rev |
line source |
alpar@9
|
1 /* glpnet08.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Two subroutines sub() and wclique() below are intended to find a
|
alpar@9
|
7 * maximum weight clique in a given undirected graph. These subroutines
|
alpar@9
|
8 * are slightly modified version of the program WCLIQUE developed by
|
alpar@9
|
9 * Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based
|
alpar@9
|
10 * on ideas from the article "P. R. J. Ostergard, A new algorithm for
|
alpar@9
|
11 * the maximum-weight clique problem, submitted for publication", which
|
alpar@9
|
12 * in turn is a generalization of the algorithm for unweighted graphs
|
alpar@9
|
13 * presented in "P. R. J. Ostergard, A fast algorithm for the maximum
|
alpar@9
|
14 * clique problem, submitted for publication".
|
alpar@9
|
15 *
|
alpar@9
|
16 * USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE.
|
alpar@9
|
17 *
|
alpar@9
|
18 * Changes were made by Andrew Makhorin <mao@gnu.org>.
|
alpar@9
|
19 *
|
alpar@9
|
20 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
21 * under the terms of the GNU General Public License as published by
|
alpar@9
|
22 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
23 * (at your option) any later version.
|
alpar@9
|
24 *
|
alpar@9
|
25 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
26 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
27 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
28 * License for more details.
|
alpar@9
|
29 *
|
alpar@9
|
30 * You should have received a copy of the GNU General Public License
|
alpar@9
|
31 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
32 ***********************************************************************/
|
alpar@9
|
33
|
alpar@9
|
34 #include "glpenv.h"
|
alpar@9
|
35 #include "glpnet.h"
|
alpar@9
|
36
|
alpar@9
|
37 /***********************************************************************
|
alpar@9
|
38 * NAME
|
alpar@9
|
39 *
|
alpar@9
|
40 * wclique - find maximum weight clique with Ostergard's algorithm
|
alpar@9
|
41 *
|
alpar@9
|
42 * SYNOPSIS
|
alpar@9
|
43 *
|
alpar@9
|
44 * int wclique(int n, const int w[], const unsigned char a[],
|
alpar@9
|
45 * int ind[]);
|
alpar@9
|
46 *
|
alpar@9
|
47 * DESCRIPTION
|
alpar@9
|
48 *
|
alpar@9
|
49 * The routine wclique finds a maximum weight clique in an undirected
|
alpar@9
|
50 * graph with Ostergard's algorithm.
|
alpar@9
|
51 *
|
alpar@9
|
52 * INPUT PARAMETERS
|
alpar@9
|
53 *
|
alpar@9
|
54 * n is the number of vertices, n > 0.
|
alpar@9
|
55 *
|
alpar@9
|
56 * w[i], i = 1,...,n, is a weight of vertex i.
|
alpar@9
|
57 *
|
alpar@9
|
58 * a[*] is the strict (without main diagonal) lower triangle of the
|
alpar@9
|
59 * graph adjacency matrix in packed format.
|
alpar@9
|
60 *
|
alpar@9
|
61 * OUTPUT PARAMETER
|
alpar@9
|
62 *
|
alpar@9
|
63 * ind[k], k = 1,...,size, is the number of a vertex included in the
|
alpar@9
|
64 * clique found, 1 <= ind[k] <= n, where size is the number of vertices
|
alpar@9
|
65 * in the clique returned on exit.
|
alpar@9
|
66 *
|
alpar@9
|
67 * RETURNS
|
alpar@9
|
68 *
|
alpar@9
|
69 * The routine returns the clique size, i.e. the number of vertices in
|
alpar@9
|
70 * the clique. */
|
alpar@9
|
71
|
alpar@9
|
72 struct csa
|
alpar@9
|
73 { /* common storage area */
|
alpar@9
|
74 int n;
|
alpar@9
|
75 /* number of vertices */
|
alpar@9
|
76 const int *wt; /* int wt[0:n-1]; */
|
alpar@9
|
77 /* weights */
|
alpar@9
|
78 const unsigned char *a;
|
alpar@9
|
79 /* adjacency matrix (packed lower triangle without main diag.) */
|
alpar@9
|
80 int record;
|
alpar@9
|
81 /* weight of best clique */
|
alpar@9
|
82 int rec_level;
|
alpar@9
|
83 /* number of vertices in best clique */
|
alpar@9
|
84 int *rec; /* int rec[0:n-1]; */
|
alpar@9
|
85 /* best clique so far */
|
alpar@9
|
86 int *clique; /* int clique[0:n-1]; */
|
alpar@9
|
87 /* table for pruning */
|
alpar@9
|
88 int *set; /* int set[0:n-1]; */
|
alpar@9
|
89 /* current clique */
|
alpar@9
|
90 };
|
alpar@9
|
91
|
alpar@9
|
92 #define n (csa->n)
|
alpar@9
|
93 #define wt (csa->wt)
|
alpar@9
|
94 #define a (csa->a)
|
alpar@9
|
95 #define record (csa->record)
|
alpar@9
|
96 #define rec_level (csa->rec_level)
|
alpar@9
|
97 #define rec (csa->rec)
|
alpar@9
|
98 #define clique (csa->clique)
|
alpar@9
|
99 #define set (csa->set)
|
alpar@9
|
100
|
alpar@9
|
101 #if 0
|
alpar@9
|
102 static int is_edge(struct csa *csa, int i, int j)
|
alpar@9
|
103 { /* if there is arc (i,j), the routine returns true; otherwise
|
alpar@9
|
104 false; 0 <= i, j < n */
|
alpar@9
|
105 int k;
|
alpar@9
|
106 xassert(0 <= i && i < n);
|
alpar@9
|
107 xassert(0 <= j && j < n);
|
alpar@9
|
108 if (i == j) return 0;
|
alpar@9
|
109 if (i < j) k = i, i = j, j = k;
|
alpar@9
|
110 k = (i * (i - 1)) / 2 + j;
|
alpar@9
|
111 return a[k / CHAR_BIT] &
|
alpar@9
|
112 (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT));
|
alpar@9
|
113 }
|
alpar@9
|
114 #else
|
alpar@9
|
115 #define is_edge(csa, i, j) ((i) == (j) ? 0 : \
|
alpar@9
|
116 (i) > (j) ? is_edge1(i, j) : is_edge1(j, i))
|
alpar@9
|
117 #define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j))
|
alpar@9
|
118 #define is_edge2(k) (a[(k) / CHAR_BIT] & \
|
alpar@9
|
119 (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT)))
|
alpar@9
|
120 #endif
|
alpar@9
|
121
|
alpar@9
|
122 static void sub(struct csa *csa, int ct, int table[], int level,
|
alpar@9
|
123 int weight, int l_weight)
|
alpar@9
|
124 { int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable;
|
alpar@9
|
125 newtable = xcalloc(n, sizeof(int));
|
alpar@9
|
126 if (ct <= 0)
|
alpar@9
|
127 { /* 0 or 1 elements left; include these */
|
alpar@9
|
128 if (ct == 0)
|
alpar@9
|
129 { set[level++] = table[0];
|
alpar@9
|
130 weight += l_weight;
|
alpar@9
|
131 }
|
alpar@9
|
132 if (weight > record)
|
alpar@9
|
133 { record = weight;
|
alpar@9
|
134 rec_level = level;
|
alpar@9
|
135 for (i = 0; i < level; i++) rec[i] = set[i];
|
alpar@9
|
136 }
|
alpar@9
|
137 goto done;
|
alpar@9
|
138 }
|
alpar@9
|
139 for (i = ct; i >= 0; i--)
|
alpar@9
|
140 { if ((level == 0) && (i < ct)) goto done;
|
alpar@9
|
141 k = table[i];
|
alpar@9
|
142 if ((level > 0) && (clique[k] <= (record - weight)))
|
alpar@9
|
143 goto done; /* prune */
|
alpar@9
|
144 set[level] = k;
|
alpar@9
|
145 curr_weight = weight + wt[k];
|
alpar@9
|
146 l_weight -= wt[k];
|
alpar@9
|
147 if (l_weight <= (record - curr_weight))
|
alpar@9
|
148 goto done; /* prune */
|
alpar@9
|
149 p1 = newtable;
|
alpar@9
|
150 p2 = table;
|
alpar@9
|
151 left_weight = 0;
|
alpar@9
|
152 while (p2 < table + i)
|
alpar@9
|
153 { j = *p2++;
|
alpar@9
|
154 if (is_edge(csa, j, k))
|
alpar@9
|
155 { *p1++ = j;
|
alpar@9
|
156 left_weight += wt[j];
|
alpar@9
|
157 }
|
alpar@9
|
158 }
|
alpar@9
|
159 if (left_weight <= (record - curr_weight)) continue;
|
alpar@9
|
160 sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight,
|
alpar@9
|
161 left_weight);
|
alpar@9
|
162 }
|
alpar@9
|
163 done: xfree(newtable);
|
alpar@9
|
164 return;
|
alpar@9
|
165 }
|
alpar@9
|
166
|
alpar@9
|
167 int wclique(int _n, const int w[], const unsigned char _a[], int ind[])
|
alpar@9
|
168 { struct csa _csa, *csa = &_csa;
|
alpar@9
|
169 int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos;
|
alpar@9
|
170 glp_long timer;
|
alpar@9
|
171 n = _n;
|
alpar@9
|
172 xassert(n > 0);
|
alpar@9
|
173 wt = &w[1];
|
alpar@9
|
174 a = _a;
|
alpar@9
|
175 record = 0;
|
alpar@9
|
176 rec_level = 0;
|
alpar@9
|
177 rec = &ind[1];
|
alpar@9
|
178 clique = xcalloc(n, sizeof(int));
|
alpar@9
|
179 set = xcalloc(n, sizeof(int));
|
alpar@9
|
180 used = xcalloc(n, sizeof(int));
|
alpar@9
|
181 nwt = xcalloc(n, sizeof(int));
|
alpar@9
|
182 pos = xcalloc(n, sizeof(int));
|
alpar@9
|
183 /* start timer */
|
alpar@9
|
184 timer = xtime();
|
alpar@9
|
185 /* order vertices */
|
alpar@9
|
186 for (i = 0; i < n; i++)
|
alpar@9
|
187 { nwt[i] = 0;
|
alpar@9
|
188 for (j = 0; j < n; j++)
|
alpar@9
|
189 if (is_edge(csa, i, j)) nwt[i] += wt[j];
|
alpar@9
|
190 }
|
alpar@9
|
191 for (i = 0; i < n; i++)
|
alpar@9
|
192 used[i] = 0;
|
alpar@9
|
193 for (i = n-1; i >= 0; i--)
|
alpar@9
|
194 { max_wt = -1;
|
alpar@9
|
195 max_nwt = -1;
|
alpar@9
|
196 for (j = 0; j < n; j++)
|
alpar@9
|
197 { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt
|
alpar@9
|
198 && nwt[j] > max_nwt)))
|
alpar@9
|
199 { max_wt = wt[j];
|
alpar@9
|
200 max_nwt = nwt[j];
|
alpar@9
|
201 p = j;
|
alpar@9
|
202 }
|
alpar@9
|
203 }
|
alpar@9
|
204 pos[i] = p;
|
alpar@9
|
205 used[p] = 1;
|
alpar@9
|
206 for (j = 0; j < n; j++)
|
alpar@9
|
207 if ((!used[j]) && (j != p) && (is_edge(csa, p, j)))
|
alpar@9
|
208 nwt[j] -= wt[p];
|
alpar@9
|
209 }
|
alpar@9
|
210 /* main routine */
|
alpar@9
|
211 wth = 0;
|
alpar@9
|
212 for (i = 0; i < n; i++)
|
alpar@9
|
213 { wth += wt[pos[i]];
|
alpar@9
|
214 sub(csa, i, pos, 0, 0, wth);
|
alpar@9
|
215 clique[pos[i]] = record;
|
alpar@9
|
216 if (xdifftime(xtime(), timer) >= 5.0 - 0.001)
|
alpar@9
|
217 { /* print current record and reset timer */
|
alpar@9
|
218 xprintf("level = %d (%d); best = %d\n", i+1, n, record);
|
alpar@9
|
219 timer = xtime();
|
alpar@9
|
220 }
|
alpar@9
|
221 }
|
alpar@9
|
222 xfree(clique);
|
alpar@9
|
223 xfree(set);
|
alpar@9
|
224 xfree(used);
|
alpar@9
|
225 xfree(nwt);
|
alpar@9
|
226 xfree(pos);
|
alpar@9
|
227 /* return the solution found */
|
alpar@9
|
228 for (i = 1; i <= rec_level; i++) ind[i]++;
|
alpar@9
|
229 return rec_level;
|
alpar@9
|
230 }
|
alpar@9
|
231
|
alpar@9
|
232 #undef n
|
alpar@9
|
233 #undef wt
|
alpar@9
|
234 #undef a
|
alpar@9
|
235 #undef record
|
alpar@9
|
236 #undef rec_level
|
alpar@9
|
237 #undef rec
|
alpar@9
|
238 #undef clique
|
alpar@9
|
239 #undef set
|
alpar@9
|
240
|
alpar@9
|
241 /* eof */
|