lemon-project-template-glpk
comparison deps/glpk/examples/dea.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5ea068fcee33 |
---|---|
1 /* Data Envelopment Analysis (DEA) | |
2 * | |
3 * DEA quantifies the relative efficiency of decision making units (DMUs) by | |
4 * finding the efficient frontier in multiple input multiple output data. The | |
5 * inputs are resources (eg. number of employees, available machines, ...), | |
6 * the outputs are productive outputs (eg. contracts made, total sales, ...). | |
7 * The method is non-parametric. More details are available in the paper | |
8 * below. | |
9 * | |
10 * Models according to: Seiford, Threall, "Recent developments in DEA", 1990. | |
11 * | |
12 * Implementation: Sebastian Nowozin <nowozin@gmail.com> | |
13 */ | |
14 | |
15 ### SETS ### | |
16 | |
17 set dmus; # Decision Making Units (DMU) | |
18 set inputs; # Input parameters | |
19 set outputs; # Output parameters | |
20 | |
21 | |
22 ### PARAMETERS ### | |
23 | |
24 param input_data{dmus,inputs} >= 0; | |
25 param output_data{dmus,outputs} >= 0; | |
26 | |
27 | |
28 ### PROGRAM ### | |
29 | |
30 var theta{dmus} >= 0; | |
31 var lambda{dmus,dmus} >= 0; | |
32 | |
33 minimize inefficiency: sum{td in dmus} theta[td]; | |
34 | |
35 s.t. output_lower_limit{o in outputs, td in dmus}: | |
36 sum{d in dmus} lambda[d,td]*output_data[d,o] >= output_data[td,o]; | |
37 s.t. input_upper_limit{i in inputs, td in dmus}: | |
38 sum{d in dmus} lambda[d,td]*input_data[d,i] <= theta[td]*input_data[td,i]; | |
39 | |
40 s.t. PI1{td in dmus}: | |
41 sum{d in dmus} lambda[d,td] = 1; | |
42 /* | |
43 possibilities: | |
44 i) (no constraint) | |
45 ii) s.t. PI1{td in dmus}: | |
46 sum{d in dmus} lambda[d,td] <= 1; | |
47 iii) s.t. PI1{td in dmus}: | |
48 sum{d in dmus} lambda[d,td] >= 1; | |
49 */ | |
50 | |
51 | |
52 ### SOLVE AND PRINT SOLUTION ### | |
53 | |
54 solve; | |
55 | |
56 printf "DMU\tEfficiency\n"; | |
57 for {td in dmus} { | |
58 printf "%s\t%1.4f\n", td, theta[td]; | |
59 } | |
60 | |
61 ### DATA ### | |
62 | |
63 data; | |
64 | |
65 set dmus := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | |
66 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | |
67 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | |
68 61 62 63 64 65 66 67 68 69 ; | |
69 set inputs := AvgInventory LaborCost OperatingCost Population ; | |
70 set outputs := PrescrVol kDollarValue ; | |
71 | |
72 param input_data default 0.0 : | |
73 | |
74 AvgInventory LaborCost OperatingCost Population := | |
75 | |
76 1 8000 17030 1280 1410 | |
77 2 9000 25890 2779 1523 | |
78 3 13694 29076 2372 1354 | |
79 4 4250 17506 1385 822 | |
80 5 6500 23208 639 746 | |
81 6 7000 12946 802 1281 | |
82 7 4500 18001 1130 1016 | |
83 8 5000 14473 1097 1070 | |
84 9 27000 31760 5559 1694 | |
85 10 21560 50972 15010 1910 | |
86 11 15000 39523 4799 1745 | |
87 12 8500 13076 3489 1353 | |
88 13 35000 35427 1704 500 | |
89 14 18000 27554 2882 1016 | |
90 15 59750 53848 14208 2500 | |
91 16 19200 38253 1480 2293 | |
92 17 40000 109404 83016 2718 | |
93 18 8466 18198 1278 2877 | |
94 19 16000 40891 7599 4150 | |
95 20 10000 45444 5556 4421 | |
96 21 25000 35623 2121 3883 | |
97 22 14000 20192 5515 3519 | |
98 23 12500 34973 10475 32366 | |
99 24 17260 32284 14498 3393 | |
100 25 7000 17920 7585 4489 | |
101 26 14000 42094 3742 2217 | |
102 27 16400 35422 14236 4641 | |
103 28 13000 19100 3529 5968 | |
104 29 30000 72167 8656 8715 | |
105 30 12530 19970 1714 5968 | |
106 31 31500 39183 4919 5607 | |
107 32 10000 32048 3483 7324 | |
108 33 22000 68877 12279 8685 | |
109 34 10000 29812 3332 8685 | |
110 35 16000 47686 2507 5420 | |
111 36 10000 33415 4738 7703 | |
112 37 9000 12359 4603 4665 | |
113 38 16439 23614 2989 6317 | |
114 39 14500 36069 1793 31839 | |
115 40 39000 76307 9539 15619 | |
116 41 24927 40706 12661 30213 | |
117 42 13858 39267 4609 34719 | |
118 43 33375 29509 11323 31839 | |
119 44 29044 44482 5542 34719 | |
120 45 32257 61365 20550 32366 | |
121 46 8800 49671 3306 43561 | |
122 47 47000 40425 10396 31263 | |
123 48 12000 33034 4915 31263 | |
124 49 28000 69163 4688 15173 | |
125 50 13300 28931 16735 73064 | |
126 51 13500 29758 4260 62309 | |
127 52 24000 40927 8285 23166 | |
128 53 16000 40403 2131 99836 | |
129 54 17000 38730 2539 60348 | |
130 55 25000 35978 2502 99836 | |
131 56 16000 37509 6278 99836 | |
132 57 20000 46950 10715 85925 | |
133 58 14000 35966 3144 85925 | |
134 59 22000 68318 8015 108987 | |
135 60 21879 69537 7778 108987 | |
136 61 15000 25425 2812 201404 | |
137 62 10000 19508 2454 201404 | |
138 63 20000 28191 3367 201404 | |
139 64 18000 37073 8624 108987 | |
140 65 19051 23763 3496 201404 | |
141 66 15000 28642 3366 201404 | |
142 67 10000 35919 3868 201404 | |
143 68 24000 54653 26494 108987 | |
144 69 1800 6276 3413 60348 | |
145 ; | |
146 | |
147 param output_data default 0.0 : | |
148 | |
149 PrescrVol kDollarValue := | |
150 | |
151 1 12293 61.00 | |
152 2 18400 92.00 | |
153 3 16789 92.65 | |
154 4 10700 45.00 | |
155 5 9800 50.00 | |
156 6 6500 29.00 | |
157 7 8200 56.00 | |
158 8 8680 45.00 | |
159 9 33800 183.00 | |
160 10 23710 156.00 | |
161 11 24000 120.00 | |
162 12 17500 75.00 | |
163 13 25000 130.00 | |
164 14 26000 122.00 | |
165 15 26830 178.513 | |
166 16 16600 106.00 | |
167 17 90000 450.00 | |
168 18 11140 73.624 | |
169 19 25868 136.00 | |
170 20 32700 191.295 | |
171 21 29117 152.864 | |
172 22 18000 100.00 | |
173 23 11100 60.00 | |
174 24 23030 137.778 | |
175 25 10656 58.00 | |
176 26 24682 152.095 | |
177 27 26908 120.00 | |
178 28 16464 80.00 | |
179 29 57000 321.00 | |
180 30 17532 94.747 | |
181 31 30035 168.00 | |
182 32 16000 100.00 | |
183 33 63700 277.00 | |
184 34 18000 90.00 | |
185 35 27339 139.134 | |
186 36 19500 116.00 | |
187 37 13000 80.00 | |
188 38 15370 102.00 | |
189 39 18446 90.00 | |
190 40 56000 260.00 | |
191 41 73845 364.951 | |
192 42 28600 145.00 | |
193 43 27000 243.00 | |
194 44 52423 279.816 | |
195 45 73759 363.388 | |
196 46 20500 80.00 | |
197 47 27100 115.00 | |
198 48 15000 110.00 | |
199 49 50895 277.852 | |
200 50 19707 128.00 | |
201 51 17994 78.80 | |
202 52 36135 167.222 | |
203 53 30000 153.00 | |
204 54 26195 125.00 | |
205 55 28000 216.00 | |
206 56 24658 152.551 | |
207 57 36850 190.00 | |
208 58 29250 183.69 | |
209 59 50000 250.00 | |
210 60 40078 265.443 | |
211 61 20200 110.00 | |
212 62 12500 75.00 | |
213 63 30890 195.00 | |
214 64 31000 175.00 | |
215 65 31277 192.992 | |
216 66 11500 75.00 | |
217 67 30000 175.668 | |
218 68 38383 190.00 | |
219 69 2075 8.650 | |
220 ; | |
221 | |
222 end; |