lemon-project-template-glpk
comparison deps/glpk/examples/gap.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e36c3bb0633e |
---|---|
1 /* GAP, Generalized Assignment Problem */ | |
2 | |
3 /* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ | |
4 | |
5 /* The Generalized Assignment Problem (GAP) is to assign a set of jobs | |
6 to a set of agents subject to the constraints that each job must be | |
7 assigned exactly to one agent and the total resources consumed by all | |
8 jobs assigned to an agent must not exceed the agent's capacity. */ | |
9 | |
10 param m, integer, > 0; | |
11 /* number of agents */ | |
12 | |
13 param n, integer, > 0; | |
14 /* number of jobs */ | |
15 | |
16 set I := 1..m; | |
17 /* set of agents */ | |
18 | |
19 set J := 1..n; | |
20 /* set of jobs */ | |
21 | |
22 param a{i in I, j in J}, >= 0; | |
23 /* resource consumed in allocating job j to agent i */ | |
24 | |
25 param b{i in I}, >= 0; | |
26 /* resource capacity of agent i */ | |
27 | |
28 param c{i in I, j in J}, >= 0; | |
29 /* cost of allocating job j to agent i */ | |
30 | |
31 var x{i in I, j in J}, binary; | |
32 /* x[i,j] = 1 means job j is assigned to agent i */ | |
33 | |
34 s.t. one{j in J}: sum{i in I} x[i,j] = 1; | |
35 /* job j must be assigned exactly to one agent */ | |
36 | |
37 s.t. lim{i in I}: sum{j in J} a[i,j] * x[i,j] <= b[i]; | |
38 /* total amount of resources consumed by all jobs assigned to agent i | |
39 must not exceed the agent's capacity */ | |
40 | |
41 minimize obj: sum{i in I, j in J} c[i,j] * x[i,j]; | |
42 /* the objective is to find cheapest assignment (note that gap can also | |
43 be formulated as maximization problem) */ | |
44 | |
45 data; | |
46 | |
47 /* These data correspond to the instance c515-1 (gap1) from: | |
48 | |
49 I.H. Osman, "Heuristics for the Generalised Assignment Problem: | |
50 Simulated Annealing and Tabu Search Approaches", OR Spektrum, Volume | |
51 17, 211-225, 1995 | |
52 | |
53 D. Cattrysse, M. Salomon and L.N. Van Wassenhove, "A set partitioning | |
54 heuristic for the generalized assignment problem", European Journal | |
55 of Operational Research, Volume 72, 167-174, 1994 */ | |
56 | |
57 /* The optimal solution is 261 (minimization) or 336 (maximization) */ | |
58 | |
59 param m := 5; | |
60 | |
61 param n := 15; | |
62 | |
63 param a : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 := | |
64 1 8 15 14 23 8 16 8 25 9 17 25 15 10 8 24 | |
65 2 15 7 23 22 11 11 12 10 17 16 7 16 10 18 22 | |
66 3 21 20 6 22 24 10 24 9 21 14 11 14 11 19 16 | |
67 4 20 11 8 14 9 5 6 19 19 7 6 6 13 9 18 | |
68 5 8 13 13 13 10 20 25 16 16 17 10 10 5 12 23 ; | |
69 | |
70 param b := 1 36, 2 34, 3 38, 4 27, 5 33; | |
71 | |
72 param c : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 := | |
73 1 17 21 22 18 24 15 20 18 19 18 16 22 24 24 16 | |
74 2 23 16 21 16 17 16 19 25 18 21 17 15 25 17 24 | |
75 3 16 20 16 25 24 16 17 19 19 18 20 16 17 21 24 | |
76 4 19 19 22 22 20 16 19 17 21 19 25 23 25 25 25 | |
77 5 18 19 15 15 21 25 16 16 23 15 22 17 19 22 24 ; | |
78 | |
79 end; |