rev |
line source |
alpar@9
|
1 /* glpssx01.c */
|
alpar@9
|
2
|
alpar@9
|
3 /***********************************************************************
|
alpar@9
|
4 * This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@9
|
5 *
|
alpar@9
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@9
|
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
|
alpar@9
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@9
|
9 * E-mail: <mao@gnu.org>.
|
alpar@9
|
10 *
|
alpar@9
|
11 * GLPK is free software: you can redistribute it and/or modify it
|
alpar@9
|
12 * under the terms of the GNU General Public License as published by
|
alpar@9
|
13 * the Free Software Foundation, either version 3 of the License, or
|
alpar@9
|
14 * (at your option) any later version.
|
alpar@9
|
15 *
|
alpar@9
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@9
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@9
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@9
|
19 * License for more details.
|
alpar@9
|
20 *
|
alpar@9
|
21 * You should have received a copy of the GNU General Public License
|
alpar@9
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@9
|
23 ***********************************************************************/
|
alpar@9
|
24
|
alpar@9
|
25 #include "glpenv.h"
|
alpar@9
|
26 #include "glpssx.h"
|
alpar@9
|
27 #define xfault xerror
|
alpar@9
|
28
|
alpar@9
|
29 /*----------------------------------------------------------------------
|
alpar@9
|
30 // ssx_create - create simplex solver workspace.
|
alpar@9
|
31 //
|
alpar@9
|
32 // This routine creates the workspace used by simplex solver routines,
|
alpar@9
|
33 // and returns a pointer to it.
|
alpar@9
|
34 //
|
alpar@9
|
35 // Parameters m, n, and nnz specify, respectively, the number of rows,
|
alpar@9
|
36 // columns, and non-zero constraint coefficients.
|
alpar@9
|
37 //
|
alpar@9
|
38 // This routine only allocates the memory for the workspace components,
|
alpar@9
|
39 // so the workspace needs to be saturated by data. */
|
alpar@9
|
40
|
alpar@9
|
41 SSX *ssx_create(int m, int n, int nnz)
|
alpar@9
|
42 { SSX *ssx;
|
alpar@9
|
43 int i, j, k;
|
alpar@9
|
44 if (m < 1)
|
alpar@9
|
45 xfault("ssx_create: m = %d; invalid number of rows\n", m);
|
alpar@9
|
46 if (n < 1)
|
alpar@9
|
47 xfault("ssx_create: n = %d; invalid number of columns\n", n);
|
alpar@9
|
48 if (nnz < 0)
|
alpar@9
|
49 xfault("ssx_create: nnz = %d; invalid number of non-zero const"
|
alpar@9
|
50 "raint coefficients\n", nnz);
|
alpar@9
|
51 ssx = xmalloc(sizeof(SSX));
|
alpar@9
|
52 ssx->m = m;
|
alpar@9
|
53 ssx->n = n;
|
alpar@9
|
54 ssx->type = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
55 ssx->lb = xcalloc(1+m+n, sizeof(mpq_t));
|
alpar@9
|
56 for (k = 1; k <= m+n; k++) mpq_init(ssx->lb[k]);
|
alpar@9
|
57 ssx->ub = xcalloc(1+m+n, sizeof(mpq_t));
|
alpar@9
|
58 for (k = 1; k <= m+n; k++) mpq_init(ssx->ub[k]);
|
alpar@9
|
59 ssx->coef = xcalloc(1+m+n, sizeof(mpq_t));
|
alpar@9
|
60 for (k = 0; k <= m+n; k++) mpq_init(ssx->coef[k]);
|
alpar@9
|
61 ssx->A_ptr = xcalloc(1+n+1, sizeof(int));
|
alpar@9
|
62 ssx->A_ptr[n+1] = nnz+1;
|
alpar@9
|
63 ssx->A_ind = xcalloc(1+nnz, sizeof(int));
|
alpar@9
|
64 ssx->A_val = xcalloc(1+nnz, sizeof(mpq_t));
|
alpar@9
|
65 for (k = 1; k <= nnz; k++) mpq_init(ssx->A_val[k]);
|
alpar@9
|
66 ssx->stat = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
67 ssx->Q_row = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
68 ssx->Q_col = xcalloc(1+m+n, sizeof(int));
|
alpar@9
|
69 ssx->binv = bfx_create_binv();
|
alpar@9
|
70 ssx->bbar = xcalloc(1+m, sizeof(mpq_t));
|
alpar@9
|
71 for (i = 0; i <= m; i++) mpq_init(ssx->bbar[i]);
|
alpar@9
|
72 ssx->pi = xcalloc(1+m, sizeof(mpq_t));
|
alpar@9
|
73 for (i = 1; i <= m; i++) mpq_init(ssx->pi[i]);
|
alpar@9
|
74 ssx->cbar = xcalloc(1+n, sizeof(mpq_t));
|
alpar@9
|
75 for (j = 1; j <= n; j++) mpq_init(ssx->cbar[j]);
|
alpar@9
|
76 ssx->rho = xcalloc(1+m, sizeof(mpq_t));
|
alpar@9
|
77 for (i = 1; i <= m; i++) mpq_init(ssx->rho[i]);
|
alpar@9
|
78 ssx->ap = xcalloc(1+n, sizeof(mpq_t));
|
alpar@9
|
79 for (j = 1; j <= n; j++) mpq_init(ssx->ap[j]);
|
alpar@9
|
80 ssx->aq = xcalloc(1+m, sizeof(mpq_t));
|
alpar@9
|
81 for (i = 1; i <= m; i++) mpq_init(ssx->aq[i]);
|
alpar@9
|
82 mpq_init(ssx->delta);
|
alpar@9
|
83 return ssx;
|
alpar@9
|
84 }
|
alpar@9
|
85
|
alpar@9
|
86 /*----------------------------------------------------------------------
|
alpar@9
|
87 // ssx_factorize - factorize the current basis matrix.
|
alpar@9
|
88 //
|
alpar@9
|
89 // This routine computes factorization of the current basis matrix B
|
alpar@9
|
90 // and returns the singularity flag. If the matrix B is non-singular,
|
alpar@9
|
91 // the flag is zero, otherwise non-zero. */
|
alpar@9
|
92
|
alpar@9
|
93 static int basis_col(void *info, int j, int ind[], mpq_t val[])
|
alpar@9
|
94 { /* this auxiliary routine provides row indices and numeric values
|
alpar@9
|
95 of non-zero elements in j-th column of the matrix B */
|
alpar@9
|
96 SSX *ssx = info;
|
alpar@9
|
97 int m = ssx->m;
|
alpar@9
|
98 int n = ssx->n;
|
alpar@9
|
99 int *A_ptr = ssx->A_ptr;
|
alpar@9
|
100 int *A_ind = ssx->A_ind;
|
alpar@9
|
101 mpq_t *A_val = ssx->A_val;
|
alpar@9
|
102 int *Q_col = ssx->Q_col;
|
alpar@9
|
103 int k, len, ptr;
|
alpar@9
|
104 xassert(1 <= j && j <= m);
|
alpar@9
|
105 k = Q_col[j]; /* x[k] = xB[j] */
|
alpar@9
|
106 xassert(1 <= k && k <= m+n);
|
alpar@9
|
107 /* j-th column of the matrix B is k-th column of the augmented
|
alpar@9
|
108 constraint matrix (I | -A) */
|
alpar@9
|
109 if (k <= m)
|
alpar@9
|
110 { /* it is a column of the unity matrix I */
|
alpar@9
|
111 len = 1, ind[1] = k, mpq_set_si(val[1], 1, 1);
|
alpar@9
|
112 }
|
alpar@9
|
113 else
|
alpar@9
|
114 { /* it is a column of the original constraint matrix -A */
|
alpar@9
|
115 len = 0;
|
alpar@9
|
116 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
|
alpar@9
|
117 { len++;
|
alpar@9
|
118 ind[len] = A_ind[ptr];
|
alpar@9
|
119 mpq_neg(val[len], A_val[ptr]);
|
alpar@9
|
120 }
|
alpar@9
|
121 }
|
alpar@9
|
122 return len;
|
alpar@9
|
123 }
|
alpar@9
|
124
|
alpar@9
|
125 int ssx_factorize(SSX *ssx)
|
alpar@9
|
126 { int ret;
|
alpar@9
|
127 ret = bfx_factorize(ssx->binv, ssx->m, basis_col, ssx);
|
alpar@9
|
128 return ret;
|
alpar@9
|
129 }
|
alpar@9
|
130
|
alpar@9
|
131 /*----------------------------------------------------------------------
|
alpar@9
|
132 // ssx_get_xNj - determine value of non-basic variable.
|
alpar@9
|
133 //
|
alpar@9
|
134 // This routine determines the value of non-basic variable xN[j] in the
|
alpar@9
|
135 // current basic solution defined as follows:
|
alpar@9
|
136 //
|
alpar@9
|
137 // 0, if xN[j] is free variable
|
alpar@9
|
138 // lN[j], if xN[j] is on its lower bound
|
alpar@9
|
139 // uN[j], if xN[j] is on its upper bound
|
alpar@9
|
140 // lN[j] = uN[j], if xN[j] is fixed variable
|
alpar@9
|
141 //
|
alpar@9
|
142 // where lN[j] and uN[j] are lower and upper bounds of xN[j]. */
|
alpar@9
|
143
|
alpar@9
|
144 void ssx_get_xNj(SSX *ssx, int j, mpq_t x)
|
alpar@9
|
145 { int m = ssx->m;
|
alpar@9
|
146 int n = ssx->n;
|
alpar@9
|
147 mpq_t *lb = ssx->lb;
|
alpar@9
|
148 mpq_t *ub = ssx->ub;
|
alpar@9
|
149 int *stat = ssx->stat;
|
alpar@9
|
150 int *Q_col = ssx->Q_col;
|
alpar@9
|
151 int k;
|
alpar@9
|
152 xassert(1 <= j && j <= n);
|
alpar@9
|
153 k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
154 xassert(1 <= k && k <= m+n);
|
alpar@9
|
155 switch (stat[k])
|
alpar@9
|
156 { case SSX_NL:
|
alpar@9
|
157 /* xN[j] is on its lower bound */
|
alpar@9
|
158 mpq_set(x, lb[k]); break;
|
alpar@9
|
159 case SSX_NU:
|
alpar@9
|
160 /* xN[j] is on its upper bound */
|
alpar@9
|
161 mpq_set(x, ub[k]); break;
|
alpar@9
|
162 case SSX_NF:
|
alpar@9
|
163 /* xN[j] is free variable */
|
alpar@9
|
164 mpq_set_si(x, 0, 1); break;
|
alpar@9
|
165 case SSX_NS:
|
alpar@9
|
166 /* xN[j] is fixed variable */
|
alpar@9
|
167 mpq_set(x, lb[k]); break;
|
alpar@9
|
168 default:
|
alpar@9
|
169 xassert(stat != stat);
|
alpar@9
|
170 }
|
alpar@9
|
171 return;
|
alpar@9
|
172 }
|
alpar@9
|
173
|
alpar@9
|
174 /*----------------------------------------------------------------------
|
alpar@9
|
175 // ssx_eval_bbar - compute values of basic variables.
|
alpar@9
|
176 //
|
alpar@9
|
177 // This routine computes values of basic variables xB in the current
|
alpar@9
|
178 // basic solution as follows:
|
alpar@9
|
179 //
|
alpar@9
|
180 // beta = - inv(B) * N * xN,
|
alpar@9
|
181 //
|
alpar@9
|
182 // where B is the basis matrix, N is the matrix of non-basic columns,
|
alpar@9
|
183 // xN is a vector of current values of non-basic variables. */
|
alpar@9
|
184
|
alpar@9
|
185 void ssx_eval_bbar(SSX *ssx)
|
alpar@9
|
186 { int m = ssx->m;
|
alpar@9
|
187 int n = ssx->n;
|
alpar@9
|
188 mpq_t *coef = ssx->coef;
|
alpar@9
|
189 int *A_ptr = ssx->A_ptr;
|
alpar@9
|
190 int *A_ind = ssx->A_ind;
|
alpar@9
|
191 mpq_t *A_val = ssx->A_val;
|
alpar@9
|
192 int *Q_col = ssx->Q_col;
|
alpar@9
|
193 mpq_t *bbar = ssx->bbar;
|
alpar@9
|
194 int i, j, k, ptr;
|
alpar@9
|
195 mpq_t x, temp;
|
alpar@9
|
196 mpq_init(x);
|
alpar@9
|
197 mpq_init(temp);
|
alpar@9
|
198 /* bbar := 0 */
|
alpar@9
|
199 for (i = 1; i <= m; i++)
|
alpar@9
|
200 mpq_set_si(bbar[i], 0, 1);
|
alpar@9
|
201 /* bbar := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n] */
|
alpar@9
|
202 for (j = 1; j <= n; j++)
|
alpar@9
|
203 { ssx_get_xNj(ssx, j, x);
|
alpar@9
|
204 if (mpq_sgn(x) == 0) continue;
|
alpar@9
|
205 k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
206 if (k <= m)
|
alpar@9
|
207 { /* N[j] is a column of the unity matrix I */
|
alpar@9
|
208 mpq_sub(bbar[k], bbar[k], x);
|
alpar@9
|
209 }
|
alpar@9
|
210 else
|
alpar@9
|
211 { /* N[j] is a column of the original constraint matrix -A */
|
alpar@9
|
212 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
|
alpar@9
|
213 { mpq_mul(temp, A_val[ptr], x);
|
alpar@9
|
214 mpq_add(bbar[A_ind[ptr]], bbar[A_ind[ptr]], temp);
|
alpar@9
|
215 }
|
alpar@9
|
216 }
|
alpar@9
|
217 }
|
alpar@9
|
218 /* bbar := inv(B) * bbar */
|
alpar@9
|
219 bfx_ftran(ssx->binv, bbar, 0);
|
alpar@9
|
220 #if 1
|
alpar@9
|
221 /* compute value of the objective function */
|
alpar@9
|
222 /* bbar[0] := c[0] */
|
alpar@9
|
223 mpq_set(bbar[0], coef[0]);
|
alpar@9
|
224 /* bbar[0] := bbar[0] + sum{i in B} cB[i] * xB[i] */
|
alpar@9
|
225 for (i = 1; i <= m; i++)
|
alpar@9
|
226 { k = Q_col[i]; /* x[k] = xB[i] */
|
alpar@9
|
227 if (mpq_sgn(coef[k]) == 0) continue;
|
alpar@9
|
228 mpq_mul(temp, coef[k], bbar[i]);
|
alpar@9
|
229 mpq_add(bbar[0], bbar[0], temp);
|
alpar@9
|
230 }
|
alpar@9
|
231 /* bbar[0] := bbar[0] + sum{j in N} cN[j] * xN[j] */
|
alpar@9
|
232 for (j = 1; j <= n; j++)
|
alpar@9
|
233 { k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
234 if (mpq_sgn(coef[k]) == 0) continue;
|
alpar@9
|
235 ssx_get_xNj(ssx, j, x);
|
alpar@9
|
236 mpq_mul(temp, coef[k], x);
|
alpar@9
|
237 mpq_add(bbar[0], bbar[0], temp);
|
alpar@9
|
238 }
|
alpar@9
|
239 #endif
|
alpar@9
|
240 mpq_clear(x);
|
alpar@9
|
241 mpq_clear(temp);
|
alpar@9
|
242 return;
|
alpar@9
|
243 }
|
alpar@9
|
244
|
alpar@9
|
245 /*----------------------------------------------------------------------
|
alpar@9
|
246 // ssx_eval_pi - compute values of simplex multipliers.
|
alpar@9
|
247 //
|
alpar@9
|
248 // This routine computes values of simplex multipliers (shadow prices)
|
alpar@9
|
249 // pi in the current basic solution as follows:
|
alpar@9
|
250 //
|
alpar@9
|
251 // pi = inv(B') * cB,
|
alpar@9
|
252 //
|
alpar@9
|
253 // where B' is a matrix transposed to the basis matrix B, cB is a vector
|
alpar@9
|
254 // of objective coefficients at basic variables xB. */
|
alpar@9
|
255
|
alpar@9
|
256 void ssx_eval_pi(SSX *ssx)
|
alpar@9
|
257 { int m = ssx->m;
|
alpar@9
|
258 mpq_t *coef = ssx->coef;
|
alpar@9
|
259 int *Q_col = ssx->Q_col;
|
alpar@9
|
260 mpq_t *pi = ssx->pi;
|
alpar@9
|
261 int i;
|
alpar@9
|
262 /* pi := cB */
|
alpar@9
|
263 for (i = 1; i <= m; i++) mpq_set(pi[i], coef[Q_col[i]]);
|
alpar@9
|
264 /* pi := inv(B') * cB */
|
alpar@9
|
265 bfx_btran(ssx->binv, pi);
|
alpar@9
|
266 return;
|
alpar@9
|
267 }
|
alpar@9
|
268
|
alpar@9
|
269 /*----------------------------------------------------------------------
|
alpar@9
|
270 // ssx_eval_dj - compute reduced cost of non-basic variable.
|
alpar@9
|
271 //
|
alpar@9
|
272 // This routine computes reduced cost d[j] of non-basic variable xN[j]
|
alpar@9
|
273 // in the current basic solution as follows:
|
alpar@9
|
274 //
|
alpar@9
|
275 // d[j] = cN[j] - N[j] * pi,
|
alpar@9
|
276 //
|
alpar@9
|
277 // where cN[j] is an objective coefficient at xN[j], N[j] is a column
|
alpar@9
|
278 // of the augmented constraint matrix (I | -A) corresponding to xN[j],
|
alpar@9
|
279 // pi is the vector of simplex multipliers (shadow prices). */
|
alpar@9
|
280
|
alpar@9
|
281 void ssx_eval_dj(SSX *ssx, int j, mpq_t dj)
|
alpar@9
|
282 { int m = ssx->m;
|
alpar@9
|
283 int n = ssx->n;
|
alpar@9
|
284 mpq_t *coef = ssx->coef;
|
alpar@9
|
285 int *A_ptr = ssx->A_ptr;
|
alpar@9
|
286 int *A_ind = ssx->A_ind;
|
alpar@9
|
287 mpq_t *A_val = ssx->A_val;
|
alpar@9
|
288 int *Q_col = ssx->Q_col;
|
alpar@9
|
289 mpq_t *pi = ssx->pi;
|
alpar@9
|
290 int k, ptr, end;
|
alpar@9
|
291 mpq_t temp;
|
alpar@9
|
292 mpq_init(temp);
|
alpar@9
|
293 xassert(1 <= j && j <= n);
|
alpar@9
|
294 k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
295 xassert(1 <= k && k <= m+n);
|
alpar@9
|
296 /* j-th column of the matrix N is k-th column of the augmented
|
alpar@9
|
297 constraint matrix (I | -A) */
|
alpar@9
|
298 if (k <= m)
|
alpar@9
|
299 { /* it is a column of the unity matrix I */
|
alpar@9
|
300 mpq_sub(dj, coef[k], pi[k]);
|
alpar@9
|
301 }
|
alpar@9
|
302 else
|
alpar@9
|
303 { /* it is a column of the original constraint matrix -A */
|
alpar@9
|
304 mpq_set(dj, coef[k]);
|
alpar@9
|
305 for (ptr = A_ptr[k-m], end = A_ptr[k-m+1]; ptr < end; ptr++)
|
alpar@9
|
306 { mpq_mul(temp, A_val[ptr], pi[A_ind[ptr]]);
|
alpar@9
|
307 mpq_add(dj, dj, temp);
|
alpar@9
|
308 }
|
alpar@9
|
309 }
|
alpar@9
|
310 mpq_clear(temp);
|
alpar@9
|
311 return;
|
alpar@9
|
312 }
|
alpar@9
|
313
|
alpar@9
|
314 /*----------------------------------------------------------------------
|
alpar@9
|
315 // ssx_eval_cbar - compute reduced costs of all non-basic variables.
|
alpar@9
|
316 //
|
alpar@9
|
317 // This routine computes the vector of reduced costs pi in the current
|
alpar@9
|
318 // basic solution for all non-basic variables, including fixed ones. */
|
alpar@9
|
319
|
alpar@9
|
320 void ssx_eval_cbar(SSX *ssx)
|
alpar@9
|
321 { int n = ssx->n;
|
alpar@9
|
322 mpq_t *cbar = ssx->cbar;
|
alpar@9
|
323 int j;
|
alpar@9
|
324 for (j = 1; j <= n; j++)
|
alpar@9
|
325 ssx_eval_dj(ssx, j, cbar[j]);
|
alpar@9
|
326 return;
|
alpar@9
|
327 }
|
alpar@9
|
328
|
alpar@9
|
329 /*----------------------------------------------------------------------
|
alpar@9
|
330 // ssx_eval_rho - compute p-th row of the inverse.
|
alpar@9
|
331 //
|
alpar@9
|
332 // This routine computes p-th row of the matrix inv(B), where B is the
|
alpar@9
|
333 // current basis matrix.
|
alpar@9
|
334 //
|
alpar@9
|
335 // p-th row of the inverse is computed using the following formula:
|
alpar@9
|
336 //
|
alpar@9
|
337 // rho = inv(B') * e[p],
|
alpar@9
|
338 //
|
alpar@9
|
339 // where B' is a matrix transposed to B, e[p] is a unity vector, which
|
alpar@9
|
340 // contains one in p-th position. */
|
alpar@9
|
341
|
alpar@9
|
342 void ssx_eval_rho(SSX *ssx)
|
alpar@9
|
343 { int m = ssx->m;
|
alpar@9
|
344 int p = ssx->p;
|
alpar@9
|
345 mpq_t *rho = ssx->rho;
|
alpar@9
|
346 int i;
|
alpar@9
|
347 xassert(1 <= p && p <= m);
|
alpar@9
|
348 /* rho := 0 */
|
alpar@9
|
349 for (i = 1; i <= m; i++) mpq_set_si(rho[i], 0, 1);
|
alpar@9
|
350 /* rho := e[p] */
|
alpar@9
|
351 mpq_set_si(rho[p], 1, 1);
|
alpar@9
|
352 /* rho := inv(B') * rho */
|
alpar@9
|
353 bfx_btran(ssx->binv, rho);
|
alpar@9
|
354 return;
|
alpar@9
|
355 }
|
alpar@9
|
356
|
alpar@9
|
357 /*----------------------------------------------------------------------
|
alpar@9
|
358 // ssx_eval_row - compute pivot row of the simplex table.
|
alpar@9
|
359 //
|
alpar@9
|
360 // This routine computes p-th (pivot) row of the current simplex table
|
alpar@9
|
361 // A~ = - inv(B) * N using the following formula:
|
alpar@9
|
362 //
|
alpar@9
|
363 // A~[p] = - N' * inv(B') * e[p] = - N' * rho[p],
|
alpar@9
|
364 //
|
alpar@9
|
365 // where N' is a matrix transposed to the matrix N, rho[p] is p-th row
|
alpar@9
|
366 // of the inverse inv(B). */
|
alpar@9
|
367
|
alpar@9
|
368 void ssx_eval_row(SSX *ssx)
|
alpar@9
|
369 { int m = ssx->m;
|
alpar@9
|
370 int n = ssx->n;
|
alpar@9
|
371 int *A_ptr = ssx->A_ptr;
|
alpar@9
|
372 int *A_ind = ssx->A_ind;
|
alpar@9
|
373 mpq_t *A_val = ssx->A_val;
|
alpar@9
|
374 int *Q_col = ssx->Q_col;
|
alpar@9
|
375 mpq_t *rho = ssx->rho;
|
alpar@9
|
376 mpq_t *ap = ssx->ap;
|
alpar@9
|
377 int j, k, ptr;
|
alpar@9
|
378 mpq_t temp;
|
alpar@9
|
379 mpq_init(temp);
|
alpar@9
|
380 for (j = 1; j <= n; j++)
|
alpar@9
|
381 { /* ap[j] := - N'[j] * rho (inner product) */
|
alpar@9
|
382 k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
383 if (k <= m)
|
alpar@9
|
384 mpq_neg(ap[j], rho[k]);
|
alpar@9
|
385 else
|
alpar@9
|
386 { mpq_set_si(ap[j], 0, 1);
|
alpar@9
|
387 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
|
alpar@9
|
388 { mpq_mul(temp, A_val[ptr], rho[A_ind[ptr]]);
|
alpar@9
|
389 mpq_add(ap[j], ap[j], temp);
|
alpar@9
|
390 }
|
alpar@9
|
391 }
|
alpar@9
|
392 }
|
alpar@9
|
393 mpq_clear(temp);
|
alpar@9
|
394 return;
|
alpar@9
|
395 }
|
alpar@9
|
396
|
alpar@9
|
397 /*----------------------------------------------------------------------
|
alpar@9
|
398 // ssx_eval_col - compute pivot column of the simplex table.
|
alpar@9
|
399 //
|
alpar@9
|
400 // This routine computes q-th (pivot) column of the current simplex
|
alpar@9
|
401 // table A~ = - inv(B) * N using the following formula:
|
alpar@9
|
402 //
|
alpar@9
|
403 // A~[q] = - inv(B) * N[q],
|
alpar@9
|
404 //
|
alpar@9
|
405 // where N[q] is q-th column of the matrix N corresponding to chosen
|
alpar@9
|
406 // non-basic variable xN[q]. */
|
alpar@9
|
407
|
alpar@9
|
408 void ssx_eval_col(SSX *ssx)
|
alpar@9
|
409 { int m = ssx->m;
|
alpar@9
|
410 int n = ssx->n;
|
alpar@9
|
411 int *A_ptr = ssx->A_ptr;
|
alpar@9
|
412 int *A_ind = ssx->A_ind;
|
alpar@9
|
413 mpq_t *A_val = ssx->A_val;
|
alpar@9
|
414 int *Q_col = ssx->Q_col;
|
alpar@9
|
415 int q = ssx->q;
|
alpar@9
|
416 mpq_t *aq = ssx->aq;
|
alpar@9
|
417 int i, k, ptr;
|
alpar@9
|
418 xassert(1 <= q && q <= n);
|
alpar@9
|
419 /* aq := 0 */
|
alpar@9
|
420 for (i = 1; i <= m; i++) mpq_set_si(aq[i], 0, 1);
|
alpar@9
|
421 /* aq := N[q] */
|
alpar@9
|
422 k = Q_col[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
423 if (k <= m)
|
alpar@9
|
424 { /* N[q] is a column of the unity matrix I */
|
alpar@9
|
425 mpq_set_si(aq[k], 1, 1);
|
alpar@9
|
426 }
|
alpar@9
|
427 else
|
alpar@9
|
428 { /* N[q] is a column of the original constraint matrix -A */
|
alpar@9
|
429 for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)
|
alpar@9
|
430 mpq_neg(aq[A_ind[ptr]], A_val[ptr]);
|
alpar@9
|
431 }
|
alpar@9
|
432 /* aq := inv(B) * aq */
|
alpar@9
|
433 bfx_ftran(ssx->binv, aq, 1);
|
alpar@9
|
434 /* aq := - aq */
|
alpar@9
|
435 for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]);
|
alpar@9
|
436 return;
|
alpar@9
|
437 }
|
alpar@9
|
438
|
alpar@9
|
439 /*----------------------------------------------------------------------
|
alpar@9
|
440 // ssx_chuzc - choose pivot column.
|
alpar@9
|
441 //
|
alpar@9
|
442 // This routine chooses non-basic variable xN[q] whose reduced cost
|
alpar@9
|
443 // indicates possible improving of the objective function to enter it
|
alpar@9
|
444 // in the basis.
|
alpar@9
|
445 //
|
alpar@9
|
446 // Currently the standard (textbook) pricing is used, i.e. that
|
alpar@9
|
447 // non-basic variable is preferred which has greatest reduced cost (in
|
alpar@9
|
448 // magnitude).
|
alpar@9
|
449 //
|
alpar@9
|
450 // If xN[q] has been chosen, the routine stores its number q and also
|
alpar@9
|
451 // sets the flag q_dir that indicates direction in which xN[q] has to
|
alpar@9
|
452 // change (+1 means increasing, -1 means decreasing).
|
alpar@9
|
453 //
|
alpar@9
|
454 // If the choice cannot be made, because the current basic solution is
|
alpar@9
|
455 // dual feasible, the routine sets the number q to 0. */
|
alpar@9
|
456
|
alpar@9
|
457 void ssx_chuzc(SSX *ssx)
|
alpar@9
|
458 { int m = ssx->m;
|
alpar@9
|
459 int n = ssx->n;
|
alpar@9
|
460 int dir = (ssx->dir == SSX_MIN ? +1 : -1);
|
alpar@9
|
461 int *Q_col = ssx->Q_col;
|
alpar@9
|
462 int *stat = ssx->stat;
|
alpar@9
|
463 mpq_t *cbar = ssx->cbar;
|
alpar@9
|
464 int j, k, s, q, q_dir;
|
alpar@9
|
465 double best, temp;
|
alpar@9
|
466 /* nothing is chosen so far */
|
alpar@9
|
467 q = 0, q_dir = 0, best = 0.0;
|
alpar@9
|
468 /* look through the list of non-basic variables */
|
alpar@9
|
469 for (j = 1; j <= n; j++)
|
alpar@9
|
470 { k = Q_col[m+j]; /* x[k] = xN[j] */
|
alpar@9
|
471 s = dir * mpq_sgn(cbar[j]);
|
alpar@9
|
472 if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 ||
|
alpar@9
|
473 (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0)
|
alpar@9
|
474 { /* reduced cost of xN[j] indicates possible improving of
|
alpar@9
|
475 the objective function */
|
alpar@9
|
476 temp = fabs(mpq_get_d(cbar[j]));
|
alpar@9
|
477 xassert(temp != 0.0);
|
alpar@9
|
478 if (q == 0 || best < temp)
|
alpar@9
|
479 q = j, q_dir = - s, best = temp;
|
alpar@9
|
480 }
|
alpar@9
|
481 }
|
alpar@9
|
482 ssx->q = q, ssx->q_dir = q_dir;
|
alpar@9
|
483 return;
|
alpar@9
|
484 }
|
alpar@9
|
485
|
alpar@9
|
486 /*----------------------------------------------------------------------
|
alpar@9
|
487 // ssx_chuzr - choose pivot row.
|
alpar@9
|
488 //
|
alpar@9
|
489 // This routine looks through elements of q-th column of the simplex
|
alpar@9
|
490 // table and chooses basic variable xB[p] which should leave the basis.
|
alpar@9
|
491 //
|
alpar@9
|
492 // The choice is based on the standard (textbook) ratio test.
|
alpar@9
|
493 //
|
alpar@9
|
494 // If xB[p] has been chosen, the routine stores its number p and also
|
alpar@9
|
495 // sets its non-basic status p_stat which should be assigned to xB[p]
|
alpar@9
|
496 // when it has left the basis and become xN[q].
|
alpar@9
|
497 //
|
alpar@9
|
498 // Special case p < 0 means that xN[q] is double-bounded variable and
|
alpar@9
|
499 // it reaches its opposite bound before any basic variable does that,
|
alpar@9
|
500 // so the current basis remains unchanged.
|
alpar@9
|
501 //
|
alpar@9
|
502 // If the choice cannot be made, because xN[q] can infinitely change in
|
alpar@9
|
503 // the feasible direction, the routine sets the number p to 0. */
|
alpar@9
|
504
|
alpar@9
|
505 void ssx_chuzr(SSX *ssx)
|
alpar@9
|
506 { int m = ssx->m;
|
alpar@9
|
507 int n = ssx->n;
|
alpar@9
|
508 int *type = ssx->type;
|
alpar@9
|
509 mpq_t *lb = ssx->lb;
|
alpar@9
|
510 mpq_t *ub = ssx->ub;
|
alpar@9
|
511 int *Q_col = ssx->Q_col;
|
alpar@9
|
512 mpq_t *bbar = ssx->bbar;
|
alpar@9
|
513 int q = ssx->q;
|
alpar@9
|
514 mpq_t *aq = ssx->aq;
|
alpar@9
|
515 int q_dir = ssx->q_dir;
|
alpar@9
|
516 int i, k, s, t, p, p_stat;
|
alpar@9
|
517 mpq_t teta, temp;
|
alpar@9
|
518 mpq_init(teta);
|
alpar@9
|
519 mpq_init(temp);
|
alpar@9
|
520 xassert(1 <= q && q <= n);
|
alpar@9
|
521 xassert(q_dir == +1 || q_dir == -1);
|
alpar@9
|
522 /* nothing is chosen so far */
|
alpar@9
|
523 p = 0, p_stat = 0;
|
alpar@9
|
524 /* look through the list of basic variables */
|
alpar@9
|
525 for (i = 1; i <= m; i++)
|
alpar@9
|
526 { s = q_dir * mpq_sgn(aq[i]);
|
alpar@9
|
527 if (s < 0)
|
alpar@9
|
528 { /* xB[i] decreases */
|
alpar@9
|
529 k = Q_col[i]; /* x[k] = xB[i] */
|
alpar@9
|
530 t = type[k];
|
alpar@9
|
531 if (t == SSX_LO || t == SSX_DB || t == SSX_FX)
|
alpar@9
|
532 { /* xB[i] has finite lower bound */
|
alpar@9
|
533 mpq_sub(temp, bbar[i], lb[k]);
|
alpar@9
|
534 mpq_div(temp, temp, aq[i]);
|
alpar@9
|
535 mpq_abs(temp, temp);
|
alpar@9
|
536 if (p == 0 || mpq_cmp(teta, temp) > 0)
|
alpar@9
|
537 { p = i;
|
alpar@9
|
538 p_stat = (t == SSX_FX ? SSX_NS : SSX_NL);
|
alpar@9
|
539 mpq_set(teta, temp);
|
alpar@9
|
540 }
|
alpar@9
|
541 }
|
alpar@9
|
542 }
|
alpar@9
|
543 else if (s > 0)
|
alpar@9
|
544 { /* xB[i] increases */
|
alpar@9
|
545 k = Q_col[i]; /* x[k] = xB[i] */
|
alpar@9
|
546 t = type[k];
|
alpar@9
|
547 if (t == SSX_UP || t == SSX_DB || t == SSX_FX)
|
alpar@9
|
548 { /* xB[i] has finite upper bound */
|
alpar@9
|
549 mpq_sub(temp, bbar[i], ub[k]);
|
alpar@9
|
550 mpq_div(temp, temp, aq[i]);
|
alpar@9
|
551 mpq_abs(temp, temp);
|
alpar@9
|
552 if (p == 0 || mpq_cmp(teta, temp) > 0)
|
alpar@9
|
553 { p = i;
|
alpar@9
|
554 p_stat = (t == SSX_FX ? SSX_NS : SSX_NU);
|
alpar@9
|
555 mpq_set(teta, temp);
|
alpar@9
|
556 }
|
alpar@9
|
557 }
|
alpar@9
|
558 }
|
alpar@9
|
559 /* if something has been chosen and the ratio test indicates
|
alpar@9
|
560 exact degeneracy, the search can be finished */
|
alpar@9
|
561 if (p != 0 && mpq_sgn(teta) == 0) break;
|
alpar@9
|
562 }
|
alpar@9
|
563 /* if xN[q] is double-bounded, check if it can reach its opposite
|
alpar@9
|
564 bound before any basic variable */
|
alpar@9
|
565 k = Q_col[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
566 if (type[k] == SSX_DB)
|
alpar@9
|
567 { mpq_sub(temp, ub[k], lb[k]);
|
alpar@9
|
568 if (p == 0 || mpq_cmp(teta, temp) > 0)
|
alpar@9
|
569 { p = -1;
|
alpar@9
|
570 p_stat = -1;
|
alpar@9
|
571 mpq_set(teta, temp);
|
alpar@9
|
572 }
|
alpar@9
|
573 }
|
alpar@9
|
574 ssx->p = p;
|
alpar@9
|
575 ssx->p_stat = p_stat;
|
alpar@9
|
576 /* if xB[p] has been chosen, determine its actual change in the
|
alpar@9
|
577 adjacent basis (it has the same sign as q_dir) */
|
alpar@9
|
578 if (p != 0)
|
alpar@9
|
579 { xassert(mpq_sgn(teta) >= 0);
|
alpar@9
|
580 if (q_dir > 0)
|
alpar@9
|
581 mpq_set(ssx->delta, teta);
|
alpar@9
|
582 else
|
alpar@9
|
583 mpq_neg(ssx->delta, teta);
|
alpar@9
|
584 }
|
alpar@9
|
585 mpq_clear(teta);
|
alpar@9
|
586 mpq_clear(temp);
|
alpar@9
|
587 return;
|
alpar@9
|
588 }
|
alpar@9
|
589
|
alpar@9
|
590 /*----------------------------------------------------------------------
|
alpar@9
|
591 // ssx_update_bbar - update values of basic variables.
|
alpar@9
|
592 //
|
alpar@9
|
593 // This routine recomputes the current values of basic variables for
|
alpar@9
|
594 // the adjacent basis.
|
alpar@9
|
595 //
|
alpar@9
|
596 // The simplex table for the current basis is the following:
|
alpar@9
|
597 //
|
alpar@9
|
598 // xB[i] = sum{j in 1..n} alfa[i,j] * xN[q], i = 1,...,m
|
alpar@9
|
599 //
|
alpar@9
|
600 // therefore
|
alpar@9
|
601 //
|
alpar@9
|
602 // delta xB[i] = alfa[i,q] * delta xN[q], i = 1,...,m
|
alpar@9
|
603 //
|
alpar@9
|
604 // where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the
|
alpar@9
|
605 // adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of
|
alpar@9
|
606 // xB[i]. This gives formulae for recomputing values of xB[i]:
|
alpar@9
|
607 //
|
alpar@9
|
608 // xB.new[p] = xN[q] + delta xN[q]
|
alpar@9
|
609 //
|
alpar@9
|
610 // (because xN[q] becomes xB[p] in the adjacent basis), and
|
alpar@9
|
611 //
|
alpar@9
|
612 // xB.new[i] = xB[i] + alfa[i,q] * delta xN[q], i != p
|
alpar@9
|
613 //
|
alpar@9
|
614 // for other basic variables. */
|
alpar@9
|
615
|
alpar@9
|
616 void ssx_update_bbar(SSX *ssx)
|
alpar@9
|
617 { int m = ssx->m;
|
alpar@9
|
618 int n = ssx->n;
|
alpar@9
|
619 mpq_t *bbar = ssx->bbar;
|
alpar@9
|
620 mpq_t *cbar = ssx->cbar;
|
alpar@9
|
621 int p = ssx->p;
|
alpar@9
|
622 int q = ssx->q;
|
alpar@9
|
623 mpq_t *aq = ssx->aq;
|
alpar@9
|
624 int i;
|
alpar@9
|
625 mpq_t temp;
|
alpar@9
|
626 mpq_init(temp);
|
alpar@9
|
627 xassert(1 <= q && q <= n);
|
alpar@9
|
628 if (p < 0)
|
alpar@9
|
629 { /* xN[q] is double-bounded and goes to its opposite bound */
|
alpar@9
|
630 /* nop */;
|
alpar@9
|
631 }
|
alpar@9
|
632 else
|
alpar@9
|
633 { /* xN[q] becomes xB[p] in the adjacent basis */
|
alpar@9
|
634 /* xB.new[p] = xN[q] + delta xN[q] */
|
alpar@9
|
635 xassert(1 <= p && p <= m);
|
alpar@9
|
636 ssx_get_xNj(ssx, q, temp);
|
alpar@9
|
637 mpq_add(bbar[p], temp, ssx->delta);
|
alpar@9
|
638 }
|
alpar@9
|
639 /* update values of other basic variables depending on xN[q] */
|
alpar@9
|
640 for (i = 1; i <= m; i++)
|
alpar@9
|
641 { if (i == p) continue;
|
alpar@9
|
642 /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */
|
alpar@9
|
643 if (mpq_sgn(aq[i]) == 0) continue;
|
alpar@9
|
644 mpq_mul(temp, aq[i], ssx->delta);
|
alpar@9
|
645 mpq_add(bbar[i], bbar[i], temp);
|
alpar@9
|
646 }
|
alpar@9
|
647 #if 1
|
alpar@9
|
648 /* update value of the objective function */
|
alpar@9
|
649 /* z.new = z + d[q] * delta xN[q] */
|
alpar@9
|
650 mpq_mul(temp, cbar[q], ssx->delta);
|
alpar@9
|
651 mpq_add(bbar[0], bbar[0], temp);
|
alpar@9
|
652 #endif
|
alpar@9
|
653 mpq_clear(temp);
|
alpar@9
|
654 return;
|
alpar@9
|
655 }
|
alpar@9
|
656
|
alpar@9
|
657 /*----------------------------------------------------------------------
|
alpar@9
|
658 -- ssx_update_pi - update simplex multipliers.
|
alpar@9
|
659 --
|
alpar@9
|
660 -- This routine recomputes the vector of simplex multipliers for the
|
alpar@9
|
661 -- adjacent basis. */
|
alpar@9
|
662
|
alpar@9
|
663 void ssx_update_pi(SSX *ssx)
|
alpar@9
|
664 { int m = ssx->m;
|
alpar@9
|
665 int n = ssx->n;
|
alpar@9
|
666 mpq_t *pi = ssx->pi;
|
alpar@9
|
667 mpq_t *cbar = ssx->cbar;
|
alpar@9
|
668 int p = ssx->p;
|
alpar@9
|
669 int q = ssx->q;
|
alpar@9
|
670 mpq_t *aq = ssx->aq;
|
alpar@9
|
671 mpq_t *rho = ssx->rho;
|
alpar@9
|
672 int i;
|
alpar@9
|
673 mpq_t new_dq, temp;
|
alpar@9
|
674 mpq_init(new_dq);
|
alpar@9
|
675 mpq_init(temp);
|
alpar@9
|
676 xassert(1 <= p && p <= m);
|
alpar@9
|
677 xassert(1 <= q && q <= n);
|
alpar@9
|
678 /* compute d[q] in the adjacent basis */
|
alpar@9
|
679 mpq_div(new_dq, cbar[q], aq[p]);
|
alpar@9
|
680 /* update the vector of simplex multipliers */
|
alpar@9
|
681 for (i = 1; i <= m; i++)
|
alpar@9
|
682 { if (mpq_sgn(rho[i]) == 0) continue;
|
alpar@9
|
683 mpq_mul(temp, new_dq, rho[i]);
|
alpar@9
|
684 mpq_sub(pi[i], pi[i], temp);
|
alpar@9
|
685 }
|
alpar@9
|
686 mpq_clear(new_dq);
|
alpar@9
|
687 mpq_clear(temp);
|
alpar@9
|
688 return;
|
alpar@9
|
689 }
|
alpar@9
|
690
|
alpar@9
|
691 /*----------------------------------------------------------------------
|
alpar@9
|
692 // ssx_update_cbar - update reduced costs of non-basic variables.
|
alpar@9
|
693 //
|
alpar@9
|
694 // This routine recomputes the vector of reduced costs of non-basic
|
alpar@9
|
695 // variables for the adjacent basis. */
|
alpar@9
|
696
|
alpar@9
|
697 void ssx_update_cbar(SSX *ssx)
|
alpar@9
|
698 { int m = ssx->m;
|
alpar@9
|
699 int n = ssx->n;
|
alpar@9
|
700 mpq_t *cbar = ssx->cbar;
|
alpar@9
|
701 int p = ssx->p;
|
alpar@9
|
702 int q = ssx->q;
|
alpar@9
|
703 mpq_t *ap = ssx->ap;
|
alpar@9
|
704 int j;
|
alpar@9
|
705 mpq_t temp;
|
alpar@9
|
706 mpq_init(temp);
|
alpar@9
|
707 xassert(1 <= p && p <= m);
|
alpar@9
|
708 xassert(1 <= q && q <= n);
|
alpar@9
|
709 /* compute d[q] in the adjacent basis */
|
alpar@9
|
710 /* d.new[q] = d[q] / alfa[p,q] */
|
alpar@9
|
711 mpq_div(cbar[q], cbar[q], ap[q]);
|
alpar@9
|
712 /* update reduced costs of other non-basic variables */
|
alpar@9
|
713 for (j = 1; j <= n; j++)
|
alpar@9
|
714 { if (j == q) continue;
|
alpar@9
|
715 /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */
|
alpar@9
|
716 if (mpq_sgn(ap[j]) == 0) continue;
|
alpar@9
|
717 mpq_mul(temp, ap[j], cbar[q]);
|
alpar@9
|
718 mpq_sub(cbar[j], cbar[j], temp);
|
alpar@9
|
719 }
|
alpar@9
|
720 mpq_clear(temp);
|
alpar@9
|
721 return;
|
alpar@9
|
722 }
|
alpar@9
|
723
|
alpar@9
|
724 /*----------------------------------------------------------------------
|
alpar@9
|
725 // ssx_change_basis - change current basis to adjacent one.
|
alpar@9
|
726 //
|
alpar@9
|
727 // This routine changes the current basis to the adjacent one swapping
|
alpar@9
|
728 // basic variable xB[p] and non-basic variable xN[q]. */
|
alpar@9
|
729
|
alpar@9
|
730 void ssx_change_basis(SSX *ssx)
|
alpar@9
|
731 { int m = ssx->m;
|
alpar@9
|
732 int n = ssx->n;
|
alpar@9
|
733 int *type = ssx->type;
|
alpar@9
|
734 int *stat = ssx->stat;
|
alpar@9
|
735 int *Q_row = ssx->Q_row;
|
alpar@9
|
736 int *Q_col = ssx->Q_col;
|
alpar@9
|
737 int p = ssx->p;
|
alpar@9
|
738 int q = ssx->q;
|
alpar@9
|
739 int p_stat = ssx->p_stat;
|
alpar@9
|
740 int k, kp, kq;
|
alpar@9
|
741 if (p < 0)
|
alpar@9
|
742 { /* special case: xN[q] goes to its opposite bound */
|
alpar@9
|
743 xassert(1 <= q && q <= n);
|
alpar@9
|
744 k = Q_col[m+q]; /* x[k] = xN[q] */
|
alpar@9
|
745 xassert(type[k] == SSX_DB);
|
alpar@9
|
746 switch (stat[k])
|
alpar@9
|
747 { case SSX_NL:
|
alpar@9
|
748 stat[k] = SSX_NU;
|
alpar@9
|
749 break;
|
alpar@9
|
750 case SSX_NU:
|
alpar@9
|
751 stat[k] = SSX_NL;
|
alpar@9
|
752 break;
|
alpar@9
|
753 default:
|
alpar@9
|
754 xassert(stat != stat);
|
alpar@9
|
755 }
|
alpar@9
|
756 }
|
alpar@9
|
757 else
|
alpar@9
|
758 { /* xB[p] leaves the basis, xN[q] enters the basis */
|
alpar@9
|
759 xassert(1 <= p && p <= m);
|
alpar@9
|
760 xassert(1 <= q && q <= n);
|
alpar@9
|
761 kp = Q_col[p]; /* x[kp] = xB[p] */
|
alpar@9
|
762 kq = Q_col[m+q]; /* x[kq] = xN[q] */
|
alpar@9
|
763 /* check non-basic status of xB[p] which becomes xN[q] */
|
alpar@9
|
764 switch (type[kp])
|
alpar@9
|
765 { case SSX_FR:
|
alpar@9
|
766 xassert(p_stat == SSX_NF);
|
alpar@9
|
767 break;
|
alpar@9
|
768 case SSX_LO:
|
alpar@9
|
769 xassert(p_stat == SSX_NL);
|
alpar@9
|
770 break;
|
alpar@9
|
771 case SSX_UP:
|
alpar@9
|
772 xassert(p_stat == SSX_NU);
|
alpar@9
|
773 break;
|
alpar@9
|
774 case SSX_DB:
|
alpar@9
|
775 xassert(p_stat == SSX_NL || p_stat == SSX_NU);
|
alpar@9
|
776 break;
|
alpar@9
|
777 case SSX_FX:
|
alpar@9
|
778 xassert(p_stat == SSX_NS);
|
alpar@9
|
779 break;
|
alpar@9
|
780 default:
|
alpar@9
|
781 xassert(type != type);
|
alpar@9
|
782 }
|
alpar@9
|
783 /* swap xB[p] and xN[q] */
|
alpar@9
|
784 stat[kp] = (char)p_stat, stat[kq] = SSX_BS;
|
alpar@9
|
785 Q_row[kp] = m+q, Q_row[kq] = p;
|
alpar@9
|
786 Q_col[p] = kq, Q_col[m+q] = kp;
|
alpar@9
|
787 /* update factorization of the basis matrix */
|
alpar@9
|
788 if (bfx_update(ssx->binv, p))
|
alpar@9
|
789 { if (ssx_factorize(ssx))
|
alpar@9
|
790 xassert(("Internal error: basis matrix is singular", 0));
|
alpar@9
|
791 }
|
alpar@9
|
792 }
|
alpar@9
|
793 return;
|
alpar@9
|
794 }
|
alpar@9
|
795
|
alpar@9
|
796 /*----------------------------------------------------------------------
|
alpar@9
|
797 // ssx_delete - delete simplex solver workspace.
|
alpar@9
|
798 //
|
alpar@9
|
799 // This routine deletes the simplex solver workspace freeing all the
|
alpar@9
|
800 // memory allocated to this object. */
|
alpar@9
|
801
|
alpar@9
|
802 void ssx_delete(SSX *ssx)
|
alpar@9
|
803 { int m = ssx->m;
|
alpar@9
|
804 int n = ssx->n;
|
alpar@9
|
805 int nnz = ssx->A_ptr[n+1]-1;
|
alpar@9
|
806 int i, j, k;
|
alpar@9
|
807 xfree(ssx->type);
|
alpar@9
|
808 for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]);
|
alpar@9
|
809 xfree(ssx->lb);
|
alpar@9
|
810 for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]);
|
alpar@9
|
811 xfree(ssx->ub);
|
alpar@9
|
812 for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]);
|
alpar@9
|
813 xfree(ssx->coef);
|
alpar@9
|
814 xfree(ssx->A_ptr);
|
alpar@9
|
815 xfree(ssx->A_ind);
|
alpar@9
|
816 for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]);
|
alpar@9
|
817 xfree(ssx->A_val);
|
alpar@9
|
818 xfree(ssx->stat);
|
alpar@9
|
819 xfree(ssx->Q_row);
|
alpar@9
|
820 xfree(ssx->Q_col);
|
alpar@9
|
821 bfx_delete_binv(ssx->binv);
|
alpar@9
|
822 for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]);
|
alpar@9
|
823 xfree(ssx->bbar);
|
alpar@9
|
824 for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]);
|
alpar@9
|
825 xfree(ssx->pi);
|
alpar@9
|
826 for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]);
|
alpar@9
|
827 xfree(ssx->cbar);
|
alpar@9
|
828 for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]);
|
alpar@9
|
829 xfree(ssx->rho);
|
alpar@9
|
830 for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]);
|
alpar@9
|
831 xfree(ssx->ap);
|
alpar@9
|
832 for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]);
|
alpar@9
|
833 xfree(ssx->aq);
|
alpar@9
|
834 mpq_clear(ssx->delta);
|
alpar@9
|
835 xfree(ssx);
|
alpar@9
|
836 return;
|
alpar@9
|
837 }
|
alpar@9
|
838
|
alpar@9
|
839 /* eof */
|