rev |
line source |
alpar@9
|
1 /* crc32.c -- compute the CRC-32 of a data stream
|
alpar@9
|
2 * Copyright (C) 1995-2006, 2010 Mark Adler
|
alpar@9
|
3 * For conditions of distribution and use, see copyright notice in zlib.h
|
alpar@9
|
4 *
|
alpar@9
|
5 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
|
alpar@9
|
6 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
|
alpar@9
|
7 * tables for updating the shift register in one step with three exclusive-ors
|
alpar@9
|
8 * instead of four steps with four exclusive-ors. This results in about a
|
alpar@9
|
9 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
|
alpar@9
|
10 */
|
alpar@9
|
11
|
alpar@9
|
12 /* @(#) $Id$ */
|
alpar@9
|
13
|
alpar@9
|
14 /*
|
alpar@9
|
15 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
|
alpar@9
|
16 protection on the static variables used to control the first-use generation
|
alpar@9
|
17 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
|
alpar@9
|
18 first call get_crc_table() to initialize the tables before allowing more than
|
alpar@9
|
19 one thread to use crc32().
|
alpar@9
|
20 */
|
alpar@9
|
21
|
alpar@9
|
22 #ifdef MAKECRCH
|
alpar@9
|
23 # include <stdio.h>
|
alpar@9
|
24 # ifndef DYNAMIC_CRC_TABLE
|
alpar@9
|
25 # define DYNAMIC_CRC_TABLE
|
alpar@9
|
26 # endif /* !DYNAMIC_CRC_TABLE */
|
alpar@9
|
27 #endif /* MAKECRCH */
|
alpar@9
|
28
|
alpar@9
|
29 #include "zutil.h" /* for STDC and FAR definitions */
|
alpar@9
|
30
|
alpar@9
|
31 #define local static
|
alpar@9
|
32
|
alpar@9
|
33 /* Find a four-byte integer type for crc32_little() and crc32_big(). */
|
alpar@9
|
34 #ifndef NOBYFOUR
|
alpar@9
|
35 # ifdef STDC /* need ANSI C limits.h to determine sizes */
|
alpar@9
|
36 # include <limits.h>
|
alpar@9
|
37 # define BYFOUR
|
alpar@9
|
38 # if (UINT_MAX == 0xffffffffUL)
|
alpar@9
|
39 typedef unsigned int u4;
|
alpar@9
|
40 # else
|
alpar@9
|
41 # if (ULONG_MAX == 0xffffffffUL)
|
alpar@9
|
42 typedef unsigned long u4;
|
alpar@9
|
43 # else
|
alpar@9
|
44 # if (USHRT_MAX == 0xffffffffUL)
|
alpar@9
|
45 typedef unsigned short u4;
|
alpar@9
|
46 # else
|
alpar@9
|
47 # undef BYFOUR /* can't find a four-byte integer type! */
|
alpar@9
|
48 # endif
|
alpar@9
|
49 # endif
|
alpar@9
|
50 # endif
|
alpar@9
|
51 # endif /* STDC */
|
alpar@9
|
52 #endif /* !NOBYFOUR */
|
alpar@9
|
53
|
alpar@9
|
54 /* Definitions for doing the crc four data bytes at a time. */
|
alpar@9
|
55 #ifdef BYFOUR
|
alpar@9
|
56 # define REV(w) ((((w)>>24)&0xff)+(((w)>>8)&0xff00)+ \
|
alpar@9
|
57 (((w)&0xff00)<<8)+(((w)&0xff)<<24))
|
alpar@9
|
58 local unsigned long crc32_little OF((unsigned long,
|
alpar@9
|
59 const unsigned char FAR *, unsigned));
|
alpar@9
|
60 local unsigned long crc32_big OF((unsigned long,
|
alpar@9
|
61 const unsigned char FAR *, unsigned));
|
alpar@9
|
62 # define TBLS 8
|
alpar@9
|
63 #else
|
alpar@9
|
64 # define TBLS 1
|
alpar@9
|
65 #endif /* BYFOUR */
|
alpar@9
|
66
|
alpar@9
|
67 /* Local functions for crc concatenation */
|
alpar@9
|
68 local unsigned long gf2_matrix_times OF((unsigned long *mat,
|
alpar@9
|
69 unsigned long vec));
|
alpar@9
|
70 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
|
alpar@9
|
71 local uLong crc32_combine_(uLong crc1, uLong crc2, z_off64_t len2);
|
alpar@9
|
72
|
alpar@9
|
73
|
alpar@9
|
74 #ifdef DYNAMIC_CRC_TABLE
|
alpar@9
|
75
|
alpar@9
|
76 local volatile int crc_table_empty = 1;
|
alpar@9
|
77 local unsigned long FAR crc_table[TBLS][256];
|
alpar@9
|
78 local void make_crc_table OF((void));
|
alpar@9
|
79 #ifdef MAKECRCH
|
alpar@9
|
80 local void write_table OF((FILE *, const unsigned long FAR *));
|
alpar@9
|
81 #endif /* MAKECRCH */
|
alpar@9
|
82 /*
|
alpar@9
|
83 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
|
alpar@9
|
84 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
|
alpar@9
|
85
|
alpar@9
|
86 Polynomials over GF(2) are represented in binary, one bit per coefficient,
|
alpar@9
|
87 with the lowest powers in the most significant bit. Then adding polynomials
|
alpar@9
|
88 is just exclusive-or, and multiplying a polynomial by x is a right shift by
|
alpar@9
|
89 one. If we call the above polynomial p, and represent a byte as the
|
alpar@9
|
90 polynomial q, also with the lowest power in the most significant bit (so the
|
alpar@9
|
91 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
|
alpar@9
|
92 where a mod b means the remainder after dividing a by b.
|
alpar@9
|
93
|
alpar@9
|
94 This calculation is done using the shift-register method of multiplying and
|
alpar@9
|
95 taking the remainder. The register is initialized to zero, and for each
|
alpar@9
|
96 incoming bit, x^32 is added mod p to the register if the bit is a one (where
|
alpar@9
|
97 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
|
alpar@9
|
98 x (which is shifting right by one and adding x^32 mod p if the bit shifted
|
alpar@9
|
99 out is a one). We start with the highest power (least significant bit) of
|
alpar@9
|
100 q and repeat for all eight bits of q.
|
alpar@9
|
101
|
alpar@9
|
102 The first table is simply the CRC of all possible eight bit values. This is
|
alpar@9
|
103 all the information needed to generate CRCs on data a byte at a time for all
|
alpar@9
|
104 combinations of CRC register values and incoming bytes. The remaining tables
|
alpar@9
|
105 allow for word-at-a-time CRC calculation for both big-endian and little-
|
alpar@9
|
106 endian machines, where a word is four bytes.
|
alpar@9
|
107 */
|
alpar@9
|
108 local void make_crc_table()
|
alpar@9
|
109 {
|
alpar@9
|
110 unsigned long c;
|
alpar@9
|
111 int n, k;
|
alpar@9
|
112 unsigned long poly; /* polynomial exclusive-or pattern */
|
alpar@9
|
113 /* terms of polynomial defining this crc (except x^32): */
|
alpar@9
|
114 static volatile int first = 1; /* flag to limit concurrent making */
|
alpar@9
|
115 static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
|
alpar@9
|
116
|
alpar@9
|
117 /* See if another task is already doing this (not thread-safe, but better
|
alpar@9
|
118 than nothing -- significantly reduces duration of vulnerability in
|
alpar@9
|
119 case the advice about DYNAMIC_CRC_TABLE is ignored) */
|
alpar@9
|
120 if (first) {
|
alpar@9
|
121 first = 0;
|
alpar@9
|
122
|
alpar@9
|
123 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
|
alpar@9
|
124 poly = 0UL;
|
alpar@9
|
125 for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++)
|
alpar@9
|
126 poly |= 1UL << (31 - p[n]);
|
alpar@9
|
127
|
alpar@9
|
128 /* generate a crc for every 8-bit value */
|
alpar@9
|
129 for (n = 0; n < 256; n++) {
|
alpar@9
|
130 c = (unsigned long)n;
|
alpar@9
|
131 for (k = 0; k < 8; k++)
|
alpar@9
|
132 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
|
alpar@9
|
133 crc_table[0][n] = c;
|
alpar@9
|
134 }
|
alpar@9
|
135
|
alpar@9
|
136 #ifdef BYFOUR
|
alpar@9
|
137 /* generate crc for each value followed by one, two, and three zeros,
|
alpar@9
|
138 and then the byte reversal of those as well as the first table */
|
alpar@9
|
139 for (n = 0; n < 256; n++) {
|
alpar@9
|
140 c = crc_table[0][n];
|
alpar@9
|
141 crc_table[4][n] = REV(c);
|
alpar@9
|
142 for (k = 1; k < 4; k++) {
|
alpar@9
|
143 c = crc_table[0][c & 0xff] ^ (c >> 8);
|
alpar@9
|
144 crc_table[k][n] = c;
|
alpar@9
|
145 crc_table[k + 4][n] = REV(c);
|
alpar@9
|
146 }
|
alpar@9
|
147 }
|
alpar@9
|
148 #endif /* BYFOUR */
|
alpar@9
|
149
|
alpar@9
|
150 crc_table_empty = 0;
|
alpar@9
|
151 }
|
alpar@9
|
152 else { /* not first */
|
alpar@9
|
153 /* wait for the other guy to finish (not efficient, but rare) */
|
alpar@9
|
154 while (crc_table_empty)
|
alpar@9
|
155 ;
|
alpar@9
|
156 }
|
alpar@9
|
157
|
alpar@9
|
158 #ifdef MAKECRCH
|
alpar@9
|
159 /* write out CRC tables to crc32.h */
|
alpar@9
|
160 {
|
alpar@9
|
161 FILE *out;
|
alpar@9
|
162
|
alpar@9
|
163 out = fopen("crc32.h", "w");
|
alpar@9
|
164 if (out == NULL) return;
|
alpar@9
|
165 fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
|
alpar@9
|
166 fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
|
alpar@9
|
167 fprintf(out, "local const unsigned long FAR ");
|
alpar@9
|
168 fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
|
alpar@9
|
169 write_table(out, crc_table[0]);
|
alpar@9
|
170 # ifdef BYFOUR
|
alpar@9
|
171 fprintf(out, "#ifdef BYFOUR\n");
|
alpar@9
|
172 for (k = 1; k < 8; k++) {
|
alpar@9
|
173 fprintf(out, " },\n {\n");
|
alpar@9
|
174 write_table(out, crc_table[k]);
|
alpar@9
|
175 }
|
alpar@9
|
176 fprintf(out, "#endif\n");
|
alpar@9
|
177 # endif /* BYFOUR */
|
alpar@9
|
178 fprintf(out, " }\n};\n");
|
alpar@9
|
179 fclose(out);
|
alpar@9
|
180 }
|
alpar@9
|
181 #endif /* MAKECRCH */
|
alpar@9
|
182 }
|
alpar@9
|
183
|
alpar@9
|
184 #ifdef MAKECRCH
|
alpar@9
|
185 local void write_table(out, table)
|
alpar@9
|
186 FILE *out;
|
alpar@9
|
187 const unsigned long FAR *table;
|
alpar@9
|
188 {
|
alpar@9
|
189 int n;
|
alpar@9
|
190
|
alpar@9
|
191 for (n = 0; n < 256; n++)
|
alpar@9
|
192 fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n],
|
alpar@9
|
193 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
|
alpar@9
|
194 }
|
alpar@9
|
195 #endif /* MAKECRCH */
|
alpar@9
|
196
|
alpar@9
|
197 #else /* !DYNAMIC_CRC_TABLE */
|
alpar@9
|
198 /* ========================================================================
|
alpar@9
|
199 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
|
alpar@9
|
200 */
|
alpar@9
|
201 #include "crc32.h"
|
alpar@9
|
202 #endif /* DYNAMIC_CRC_TABLE */
|
alpar@9
|
203
|
alpar@9
|
204 /* =========================================================================
|
alpar@9
|
205 * This function can be used by asm versions of crc32()
|
alpar@9
|
206 */
|
alpar@9
|
207 const unsigned long FAR * ZEXPORT get_crc_table()
|
alpar@9
|
208 {
|
alpar@9
|
209 #ifdef DYNAMIC_CRC_TABLE
|
alpar@9
|
210 if (crc_table_empty)
|
alpar@9
|
211 make_crc_table();
|
alpar@9
|
212 #endif /* DYNAMIC_CRC_TABLE */
|
alpar@9
|
213 return (const unsigned long FAR *)crc_table;
|
alpar@9
|
214 }
|
alpar@9
|
215
|
alpar@9
|
216 /* ========================================================================= */
|
alpar@9
|
217 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
|
alpar@9
|
218 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
|
alpar@9
|
219
|
alpar@9
|
220 /* ========================================================================= */
|
alpar@9
|
221 unsigned long ZEXPORT crc32(crc, buf, len)
|
alpar@9
|
222 unsigned long crc;
|
alpar@9
|
223 const unsigned char FAR *buf;
|
alpar@9
|
224 uInt len;
|
alpar@9
|
225 {
|
alpar@9
|
226 if (buf == Z_NULL) return 0UL;
|
alpar@9
|
227
|
alpar@9
|
228 #ifdef DYNAMIC_CRC_TABLE
|
alpar@9
|
229 if (crc_table_empty)
|
alpar@9
|
230 make_crc_table();
|
alpar@9
|
231 #endif /* DYNAMIC_CRC_TABLE */
|
alpar@9
|
232
|
alpar@9
|
233 #ifdef BYFOUR
|
alpar@9
|
234 if (sizeof(void *) == sizeof(ptrdiff_t)) {
|
alpar@9
|
235 u4 endian;
|
alpar@9
|
236
|
alpar@9
|
237 endian = 1;
|
alpar@9
|
238 if (*((unsigned char *)(&endian)))
|
alpar@9
|
239 return crc32_little(crc, buf, len);
|
alpar@9
|
240 else
|
alpar@9
|
241 return crc32_big(crc, buf, len);
|
alpar@9
|
242 }
|
alpar@9
|
243 #endif /* BYFOUR */
|
alpar@9
|
244 crc = crc ^ 0xffffffffUL;
|
alpar@9
|
245 while (len >= 8) {
|
alpar@9
|
246 DO8;
|
alpar@9
|
247 len -= 8;
|
alpar@9
|
248 }
|
alpar@9
|
249 if (len) do {
|
alpar@9
|
250 DO1;
|
alpar@9
|
251 } while (--len);
|
alpar@9
|
252 return crc ^ 0xffffffffUL;
|
alpar@9
|
253 }
|
alpar@9
|
254
|
alpar@9
|
255 #ifdef BYFOUR
|
alpar@9
|
256
|
alpar@9
|
257 /* ========================================================================= */
|
alpar@9
|
258 #define DOLIT4 c ^= *buf4++; \
|
alpar@9
|
259 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
|
alpar@9
|
260 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
|
alpar@9
|
261 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
|
alpar@9
|
262
|
alpar@9
|
263 /* ========================================================================= */
|
alpar@9
|
264 local unsigned long crc32_little(crc, buf, len)
|
alpar@9
|
265 unsigned long crc;
|
alpar@9
|
266 const unsigned char FAR *buf;
|
alpar@9
|
267 unsigned len;
|
alpar@9
|
268 {
|
alpar@9
|
269 register u4 c;
|
alpar@9
|
270 register const u4 FAR *buf4;
|
alpar@9
|
271
|
alpar@9
|
272 c = (u4)crc;
|
alpar@9
|
273 c = ~c;
|
alpar@9
|
274 while (len && ((ptrdiff_t)buf & 3)) {
|
alpar@9
|
275 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
alpar@9
|
276 len--;
|
alpar@9
|
277 }
|
alpar@9
|
278
|
alpar@9
|
279 buf4 = (const u4 FAR *)(const void FAR *)buf;
|
alpar@9
|
280 while (len >= 32) {
|
alpar@9
|
281 DOLIT32;
|
alpar@9
|
282 len -= 32;
|
alpar@9
|
283 }
|
alpar@9
|
284 while (len >= 4) {
|
alpar@9
|
285 DOLIT4;
|
alpar@9
|
286 len -= 4;
|
alpar@9
|
287 }
|
alpar@9
|
288 buf = (const unsigned char FAR *)buf4;
|
alpar@9
|
289
|
alpar@9
|
290 if (len) do {
|
alpar@9
|
291 c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
|
alpar@9
|
292 } while (--len);
|
alpar@9
|
293 c = ~c;
|
alpar@9
|
294 return (unsigned long)c;
|
alpar@9
|
295 }
|
alpar@9
|
296
|
alpar@9
|
297 /* ========================================================================= */
|
alpar@9
|
298 #define DOBIG4 c ^= *++buf4; \
|
alpar@9
|
299 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
alpar@9
|
300 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
alpar@9
|
301 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
alpar@9
|
302
|
alpar@9
|
303 /* ========================================================================= */
|
alpar@9
|
304 local unsigned long crc32_big(crc, buf, len)
|
alpar@9
|
305 unsigned long crc;
|
alpar@9
|
306 const unsigned char FAR *buf;
|
alpar@9
|
307 unsigned len;
|
alpar@9
|
308 {
|
alpar@9
|
309 register u4 c;
|
alpar@9
|
310 register const u4 FAR *buf4;
|
alpar@9
|
311
|
alpar@9
|
312 c = REV((u4)crc);
|
alpar@9
|
313 c = ~c;
|
alpar@9
|
314 while (len && ((ptrdiff_t)buf & 3)) {
|
alpar@9
|
315 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
alpar@9
|
316 len--;
|
alpar@9
|
317 }
|
alpar@9
|
318
|
alpar@9
|
319 buf4 = (const u4 FAR *)(const void FAR *)buf;
|
alpar@9
|
320 buf4--;
|
alpar@9
|
321 while (len >= 32) {
|
alpar@9
|
322 DOBIG32;
|
alpar@9
|
323 len -= 32;
|
alpar@9
|
324 }
|
alpar@9
|
325 while (len >= 4) {
|
alpar@9
|
326 DOBIG4;
|
alpar@9
|
327 len -= 4;
|
alpar@9
|
328 }
|
alpar@9
|
329 buf4++;
|
alpar@9
|
330 buf = (const unsigned char FAR *)buf4;
|
alpar@9
|
331
|
alpar@9
|
332 if (len) do {
|
alpar@9
|
333 c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
|
alpar@9
|
334 } while (--len);
|
alpar@9
|
335 c = ~c;
|
alpar@9
|
336 return (unsigned long)(REV(c));
|
alpar@9
|
337 }
|
alpar@9
|
338
|
alpar@9
|
339 #endif /* BYFOUR */
|
alpar@9
|
340
|
alpar@9
|
341 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
|
alpar@9
|
342
|
alpar@9
|
343 /* ========================================================================= */
|
alpar@9
|
344 local unsigned long gf2_matrix_times(mat, vec)
|
alpar@9
|
345 unsigned long *mat;
|
alpar@9
|
346 unsigned long vec;
|
alpar@9
|
347 {
|
alpar@9
|
348 unsigned long sum;
|
alpar@9
|
349
|
alpar@9
|
350 sum = 0;
|
alpar@9
|
351 while (vec) {
|
alpar@9
|
352 if (vec & 1)
|
alpar@9
|
353 sum ^= *mat;
|
alpar@9
|
354 vec >>= 1;
|
alpar@9
|
355 mat++;
|
alpar@9
|
356 }
|
alpar@9
|
357 return sum;
|
alpar@9
|
358 }
|
alpar@9
|
359
|
alpar@9
|
360 /* ========================================================================= */
|
alpar@9
|
361 local void gf2_matrix_square(square, mat)
|
alpar@9
|
362 unsigned long *square;
|
alpar@9
|
363 unsigned long *mat;
|
alpar@9
|
364 {
|
alpar@9
|
365 int n;
|
alpar@9
|
366
|
alpar@9
|
367 for (n = 0; n < GF2_DIM; n++)
|
alpar@9
|
368 square[n] = gf2_matrix_times(mat, mat[n]);
|
alpar@9
|
369 }
|
alpar@9
|
370
|
alpar@9
|
371 /* ========================================================================= */
|
alpar@9
|
372 local uLong crc32_combine_(crc1, crc2, len2)
|
alpar@9
|
373 uLong crc1;
|
alpar@9
|
374 uLong crc2;
|
alpar@9
|
375 z_off64_t len2;
|
alpar@9
|
376 {
|
alpar@9
|
377 int n;
|
alpar@9
|
378 unsigned long row;
|
alpar@9
|
379 unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
|
alpar@9
|
380 unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
|
alpar@9
|
381
|
alpar@9
|
382 /* degenerate case (also disallow negative lengths) */
|
alpar@9
|
383 if (len2 <= 0)
|
alpar@9
|
384 return crc1;
|
alpar@9
|
385
|
alpar@9
|
386 /* put operator for one zero bit in odd */
|
alpar@9
|
387 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
|
alpar@9
|
388 row = 1;
|
alpar@9
|
389 for (n = 1; n < GF2_DIM; n++) {
|
alpar@9
|
390 odd[n] = row;
|
alpar@9
|
391 row <<= 1;
|
alpar@9
|
392 }
|
alpar@9
|
393
|
alpar@9
|
394 /* put operator for two zero bits in even */
|
alpar@9
|
395 gf2_matrix_square(even, odd);
|
alpar@9
|
396
|
alpar@9
|
397 /* put operator for four zero bits in odd */
|
alpar@9
|
398 gf2_matrix_square(odd, even);
|
alpar@9
|
399
|
alpar@9
|
400 /* apply len2 zeros to crc1 (first square will put the operator for one
|
alpar@9
|
401 zero byte, eight zero bits, in even) */
|
alpar@9
|
402 do {
|
alpar@9
|
403 /* apply zeros operator for this bit of len2 */
|
alpar@9
|
404 gf2_matrix_square(even, odd);
|
alpar@9
|
405 if (len2 & 1)
|
alpar@9
|
406 crc1 = gf2_matrix_times(even, crc1);
|
alpar@9
|
407 len2 >>= 1;
|
alpar@9
|
408
|
alpar@9
|
409 /* if no more bits set, then done */
|
alpar@9
|
410 if (len2 == 0)
|
alpar@9
|
411 break;
|
alpar@9
|
412
|
alpar@9
|
413 /* another iteration of the loop with odd and even swapped */
|
alpar@9
|
414 gf2_matrix_square(odd, even);
|
alpar@9
|
415 if (len2 & 1)
|
alpar@9
|
416 crc1 = gf2_matrix_times(odd, crc1);
|
alpar@9
|
417 len2 >>= 1;
|
alpar@9
|
418
|
alpar@9
|
419 /* if no more bits set, then done */
|
alpar@9
|
420 } while (len2 != 0);
|
alpar@9
|
421
|
alpar@9
|
422 /* return combined crc */
|
alpar@9
|
423 crc1 ^= crc2;
|
alpar@9
|
424 return crc1;
|
alpar@9
|
425 }
|
alpar@9
|
426
|
alpar@9
|
427 /* ========================================================================= */
|
alpar@9
|
428 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
|
alpar@9
|
429 uLong crc1;
|
alpar@9
|
430 uLong crc2;
|
alpar@9
|
431 z_off_t len2;
|
alpar@9
|
432 {
|
alpar@9
|
433 return crc32_combine_(crc1, crc2, len2);
|
alpar@9
|
434 }
|
alpar@9
|
435
|
alpar@9
|
436 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
|
alpar@9
|
437 uLong crc1;
|
alpar@9
|
438 uLong crc2;
|
alpar@9
|
439 z_off64_t len2;
|
alpar@9
|
440 {
|
alpar@9
|
441 return crc32_combine_(crc1, crc2, len2);
|
alpar@9
|
442 }
|