lemon-project-template-glpk

comparison deps/glpk/examples/gap.mod @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e36c3bb0633e
1 /* GAP, Generalized Assignment Problem */
2
3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
4
5 /* The Generalized Assignment Problem (GAP) is to assign a set of jobs
6 to a set of agents subject to the constraints that each job must be
7 assigned exactly to one agent and the total resources consumed by all
8 jobs assigned to an agent must not exceed the agent's capacity. */
9
10 param m, integer, > 0;
11 /* number of agents */
12
13 param n, integer, > 0;
14 /* number of jobs */
15
16 set I := 1..m;
17 /* set of agents */
18
19 set J := 1..n;
20 /* set of jobs */
21
22 param a{i in I, j in J}, >= 0;
23 /* resource consumed in allocating job j to agent i */
24
25 param b{i in I}, >= 0;
26 /* resource capacity of agent i */
27
28 param c{i in I, j in J}, >= 0;
29 /* cost of allocating job j to agent i */
30
31 var x{i in I, j in J}, binary;
32 /* x[i,j] = 1 means job j is assigned to agent i */
33
34 s.t. one{j in J}: sum{i in I} x[i,j] = 1;
35 /* job j must be assigned exactly to one agent */
36
37 s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i];
38 /* total amount of resources consumed by all jobs assigned to agent i
39 must not exceed the agent's capacity */
40
41 minimize obj: sum{i in I, j in J} c[i,j] * x[i,j];
42 /* the objective is to find cheapest assignment (note that gap can also
43 be formulated as maximization problem) */
44
45 data;
46
47 /* These data correspond to the instance c515-1 (gap1) from:
48
49 I.H. Osman, "Heuristics for the Generalised Assignment Problem:
50 Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume
51 17, 211-225, 1995
52
53 D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning
54 heuristic for the generalized assignment problem", European Journal
55 of Operational Research, Volume 72, 167-174, 1994 */
56
57 /* The optimal solution is 261 (minimization) or 336 (maximization) */
58
59 param m := 5;
60
61 param n := 15;
62
63 param a : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
64 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24
65 2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22
66 3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16
67 4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18
68 5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 ;
69
70 param b := 1 36, 2 34, 3 38, 4 27, 5 33;
71
72 param c : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 :=
73 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16
74 2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24
75 3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24
76 4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25
77 5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ;
78
79 end;