rev |
line source |
alpar@9
|
1 /* glplux.h (LU-factorization, bignum arithmetic) */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #ifndef GLPLUX_H
|
alpar@9
|
26 #define GLPLUX_H
|
alpar@9
|
27
|
alpar@9
|
28 #include "glpdmp.h"
|
alpar@9
|
29 #include "glpgmp.h"
|
alpar@9
|
30
|
alpar@9
|
31 /*----------------------------------------------------------------------
|
alpar@9
|
32 // The structure LUX defines LU-factorization of a square matrix A,
|
alpar@9
|
33 // which is the following quartet:
|
alpar@9
|
34 //
|
alpar@9
|
35 // [A] = (F, V, P, Q), (1)
|
alpar@9
|
36 //
|
alpar@9
|
37 // where F and V are such matrices that
|
alpar@9
|
38 //
|
alpar@9
|
39 // A = F * V, (2)
|
alpar@9
|
40 //
|
alpar@9
|
41 // and P and Q are such permutation matrices that the matrix
|
alpar@9
|
42 //
|
alpar@9
|
43 // L = P * F * inv(P) (3)
|
alpar@9
|
44 //
|
alpar@9
|
45 // is lower triangular with unity diagonal, and the matrix
|
alpar@9
|
46 //
|
alpar@9
|
47 // U = P * V * Q (4)
|
alpar@9
|
48 //
|
alpar@9
|
49 // is upper triangular. All the matrices have the order n.
|
alpar@9
|
50 //
|
alpar@9
|
51 // The matrices F and V are stored in row/column-wise sparse format as
|
alpar@9
|
52 // row and column linked lists of non-zero elements. Unity elements on
|
alpar@9
|
53 // the main diagonal of the matrix F are not stored. Pivot elements of
|
alpar@9
|
54 // the matrix V (that correspond to diagonal elements of the matrix U)
|
alpar@9
|
55 // are also missing from the row and column lists and stored separately
|
alpar@9
|
56 // in an ordinary array.
|
alpar@9
|
57 //
|
alpar@9
|
58 // The permutation matrices P and Q are stored as ordinary arrays using
|
alpar@9
|
59 // both row- and column-like formats.
|
alpar@9
|
60 //
|
alpar@9
|
61 // The matrices L and U being completely defined by the matrices F, V,
|
alpar@9
|
62 // P, and Q are not stored explicitly.
|
alpar@9
|
63 //
|
alpar@9
|
64 // It is easy to show that the factorization (1)-(3) is some version of
|
alpar@9
|
65 // LU-factorization. Indeed, from (3) and (4) it follows that:
|
alpar@9
|
66 //
|
alpar@9
|
67 // F = inv(P) * L * P,
|
alpar@9
|
68 //
|
alpar@9
|
69 // V = inv(P) * U * inv(Q),
|
alpar@9
|
70 //
|
alpar@9
|
71 // and substitution into (2) gives:
|
alpar@9
|
72 //
|
alpar@9
|
73 // A = F * V = inv(P) * L * U * inv(Q).
|
alpar@9
|
74 //
|
alpar@9
|
75 // For more details see the program documentation. */
|
alpar@9
|
76
|
alpar@9
|
77 typedef struct LUX LUX;
|
alpar@9
|
78 typedef struct LUXELM LUXELM;
|
alpar@9
|
79 typedef struct LUXWKA LUXWKA;
|
alpar@9
|
80
|
alpar@9
|
81 struct LUX
|
alpar@9
|
82 { /* LU-factorization of a square matrix */
|
alpar@9
|
83 int n;
|
alpar@9
|
84 /* the order of matrices A, F, V, P, Q */
|
alpar@9
|
85 DMP *pool;
|
alpar@9
|
86 /* memory pool for elements of matrices F and V */
|
alpar@9
|
87 LUXELM **F_row; /* LUXELM *F_row[1+n]; */
|
alpar@9
|
88 /* F_row[0] is not used;
|
alpar@9
|
89 F_row[i], 1 <= i <= n, is a pointer to the list of elements in
|
alpar@9
|
90 i-th row of matrix F (diagonal elements are not stored) */
|
alpar@9
|
91 LUXELM **F_col; /* LUXELM *F_col[1+n]; */
|
alpar@9
|
92 /* F_col[0] is not used;
|
alpar@9
|
93 F_col[j], 1 <= j <= n, is a pointer to the list of elements in
|
alpar@9
|
94 j-th column of matrix F (diagonal elements are not stored) */
|
alpar@9
|
95 mpq_t *V_piv; /* mpq_t V_piv[1+n]; */
|
alpar@9
|
96 /* V_piv[0] is not used;
|
alpar@9
|
97 V_piv[p], 1 <= p <= n, is a pivot element v[p,q] corresponding
|
alpar@9
|
98 to a diagonal element u[k,k] of matrix U = P*V*Q (used on k-th
|
alpar@9
|
99 elimination step, k = 1, 2, ..., n) */
|
alpar@9
|
100 LUXELM **V_row; /* LUXELM *V_row[1+n]; */
|
alpar@9
|
101 /* V_row[0] is not used;
|
alpar@9
|
102 V_row[i], 1 <= i <= n, is a pointer to the list of elements in
|
alpar@9
|
103 i-th row of matrix V (except pivot elements) */
|
alpar@9
|
104 LUXELM **V_col; /* LUXELM *V_col[1+n]; */
|
alpar@9
|
105 /* V_col[0] is not used;
|
alpar@9
|
106 V_col[j], 1 <= j <= n, is a pointer to the list of elements in
|
alpar@9
|
107 j-th column of matrix V (except pivot elements) */
|
alpar@9
|
108 int *P_row; /* int P_row[1+n]; */
|
alpar@9
|
109 /* P_row[0] is not used;
|
alpar@9
|
110 P_row[i] = j means that p[i,j] = 1, where p[i,j] is an element
|
alpar@9
|
111 of permutation matrix P */
|
alpar@9
|
112 int *P_col; /* int P_col[1+n]; */
|
alpar@9
|
113 /* P_col[0] is not used;
|
alpar@9
|
114 P_col[j] = i means that p[i,j] = 1, where p[i,j] is an element
|
alpar@9
|
115 of permutation matrix P */
|
alpar@9
|
116 /* if i-th row or column of matrix F is i'-th row or column of
|
alpar@9
|
117 matrix L = P*F*inv(P), or if i-th row of matrix V is i'-th row
|
alpar@9
|
118 of matrix U = P*V*Q, then P_row[i'] = i and P_col[i] = i' */
|
alpar@9
|
119 int *Q_row; /* int Q_row[1+n]; */
|
alpar@9
|
120 /* Q_row[0] is not used;
|
alpar@9
|
121 Q_row[i] = j means that q[i,j] = 1, where q[i,j] is an element
|
alpar@9
|
122 of permutation matrix Q */
|
alpar@9
|
123 int *Q_col; /* int Q_col[1+n]; */
|
alpar@9
|
124 /* Q_col[0] is not used;
|
alpar@9
|
125 Q_col[j] = i means that q[i,j] = 1, where q[i,j] is an element
|
alpar@9
|
126 of permutation matrix Q */
|
alpar@9
|
127 /* if j-th column of matrix V is j'-th column of matrix U = P*V*Q,
|
alpar@9
|
128 then Q_row[j] = j' and Q_col[j'] = j */
|
alpar@9
|
129 int rank;
|
alpar@9
|
130 /* the (exact) rank of matrices A and V */
|
alpar@9
|
131 };
|
alpar@9
|
132
|
alpar@9
|
133 struct LUXELM
|
alpar@9
|
134 { /* element of matrix F or V */
|
alpar@9
|
135 int i;
|
alpar@9
|
136 /* row index, 1 <= i <= m */
|
alpar@9
|
137 int j;
|
alpar@9
|
138 /* column index, 1 <= j <= n */
|
alpar@9
|
139 mpq_t val;
|
alpar@9
|
140 /* numeric (non-zero) element value */
|
alpar@9
|
141 LUXELM *r_prev;
|
alpar@9
|
142 /* pointer to previous element in the same row */
|
alpar@9
|
143 LUXELM *r_next;
|
alpar@9
|
144 /* pointer to next element in the same row */
|
alpar@9
|
145 LUXELM *c_prev;
|
alpar@9
|
146 /* pointer to previous element in the same column */
|
alpar@9
|
147 LUXELM *c_next;
|
alpar@9
|
148 /* pointer to next element in the same column */
|
alpar@9
|
149 };
|
alpar@9
|
150
|
alpar@9
|
151 struct LUXWKA
|
alpar@9
|
152 { /* working area (used only during factorization) */
|
alpar@9
|
153 /* in order to efficiently implement Markowitz strategy and Duff
|
alpar@9
|
154 search technique there are two families {R[0], R[1], ..., R[n]}
|
alpar@9
|
155 and {C[0], C[1], ..., C[n]}; member R[k] is a set of active
|
alpar@9
|
156 rows of matrix V having k non-zeros, and member C[k] is a set
|
alpar@9
|
157 of active columns of matrix V having k non-zeros (in the active
|
alpar@9
|
158 submatrix); each set R[k] and C[k] is implemented as a separate
|
alpar@9
|
159 doubly linked list */
|
alpar@9
|
160 int *R_len; /* int R_len[1+n]; */
|
alpar@9
|
161 /* R_len[0] is not used;
|
alpar@9
|
162 R_len[i], 1 <= i <= n, is the number of non-zero elements in
|
alpar@9
|
163 i-th row of matrix V (that is the length of i-th row) */
|
alpar@9
|
164 int *R_head; /* int R_head[1+n]; */
|
alpar@9
|
165 /* R_head[k], 0 <= k <= n, is the number of a first row, which is
|
alpar@9
|
166 active and whose length is k */
|
alpar@9
|
167 int *R_prev; /* int R_prev[1+n]; */
|
alpar@9
|
168 /* R_prev[0] is not used;
|
alpar@9
|
169 R_prev[i], 1 <= i <= n, is the number of a previous row, which
|
alpar@9
|
170 is active and has the same length as i-th row */
|
alpar@9
|
171 int *R_next; /* int R_next[1+n]; */
|
alpar@9
|
172 /* R_prev[0] is not used;
|
alpar@9
|
173 R_prev[i], 1 <= i <= n, is the number of a next row, which is
|
alpar@9
|
174 active and has the same length as i-th row */
|
alpar@9
|
175 int *C_len; /* int C_len[1+n]; */
|
alpar@9
|
176 /* C_len[0] is not used;
|
alpar@9
|
177 C_len[j], 1 <= j <= n, is the number of non-zero elements in
|
alpar@9
|
178 j-th column of the active submatrix of matrix V (that is the
|
alpar@9
|
179 length of j-th column in the active submatrix) */
|
alpar@9
|
180 int *C_head; /* int C_head[1+n]; */
|
alpar@9
|
181 /* C_head[k], 0 <= k <= n, is the number of a first column, which
|
alpar@9
|
182 is active and whose length is k */
|
alpar@9
|
183 int *C_prev; /* int C_prev[1+n]; */
|
alpar@9
|
184 /* C_prev[0] is not used;
|
alpar@9
|
185 C_prev[j], 1 <= j <= n, is the number of a previous column,
|
alpar@9
|
186 which is active and has the same length as j-th column */
|
alpar@9
|
187 int *C_next; /* int C_next[1+n]; */
|
alpar@9
|
188 /* C_next[0] is not used;
|
alpar@9
|
189 C_next[j], 1 <= j <= n, is the number of a next column, which
|
alpar@9
|
190 is active and has the same length as j-th column */
|
alpar@9
|
191 };
|
alpar@9
|
192
|
alpar@9
|
193 #define lux_create _glp_lux_create
|
alpar@9
|
194 #define lux_decomp _glp_lux_decomp
|
alpar@9
|
195 #define lux_f_solve _glp_lux_f_solve
|
alpar@9
|
196 #define lux_v_solve _glp_lux_v_solve
|
alpar@9
|
197 #define lux_solve _glp_lux_solve
|
alpar@9
|
198 #define lux_delete _glp_lux_delete
|
alpar@9
|
199
|
alpar@9
|
200 LUX *lux_create(int n);
|
alpar@9
|
201 /* create LU-factorization */
|
alpar@9
|
202
|
alpar@9
|
203 int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[],
|
alpar@9
|
204 mpq_t val[]), void *info);
|
alpar@9
|
205 /* compute LU-factorization */
|
alpar@9
|
206
|
alpar@9
|
207 void lux_f_solve(LUX *lux, int tr, mpq_t x[]);
|
alpar@9
|
208 /* solve system F*x = b or F'*x = b */
|
alpar@9
|
209
|
alpar@9
|
210 void lux_v_solve(LUX *lux, int tr, mpq_t x[]);
|
alpar@9
|
211 /* solve system V*x = b or V'*x = b */
|
alpar@9
|
212
|
alpar@9
|
213 void lux_solve(LUX *lux, int tr, mpq_t x[]);
|
alpar@9
|
214 /* solve system A*x = b or A'*x = b */
|
alpar@9
|
215
|
alpar@9
|
216 void lux_delete(LUX *lux);
|
alpar@9
|
217 /* delete LU-factorization */
|
alpar@9
|
218
|
alpar@9
|
219 #endif
|
alpar@9
|
220
|
alpar@9
|
221 /* eof */
|