lemon-project-template-glpk
comparison deps/glpk/examples/prod.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:80c24551894c |
---|---|
1 # PROD, a multiperiod production model | |
2 # | |
3 # References: | |
4 # Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language | |
5 # for Mathematical Programming." Management Science 36 (1990) 519-554. | |
6 | |
7 ### PRODUCTION SETS AND PARAMETERS ### | |
8 | |
9 set prd 'products'; # Members of the product group | |
10 | |
11 param pt 'production time' {prd} > 0; | |
12 | |
13 # Crew-hours to produce 1000 units | |
14 | |
15 param pc 'production cost' {prd} > 0; | |
16 | |
17 # Nominal production cost per 1000, used | |
18 # to compute inventory and shortage costs | |
19 | |
20 ### TIME PERIOD SETS AND PARAMETERS ### | |
21 | |
22 param first > 0 integer; | |
23 # Index of first production period to be modeled | |
24 | |
25 param last > first integer; | |
26 | |
27 # Index of last production period to be modeled | |
28 | |
29 set time 'planning horizon' := first..last; | |
30 | |
31 ### EMPLOYMENT PARAMETERS ### | |
32 | |
33 param cs 'crew size' > 0 integer; | |
34 | |
35 # Workers per crew | |
36 | |
37 param sl 'shift length' > 0; | |
38 | |
39 # Regular-time hours per shift | |
40 | |
41 param rtr 'regular time rate' > 0; | |
42 | |
43 # Wage per hour for regular-time labor | |
44 | |
45 param otr 'overtime rate' > rtr; | |
46 | |
47 # Wage per hour for overtime labor | |
48 | |
49 param iw 'initial workforce' >= 0 integer; | |
50 | |
51 # Crews employed at start of first period | |
52 | |
53 param dpp 'days per period' {time} > 0; | |
54 | |
55 # Regular working days in a production period | |
56 | |
57 param ol 'overtime limit' {time} >= 0; | |
58 | |
59 # Maximum crew-hours of overtime in a period | |
60 | |
61 param cmin 'crew minimum' {time} >= 0; | |
62 | |
63 # Lower limit on average employment in a period | |
64 | |
65 param cmax 'crew maximum' {t in time} >= cmin[t]; | |
66 | |
67 # Upper limit on average employment in a period | |
68 | |
69 param hc 'hiring cost' {time} >= 0; | |
70 | |
71 # Penalty cost of hiring a crew | |
72 | |
73 param lc 'layoff cost' {time} >= 0; | |
74 | |
75 # Penalty cost of laying off a crew | |
76 | |
77 ### DEMAND PARAMETERS ### | |
78 | |
79 param dem 'demand' {prd,first..last+1} >= 0; | |
80 | |
81 # Requirements (in 1000s) | |
82 # to be met from current production and inventory | |
83 | |
84 param pro 'promoted' {prd,first..last+1} logical; | |
85 | |
86 # true if product will be the subject | |
87 # of a special promotion in the period | |
88 | |
89 ### INVENTORY AND SHORTAGE PARAMETERS ### | |
90 | |
91 param rir 'regular inventory ratio' >= 0; | |
92 | |
93 # Proportion of non-promoted demand | |
94 # that must be in inventory the previous period | |
95 | |
96 param pir 'promotional inventory ratio' >= 0; | |
97 | |
98 # Proportion of promoted demand | |
99 # that must be in inventory the previous period | |
100 | |
101 param life 'inventory lifetime' > 0 integer; | |
102 | |
103 # Upper limit on number of periods that | |
104 # any product may sit in inventory | |
105 | |
106 param cri 'inventory cost ratio' {prd} > 0; | |
107 | |
108 # Inventory cost per 1000 units is | |
109 # cri times nominal production cost | |
110 | |
111 param crs 'shortage cost ratio' {prd} > 0; | |
112 | |
113 # Shortage cost per 1000 units is | |
114 # crs times nominal production cost | |
115 | |
116 param iinv 'initial inventory' {prd} >= 0; | |
117 | |
118 # Inventory at start of first period; age unknown | |
119 | |
120 param iil 'initial inventory left' {p in prd, t in time} | |
121 := iinv[p] less sum {v in first..t} dem[p,v]; | |
122 | |
123 # Initial inventory still available for allocation | |
124 # at end of period t | |
125 | |
126 param minv 'minimum inventory' {p in prd, t in time} | |
127 := dem[p,t+1] * (if pro[p,t+1] then pir else rir); | |
128 | |
129 # Lower limit on inventory at end of period t | |
130 | |
131 ### VARIABLES ### | |
132 | |
133 var Crews{first-1..last} >= 0; | |
134 | |
135 # Average number of crews employed in each period | |
136 | |
137 var Hire{time} >= 0; # Crews hired from previous to current period | |
138 | |
139 var Layoff{time} >= 0; # Crews laid off from previous to current period | |
140 | |
141 var Rprd 'regular production' {prd,time} >= 0; | |
142 | |
143 # Production using regular-time labor, in 1000s | |
144 | |
145 var Oprd 'overtime production' {prd,time} >= 0; | |
146 | |
147 # Production using overtime labor, in 1000s | |
148 | |
149 var Inv 'inventory' {prd,time,1..life} >= 0; | |
150 | |
151 # Inv[p,t,a] is the amount of product p that is | |
152 # a periods old -- produced in period (t+1)-a -- | |
153 # and still in storage at the end of period t | |
154 | |
155 var Short 'shortage' {prd,time} >= 0; | |
156 | |
157 # Accumulated unsatisfied demand at the end of period t | |
158 | |
159 ### OBJECTIVE ### | |
160 | |
161 minimize cost: | |
162 | |
163 sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] + | |
164 sum {t in time} hc[t] * Hire[t] + | |
165 sum {t in time} lc[t] * Layoff[t] + | |
166 sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] + | |
167 sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] + | |
168 sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t]; | |
169 | |
170 # Full regular wages for all crews employed, plus | |
171 # penalties for hiring and layoffs, plus | |
172 # wages for any overtime worked, plus | |
173 # inventory and shortage costs | |
174 | |
175 # (All other production costs are assumed | |
176 # to depend on initial inventory and on demands, | |
177 # and so are not included explicitly.) | |
178 | |
179 ### CONSTRAINTS ### | |
180 | |
181 rlim 'regular-time limit' {t in time}: | |
182 | |
183 sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t]; | |
184 | |
185 # Hours needed to accomplish all regular-time | |
186 # production in a period must not exceed | |
187 # hours available on all shifts | |
188 | |
189 olim 'overtime limit' {t in time}: | |
190 | |
191 sum {p in prd} pt[p] * Oprd[p,t] <= ol[t]; | |
192 | |
193 # Hours needed to accomplish all overtime | |
194 # production in a period must not exceed | |
195 # the specified overtime limit | |
196 | |
197 empl0 'initial crew level': Crews[first-1] = iw; | |
198 | |
199 # Use given initial workforce | |
200 | |
201 empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t]; | |
202 | |
203 # Workforce changes by hiring or layoffs | |
204 | |
205 emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t]; | |
206 | |
207 # Workforce must remain within specified bounds | |
208 | |
209 dreq1 'first demand requirement' {p in prd}: | |
210 | |
211 Rprd[p,first] + Oprd[p,first] + Short[p,first] | |
212 - Inv[p,first,1] = dem[p,first] less iinv[p]; | |
213 | |
214 dreq 'demand requirements' {p in prd, t in first+1..last}: | |
215 | |
216 Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1] | |
217 + sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a]) | |
218 = dem[p,t] less iil[p,t-1]; | |
219 | |
220 # Production plus increase in shortage plus | |
221 # decrease in inventory must equal demand | |
222 | |
223 ireq 'inventory requirements' {p in prd, t in time}: | |
224 | |
225 sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t]; | |
226 | |
227 # Inventory in storage at end of period t | |
228 # must meet specified minimum | |
229 | |
230 izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}: | |
231 | |
232 Inv[p,first+v-1,a] = 0; | |
233 | |
234 # In the vth period (starting from first) | |
235 # no inventory may be more than v periods old | |
236 # (initial inventories are handled separately) | |
237 | |
238 ilim1 'new-inventory limits' {p in prd, t in time}: | |
239 | |
240 Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t]; | |
241 | |
242 # New inventory cannot exceed | |
243 # production in the most recent period | |
244 | |
245 ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}: | |
246 | |
247 Inv[p,t,a] <= Inv[p,t-1,a-1]; | |
248 | |
249 # Inventory left from period (t+1)-p | |
250 # can only decrease as time goes on | |
251 | |
252 ### DATA ### | |
253 | |
254 data; | |
255 | |
256 set prd := 18REG 24REG 24PRO ; | |
257 | |
258 param first := 1 ; | |
259 param last := 13 ; | |
260 param life := 2 ; | |
261 | |
262 param cs := 18 ; | |
263 param sl := 8 ; | |
264 param iw := 8 ; | |
265 | |
266 param rtr := 16.00 ; | |
267 param otr := 43.85 ; | |
268 param rir := 0.75 ; | |
269 param pir := 0.80 ; | |
270 | |
271 param : pt pc cri crs iinv := | |
272 | |
273 18REG 1.194 2304. 0.015 1.100 82.0 | |
274 24REG 1.509 2920. 0.015 1.100 792.2 | |
275 24PRO 1.509 2910. 0.015 1.100 0.0 ; | |
276 | |
277 param : dpp ol cmin cmax hc lc := | |
278 | |
279 1 19.5 96.0 0.0 8.0 7500 7500 | |
280 2 19.0 96.0 0.0 8.0 7500 7500 | |
281 3 20.0 96.0 0.0 8.0 7500 7500 | |
282 4 19.0 96.0 0.0 8.0 7500 7500 | |
283 5 19.5 96.0 0.0 8.0 15000 15000 | |
284 6 19.0 96.0 0.0 8.0 15000 15000 | |
285 7 19.0 96.0 0.0 8.0 15000 15000 | |
286 8 20.0 96.0 0.0 8.0 15000 15000 | |
287 9 19.0 96.0 0.0 8.0 15000 15000 | |
288 10 20.0 96.0 0.0 8.0 15000 15000 | |
289 11 20.0 96.0 0.0 8.0 7500 7500 | |
290 12 18.0 96.0 0.0 8.0 7500 7500 | |
291 13 18.0 96.0 0.0 8.0 7500 7500 ; | |
292 | |
293 param dem (tr) : | |
294 | |
295 18REG 24REG 24PRO := | |
296 | |
297 1 63.8 1212.0 0.0 | |
298 2 76.0 306.2 0.0 | |
299 3 88.4 319.0 0.0 | |
300 4 913.8 208.4 0.0 | |
301 5 115.0 298.0 0.0 | |
302 6 133.8 328.2 0.0 | |
303 7 79.6 959.6 0.0 | |
304 8 111.0 257.6 0.0 | |
305 9 121.6 335.6 0.0 | |
306 10 470.0 118.0 1102.0 | |
307 11 78.4 284.8 0.0 | |
308 12 99.4 970.0 0.0 | |
309 13 140.4 343.8 0.0 | |
310 14 63.8 1212.0 0.0 ; | |
311 | |
312 param pro (tr) : | |
313 | |
314 18REG 24REG 24PRO := | |
315 | |
316 1 0 1 0 | |
317 2 0 0 0 | |
318 3 0 0 0 | |
319 4 1 0 0 | |
320 5 0 0 0 | |
321 6 0 0 0 | |
322 7 0 1 0 | |
323 8 0 0 0 | |
324 9 0 0 0 | |
325 10 1 0 1 | |
326 11 0 0 0 | |
327 12 0 0 0 | |
328 13 0 1 0 | |
329 14 0 1 0 ; | |
330 | |
331 end; |