rev |
line source |
alpar@9
|
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
|
alpar@9
|
2 * Copyright (C) 1995-2007 Mark Adler
|
alpar@9
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
alpar@9
|
4 */
|
alpar@9
|
5
|
alpar@9
|
6 /* @(#) $Id$ */
|
alpar@9
|
7
|
alpar@9
|
8 #include "zutil.h"
|
alpar@9
|
9
|
alpar@9
|
10 #define local static
|
alpar@9
|
11
|
alpar@9
|
12 local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
|
alpar@9
|
13
|
alpar@9
|
14 #define BASE 65521UL /* largest prime smaller than 65536 */
|
alpar@9
|
15 #define NMAX 5552
|
alpar@9
|
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
alpar@9
|
17
|
alpar@9
|
18 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
alpar@9
|
19 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
alpar@9
|
20 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
alpar@9
|
21 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
alpar@9
|
22 #define DO16(buf) DO8(buf,0); DO8(buf,8);
|
alpar@9
|
23
|
alpar@9
|
24 /* use NO_DIVIDE if your processor does not do division in hardware */
|
alpar@9
|
25 #ifdef NO_DIVIDE
|
alpar@9
|
26 # define MOD(a) \
|
alpar@9
|
27 do { \
|
alpar@9
|
28 if (a >= (BASE << 16)) a -= (BASE << 16); \
|
alpar@9
|
29 if (a >= (BASE << 15)) a -= (BASE << 15); \
|
alpar@9
|
30 if (a >= (BASE << 14)) a -= (BASE << 14); \
|
alpar@9
|
31 if (a >= (BASE << 13)) a -= (BASE << 13); \
|
alpar@9
|
32 if (a >= (BASE << 12)) a -= (BASE << 12); \
|
alpar@9
|
33 if (a >= (BASE << 11)) a -= (BASE << 11); \
|
alpar@9
|
34 if (a >= (BASE << 10)) a -= (BASE << 10); \
|
alpar@9
|
35 if (a >= (BASE << 9)) a -= (BASE << 9); \
|
alpar@9
|
36 if (a >= (BASE << 8)) a -= (BASE << 8); \
|
alpar@9
|
37 if (a >= (BASE << 7)) a -= (BASE << 7); \
|
alpar@9
|
38 if (a >= (BASE << 6)) a -= (BASE << 6); \
|
alpar@9
|
39 if (a >= (BASE << 5)) a -= (BASE << 5); \
|
alpar@9
|
40 if (a >= (BASE << 4)) a -= (BASE << 4); \
|
alpar@9
|
41 if (a >= (BASE << 3)) a -= (BASE << 3); \
|
alpar@9
|
42 if (a >= (BASE << 2)) a -= (BASE << 2); \
|
alpar@9
|
43 if (a >= (BASE << 1)) a -= (BASE << 1); \
|
alpar@9
|
44 if (a >= BASE) a -= BASE; \
|
alpar@9
|
45 } while (0)
|
alpar@9
|
46 # define MOD4(a) \
|
alpar@9
|
47 do { \
|
alpar@9
|
48 if (a >= (BASE << 4)) a -= (BASE << 4); \
|
alpar@9
|
49 if (a >= (BASE << 3)) a -= (BASE << 3); \
|
alpar@9
|
50 if (a >= (BASE << 2)) a -= (BASE << 2); \
|
alpar@9
|
51 if (a >= (BASE << 1)) a -= (BASE << 1); \
|
alpar@9
|
52 if (a >= BASE) a -= BASE; \
|
alpar@9
|
53 } while (0)
|
alpar@9
|
54 #else
|
alpar@9
|
55 # define MOD(a) a %= BASE
|
alpar@9
|
56 # define MOD4(a) a %= BASE
|
alpar@9
|
57 #endif
|
alpar@9
|
58
|
alpar@9
|
59 /* ========================================================================= */
|
alpar@9
|
60 uLong ZEXPORT adler32(adler, buf, len)
|
alpar@9
|
61 uLong adler;
|
alpar@9
|
62 const Bytef *buf;
|
alpar@9
|
63 uInt len;
|
alpar@9
|
64 {
|
alpar@9
|
65 unsigned long sum2;
|
alpar@9
|
66 unsigned n;
|
alpar@9
|
67
|
alpar@9
|
68 /* split Adler-32 into component sums */
|
alpar@9
|
69 sum2 = (adler >> 16) & 0xffff;
|
alpar@9
|
70 adler &= 0xffff;
|
alpar@9
|
71
|
alpar@9
|
72 /* in case user likes doing a byte at a time, keep it fast */
|
alpar@9
|
73 if (len == 1) {
|
alpar@9
|
74 adler += buf[0];
|
alpar@9
|
75 if (adler >= BASE)
|
alpar@9
|
76 adler -= BASE;
|
alpar@9
|
77 sum2 += adler;
|
alpar@9
|
78 if (sum2 >= BASE)
|
alpar@9
|
79 sum2 -= BASE;
|
alpar@9
|
80 return adler | (sum2 << 16);
|
alpar@9
|
81 }
|
alpar@9
|
82
|
alpar@9
|
83 /* initial Adler-32 value (deferred check for len == 1 speed) */
|
alpar@9
|
84 if (buf == Z_NULL)
|
alpar@9
|
85 return 1L;
|
alpar@9
|
86
|
alpar@9
|
87 /* in case short lengths are provided, keep it somewhat fast */
|
alpar@9
|
88 if (len < 16) {
|
alpar@9
|
89 while (len--) {
|
alpar@9
|
90 adler += *buf++;
|
alpar@9
|
91 sum2 += adler;
|
alpar@9
|
92 }
|
alpar@9
|
93 if (adler >= BASE)
|
alpar@9
|
94 adler -= BASE;
|
alpar@9
|
95 MOD4(sum2); /* only added so many BASE's */
|
alpar@9
|
96 return adler | (sum2 << 16);
|
alpar@9
|
97 }
|
alpar@9
|
98
|
alpar@9
|
99 /* do length NMAX blocks -- requires just one modulo operation */
|
alpar@9
|
100 while (len >= NMAX) {
|
alpar@9
|
101 len -= NMAX;
|
alpar@9
|
102 n = NMAX / 16; /* NMAX is divisible by 16 */
|
alpar@9
|
103 do {
|
alpar@9
|
104 DO16(buf); /* 16 sums unrolled */
|
alpar@9
|
105 buf += 16;
|
alpar@9
|
106 } while (--n);
|
alpar@9
|
107 MOD(adler);
|
alpar@9
|
108 MOD(sum2);
|
alpar@9
|
109 }
|
alpar@9
|
110
|
alpar@9
|
111 /* do remaining bytes (less than NMAX, still just one modulo) */
|
alpar@9
|
112 if (len) { /* avoid modulos if none remaining */
|
alpar@9
|
113 while (len >= 16) {
|
alpar@9
|
114 len -= 16;
|
alpar@9
|
115 DO16(buf);
|
alpar@9
|
116 buf += 16;
|
alpar@9
|
117 }
|
alpar@9
|
118 while (len--) {
|
alpar@9
|
119 adler += *buf++;
|
alpar@9
|
120 sum2 += adler;
|
alpar@9
|
121 }
|
alpar@9
|
122 MOD(adler);
|
alpar@9
|
123 MOD(sum2);
|
alpar@9
|
124 }
|
alpar@9
|
125
|
alpar@9
|
126 /* return recombined sums */
|
alpar@9
|
127 return adler | (sum2 << 16);
|
alpar@9
|
128 }
|
alpar@9
|
129
|
alpar@9
|
130 /* ========================================================================= */
|
alpar@9
|
131 local uLong adler32_combine_(adler1, adler2, len2)
|
alpar@9
|
132 uLong adler1;
|
alpar@9
|
133 uLong adler2;
|
alpar@9
|
134 z_off64_t len2;
|
alpar@9
|
135 {
|
alpar@9
|
136 unsigned long sum1;
|
alpar@9
|
137 unsigned long sum2;
|
alpar@9
|
138 unsigned rem;
|
alpar@9
|
139
|
alpar@9
|
140 /* the derivation of this formula is left as an exercise for the reader */
|
alpar@9
|
141 rem = (unsigned)(len2 % BASE);
|
alpar@9
|
142 sum1 = adler1 & 0xffff;
|
alpar@9
|
143 sum2 = rem * sum1;
|
alpar@9
|
144 MOD(sum2);
|
alpar@9
|
145 sum1 += (adler2 & 0xffff) + BASE - 1;
|
alpar@9
|
146 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
alpar@9
|
147 if (sum1 >= BASE) sum1 -= BASE;
|
alpar@9
|
148 if (sum1 >= BASE) sum1 -= BASE;
|
alpar@9
|
149 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
|
alpar@9
|
150 if (sum2 >= BASE) sum2 -= BASE;
|
alpar@9
|
151 return sum1 | (sum2 << 16);
|
alpar@9
|
152 }
|
alpar@9
|
153
|
alpar@9
|
154 /* ========================================================================= */
|
alpar@9
|
155 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
alpar@9
|
156 uLong adler1;
|
alpar@9
|
157 uLong adler2;
|
alpar@9
|
158 z_off_t len2;
|
alpar@9
|
159 {
|
alpar@9
|
160 return adler32_combine_(adler1, adler2, len2);
|
alpar@9
|
161 }
|
alpar@9
|
162
|
alpar@9
|
163 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
|
alpar@9
|
164 uLong adler1;
|
alpar@9
|
165 uLong adler2;
|
alpar@9
|
166 z_off64_t len2;
|
alpar@9
|
167 {
|
alpar@9
|
168 return adler32_combine_(adler1, adler2, len2);
|
alpar@9
|
169 }
|