual values of auxiliary variables remain unchanged.
|
alpar@9
|
97 *
|
alpar@9
|
98 * The array element c_stat[j], 1 <= j <= n (where n is the number of
|
alpar@9
|
99 * columns in the problem object), specifies the status of j-th
|
alpar@9
|
100 * structural variable, which should be specified as follows:
|
alpar@9
|
101 *
|
alpar@9
|
102 * GLP_BS - basic variable;
|
alpar@9
|
103 * GLP_NL - non-basic variable on lower bound;
|
alpar@9
|
104 * GLP_NU - non-basic variable on upper bound;
|
alpar@9
|
105 * GLP_NF - non-basic free variable;
|
alpar@9
|
106 * GLP_NS - non-basic fixed variable.
|
alpar@9
|
107 *
|
alpar@9
|
108 * If the parameter c_stat is NULL, the current statuses of structural
|
alpar@9
|
109 * variables remain unchanged.
|
alpar@9
|
110 *
|
alpar@9
|
111 * The array element c_prim[j], 1 <= j <= n (where n is the number of
|
alpar@9
|
112 * columns in the problem object), specifies a primal value of j-th
|
alpar@9
|
113 * structural variable. If the parameter c_prim is NULL, the current
|
alpar@9
|
114 * primal values of structural variables remain unchanged.
|
alpar@9
|
115 *
|
alpar@9
|
116 * The array element c_dual[j], 1 <= j <= n (where n is the number of
|
alpar@9
|
117 * columns in the problem object), specifies a dual value (reduced cost)
|
alpar@9
|
118 * of j-th structural variable. If the parameter c_dual is NULL, the
|
alpar@9
|
119 * current dual values of structural variables remain unchanged. */
|
alpar@9
|
120
|
alpar@9
|
121 void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
|
alpar@9
|
122 const int *d_stat, const double *obj_val, const int r_stat[],
|
alpar@9
|
123 const double r_prim[], const double r_dual[], const int c_stat[],
|
alpar@9
|
124 const double c_prim[], const double c_dual[])
|
alpar@9
|
125 { GLPROW *row;
|
alpar@9
|
126 GLPCOL *col;
|
alpar@9
|
127 int i, j;
|
alpar@9
|
128 /* invalidate the basis factorization, if required */
|
alpar@9
|
129 if (inval) lp->valid = 0;
|
alpar@9
|
130 /* store primal status */
|
alpar@9
|
131 if (p_stat != NULL)
|
alpar@9
|
132 { if (!(*p_stat == GLP_UNDEF || *p_stat == GLP_FEAS ||
|
alpar@9
|
133 *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS))
|
alpar@9
|
134 xerror("lpx_put_solution: p_stat = %d; invalid primal statu"
|
alpar@9
|
135 "s\n", *p_stat);
|
alpar@9
|
136 lp->pbs_stat = *p_stat;
|
alpar@9
|
137 }
|
alpar@9
|
138 /* store dual status */
|
alpar@9
|
139 if (d_stat != NULL)
|
alpar@9
|
140 { if (!(*d_stat == GLP_UNDEF || *d_stat == GLP_FEAS ||
|
alpar@9
|
141 *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS))
|
alpar@9
|
142 xerror("lpx_put_solution: d_stat = %d; invalid dual status "
|
alpar@9
|
143 "\n", *d_stat);
|
alpar@9
|
144 lp->dbs_stat = *d_stat;
|
alpar@9
|
145 }
|
alpar@9
|
146 /* store objective function value */
|
alpar@9
|
147 if (obj_val != NULL) lp->obj_val = *obj_val;
|
alpar@9
|
148 /* store row solution components */
|
alpar@9
|
149 for (i = 1; i <= lp->m; i++)
|
alpar@9
|
150 { row = lp->row[i];
|
alpar@9
|
151 if (r_stat != NULL)
|
alpar@9
|
152 { if (!(r_stat[i] == GLP_BS ||
|
alpar@9
|
153 row->type == GLP_FR && r_stat[i] == GLP_NF ||
|
alpar@9
|
154 row->type == GLP_LO && r_stat[i] == GLP_NL ||
|
alpar@9
|
155 row->type == GLP_UP && r_stat[i] == GLP_NU ||
|
alpar@9
|
156 row->type == GLP_DB && r_stat[i] == GLP_NL ||
|
alpar@9
|
157 row->type == GLP_DB && r_stat[i] == GLP_NU ||
|
alpar@9
|
158 row->type == GLP_FX && r_stat[i] == GLP_NS))
|
alpar@9
|
159 xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s"
|
alpar@9
|
160 "tatus\n", i, r_stat[i]);
|
alpar@9
|
161 row->stat = r_stat[i];
|
alpar@9
|
162 }
|
alpar@9
|
163 if (r_prim != NULL) row->prim = r_prim[i];
|
alpar@9
|
164 if (r_dual != NULL) row->dual = r_dual[i];
|
alpar@9
|
165 }
|
alpar@9
|
166 /* store column solution components */
|
alpar@9
|
167 for (j = 1; j <= lp->n; j++)
|
alpar@9
|
168 { col = lp->col[j];
|
alpar@9
|
169 if (c_stat != NULL)
|
alpar@9
|
170 { if (!(c_stat[j] == GLP_BS ||
|
alpar@9
|
171 col->type == GLP_FR && c_stat[j] == GLP_NF ||
|
alpar@9
|
172 col->type == GLP_LO && c_stat[j] == GLP_NL ||
|
alpar@9
|
173 col->type == GLP_UP && c_stat[j] == GLP_NU ||
|
alpar@9
|
174 col->type == GLP_DB && c_stat[j] == GLP_NL ||
|
alpar@9
|
175 col->type == GLP_DB && c_stat[j] == GLP_NU ||
|
alpar@9
|
176 col->type == GLP_FX && c_stat[j] == GLP_NS))
|
alpar@9
|
177 xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum"
|
alpar@9
|
178 "n status\n", j, c_stat[j]);
|
alpar@9
|
179 col->stat = c_stat[j];
|
alpar@9
|
180 }
|
alpar@9
|
181 if (c_prim != NULL) col->prim = c_prim[j];
|
alpar@9
|
182 if (c_dual != NULL) col->dual = c_dual[j];
|
alpar@9
|
183 }
|
alpar@9
|
184 return;
|
alpar@9
|
185 }
|
alpar@9
|
186
|
alpar@9
|
187 /*----------------------------------------------------------------------
|
alpar@9
|
188 -- lpx_put_mip_soln - store mixed integer solution components.
|
alpar@9
|
189 --
|
alpar@9
|
190 -- *Synopsis*
|
alpar@9
|
191 --
|
alpar@9
|
192 -- #include "glplpx.h"
|
alpar@9
|
193 -- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
|
alpar@9
|
194 -- double col_mipx[]);
|
alpar@9
|
195 --
|
alpar@9
|
196 -- *Description*
|
alpar@9
|
197 --
|
alpar@9
|
198 -- The routine lpx_put_mip_soln stores solution components obtained by
|
alpar@9
|
199 -- branch-and-bound solver into the specified problem object.
|
alpar@9
|
200 --
|
alpar@9
|
201 -- NOTE: This routine is intended for internal use only. */
|
alpar@9
|
202
|
alpar@9
|
203 void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
|
alpar@9
|
204 double col_mipx[])
|
alpar@9
|
205 { GLPROW *row;
|
alpar@9
|
206 GLPCOL *col;
|
alpar@9
|
207 int i, j;
|
alpar@9
|
208 double sum;
|
alpar@9
|
209 /* store mixed integer status */
|
alpar@9
|
210 #if 0
|
alpar@9
|
211 if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT ||
|
alpar@9
|
212 i_stat == LPX_I_FEAS || i_stat == LPX_I_NOFEAS))
|
alpar@9
|
213 fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st"
|
alpar@9
|
214 "atus", i_stat);
|
alpar@9
|
215 lp->i_stat = i_stat;
|
alpar@9
|
216 #else
|
alpar@9
|
217 switch (i_stat)
|
alpar@9
|
218 { case LPX_I_UNDEF:
|
alpar@9
|
219 lp->mip_stat = GLP_UNDEF; break;
|
alpar@9
|
220 case LPX_I_OPT:
|
alpar@9
|
221 lp->mip_stat = GLP_OPT; break;
|
alpar@9
|
222 case LPX_I_FEAS:
|
alpar@9
|
223 lp->mip_stat = GLP_FEAS; break;
|
alpar@9
|
224 case LPX_I_NOFEAS:
|
alpar@9
|
225 lp->mip_stat = GLP_NOFEAS; break;
|
alpar@9
|
226 default:
|
alpar@9
|
227 xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege"
|
alpar@9
|
228 "r status\n", i_stat);
|
alpar@9
|
229 }
|
alpar@9
|
230 #endif
|
alpar@9
|
231 /* store row solution components */
|
alpar@9
|
232 if (row_mipx != NULL)
|
alpar@9
|
233 { for (i = 1; i <= lp->m; i++)
|
alpar@9
|
234 { row = lp->row[i];
|
alpar@9
|
235 row->mipx = row_mipx[i];
|
alpar@9
|
236 }
|
alpar@9
|
237 }
|
alpar@9
|
238 /* store column solution components */
|
alpar@9
|
239 if (col_mipx != NULL)
|
alpar@9
|
240 { for (j = 1; j <= lp->n; j++)
|
alpar@9
|
241 { col = lp->col[j];
|
alpar@9
|
242 col->mipx = col_mipx[j];
|
alpar@9
|
243 }
|
alpar@9
|
244 }
|
alpar@9
|
245 /* if the solution is claimed to be integer feasible, check it */
|
alpar@9
|
246 if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS)
|
alpar@9
|
247 { for (j = 1; j <= lp->n; j++)
|
alpar@9
|
248 { col = lp->col[j];
|
alpar@9
|
249 if (col->kind == GLP_IV && col->mipx != floor(col->mipx))
|
alpar@9
|
250 xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i"
|
alpar@9
|
251 "ntegral\n", j, DBL_DIG, col->mipx);
|
alpar@9
|
252 }
|
alpar@9
|
253 }
|
alpar@9
|
254 /* compute the objective function value */
|
alpar@9
|
255 sum = lp->c0;
|
alpar@9
|
256 for (j = 1; j <= lp->n; j++)
|
alpar@9
|
257 { col = lp->col[j];
|
alpar@9
|
258 sum += col->coef * col->mipx;
|
alpar@9
|
259 }
|
alpar@9
|
260 lp->mip_obj = sum;
|
alpar@9
|
261 return;
|
alpar@9
|
262 }
|
alpar@9
|
263
|
alpar@9
|
264 /* eof */
|