lemon-project-template-glpk

comparison deps/glpk/src/glpapi20.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:54325d89ee3f
1 /* glpapi20.c */
2
3 /***********************************************************************
4 * This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 * E-mail: <mao@gnu.org>.
10 *
11 * GLPK is free software: you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 3 of the License, or
14 * (at your option) any later version.
15 *
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 * License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24
25 #include "glpnpp.h"
26
27 int glp_intfeas1(glp_prob *P, int use_bound, int obj_bound)
28 { /* solve integer feasibility problem */
29 NPP *npp = NULL;
30 glp_prob *mip = NULL;
31 int *obj_ind = NULL;
32 double *obj_val = NULL;
33 int obj_row = 0;
34 int i, j, k, obj_len, temp, ret;
35 /* check the problem object */
36 if (P == NULL || P->magic != GLP_PROB_MAGIC)
37 xerror("glp_intfeas1: P = %p; invalid problem object\n",
38 P);
39 if (P->tree != NULL)
40 xerror("glp_intfeas1: operation not allowed\n");
41 /* integer solution is currently undefined */
42 P->mip_stat = GLP_UNDEF;
43 P->mip_obj = 0.0;
44 /* check columns (variables) */
45 for (j = 1; j <= P->n; j++)
46 { GLPCOL *col = P->col[j];
47 #if 0 /* currently binarization is not yet implemented */
48 if (!(col->kind == GLP_IV || col->type == GLP_FX))
49 { xprintf("glp_intfeas1: column %d: non-integer non-fixed var"
50 "iable not allowed\n", j);
51 #else
52 if (!((col->kind == GLP_IV && col->lb == 0.0 && col->ub == 1.0)
53 || col->type == GLP_FX))
54 { xprintf("glp_intfeas1: column %d: non-binary non-fixed vari"
55 "able not allowed\n", j);
56 #endif
57 ret = GLP_EDATA;
58 goto done;
59 }
60 temp = (int)col->lb;
61 if ((double)temp != col->lb)
62 { if (col->type == GLP_FX)
63 xprintf("glp_intfeas1: column %d: fixed value %g is non-"
64 "integer or out of range\n", j, col->lb);
65 else
66 xprintf("glp_intfeas1: column %d: lower bound %g is non-"
67 "integer or out of range\n", j, col->lb);
68 ret = GLP_EDATA;
69 goto done;
70 }
71 temp = (int)col->ub;
72 if ((double)temp != col->ub)
73 { xprintf("glp_intfeas1: column %d: upper bound %g is non-int"
74 "eger or out of range\n", j, col->ub);
75 ret = GLP_EDATA;
76 goto done;
77 }
78 if (col->type == GLP_DB && col->lb > col->ub)
79 { xprintf("glp_intfeas1: column %d: lower bound %g is greater"
80 " than upper bound %g\n", j, col->lb, col->ub);
81 ret = GLP_EBOUND;
82 goto done;
83 }
84 }
85 /* check rows (constraints) */
86 for (i = 1; i <= P->m; i++)
87 { GLPROW *row = P->row[i];
88 GLPAIJ *aij;
89 for (aij = row->ptr; aij != NULL; aij = aij->r_next)
90 { temp = (int)aij->val;
91 if ((double)temp != aij->val)
92 { xprintf("glp_intfeas1: row = %d, column %d: constraint c"
93 "oefficient %g is non-integer or out of range\n",
94 i, aij->col->j, aij->val);
95 ret = GLP_EDATA;
96 goto done;
97 }
98 }
99 temp = (int)row->lb;
100 if ((double)temp != row->lb)
101 { if (row->type == GLP_FX)
102 xprintf("glp_intfeas1: row = %d: fixed value %g is non-i"
103 "nteger or out of range\n", i, row->lb);
104 else
105 xprintf("glp_intfeas1: row = %d: lower bound %g is non-i"
106 "nteger or out of range\n", i, row->lb);
107 ret = GLP_EDATA;
108 goto done;
109 }
110 temp = (int)row->ub;
111 if ((double)temp != row->ub)
112 { xprintf("glp_intfeas1: row = %d: upper bound %g is non-inte"
113 "ger or out of range\n", i, row->ub);
114 ret = GLP_EDATA;
115 goto done;
116 }
117 if (row->type == GLP_DB && row->lb > row->ub)
118 { xprintf("glp_intfeas1: row %d: lower bound %g is greater th"
119 "an upper bound %g\n", i, row->lb, row->ub);
120 ret = GLP_EBOUND;
121 goto done;
122 }
123 }
124 /* check the objective function */
125 temp = (int)P->c0;
126 if ((double)temp != P->c0)
127 { xprintf("glp_intfeas1: objective constant term %g is non-integ"
128 "er or out of range\n", P->c0);
129 ret = GLP_EDATA;
130 goto done;
131 }
132 for (j = 1; j <= P->n; j++)
133 { temp = (int)P->col[j]->coef;
134 if ((double)temp != P->col[j]->coef)
135 { xprintf("glp_intfeas1: column %d: objective coefficient is "
136 "non-integer or out of range\n", j, P->col[j]->coef);
137 ret = GLP_EDATA;
138 goto done;
139 }
140 }
141 /* save the objective function and set it to zero */
142 obj_ind = xcalloc(1+P->n, sizeof(int));
143 obj_val = xcalloc(1+P->n, sizeof(double));
144 obj_len = 0;
145 obj_ind[0] = 0;
146 obj_val[0] = P->c0;
147 P->c0 = 0.0;
148 for (j = 1; j <= P->n; j++)
149 { if (P->col[j]->coef != 0.0)
150 { obj_len++;
151 obj_ind[obj_len] = j;
152 obj_val[obj_len] = P->col[j]->coef;
153 P->col[j]->coef = 0.0;
154 }
155 }
156 /* add inequality to bound the objective function, if required */
157 if (!use_bound)
158 xprintf("Will search for ANY feasible solution\n");
159 else
160 { xprintf("Will search only for solution not worse than %d\n",
161 obj_bound);
162 obj_row = glp_add_rows(P, 1);
163 glp_set_mat_row(P, obj_row, obj_len, obj_ind, obj_val);
164 if (P->dir == GLP_MIN)
165 glp_set_row_bnds(P, obj_row,
166 GLP_UP, 0.0, (double)obj_bound - obj_val[0]);
167 else if (P->dir == GLP_MAX)
168 glp_set_row_bnds(P, obj_row,
169 GLP_LO, (double)obj_bound - obj_val[0], 0.0);
170 else
171 xassert(P != P);
172 }
173 /* create preprocessor workspace */
174 xprintf("Translating to CNF-SAT...\n");
175 xprintf("Original problem has %d row%s, %d column%s, and %d non-z"
176 "ero%s\n", P->m, P->m == 1 ? "" : "s", P->n, P->n == 1 ? "" :
177 "s", P->nnz, P->nnz == 1 ? "" : "s");
178 npp = npp_create_wksp();
179 /* load the original problem into the preprocessor workspace */
180 npp_load_prob(npp, P, GLP_OFF, GLP_MIP, GLP_OFF);
181 /* perform translation to SAT-CNF problem instance */
182 ret = npp_sat_encode_prob(npp);
183 if (ret == 0)
184 ;
185 else if (ret == GLP_ENOPFS)
186 xprintf("PROBLEM HAS NO INTEGER FEASIBLE SOLUTION\n");
187 else if (ret == GLP_ERANGE)
188 xprintf("glp_intfeas1: translation to SAT-CNF failed because o"
189 "f integer overflow\n");
190 else
191 xassert(ret != ret);
192 if (ret != 0)
193 goto done;
194 /* build SAT-CNF problem instance and try to solve it */
195 mip = glp_create_prob();
196 npp_build_prob(npp, mip);
197 ret = glp_minisat1(mip);
198 /* only integer feasible solution can be postprocessed */
199 if (!(mip->mip_stat == GLP_OPT || mip->mip_stat == GLP_FEAS))
200 { P->mip_stat = mip->mip_stat;
201 goto done;
202 }
203 /* postprocess the solution found */
204 npp_postprocess(npp, mip);
205 /* the transformed problem is no longer needed */
206 glp_delete_prob(mip), mip = NULL;
207 /* store solution to the original problem object */
208 npp_unload_sol(npp, P);
209 /* change the solution status to 'integer feasible' */
210 P->mip_stat = GLP_FEAS;
211 /* check integer feasibility */
212 for (i = 1; i <= P->m; i++)
213 { GLPROW *row;
214 GLPAIJ *aij;
215 double sum;
216 row = P->row[i];
217 sum = 0.0;
218 for (aij = row->ptr; aij != NULL; aij = aij->r_next)
219 sum += aij->val * aij->col->mipx;
220 xassert(sum == row->mipx);
221 if (row->type == GLP_LO || row->type == GLP_DB ||
222 row->type == GLP_FX)
223 xassert(sum >= row->lb);
224 if (row->type == GLP_UP || row->type == GLP_DB ||
225 row->type == GLP_FX)
226 xassert(sum <= row->ub);
227 }
228 /* compute value of the original objective function */
229 P->mip_obj = obj_val[0];
230 for (k = 1; k <= obj_len; k++)
231 P->mip_obj += obj_val[k] * P->col[obj_ind[k]]->mipx;
232 xprintf("Objective value = %17.9e\n", P->mip_obj);
233 done: /* delete the transformed problem, if it exists */
234 if (mip != NULL)
235 glp_delete_prob(mip);
236 /* delete the preprocessor workspace, if it exists */
237 if (npp != NULL)
238 npp_delete_wksp(npp);
239 /* remove inequality used to bound the objective function */
240 if (obj_row > 0)
241 { int ind[1+1];
242 ind[1] = obj_row;
243 glp_del_rows(P, 1, ind);
244 }
245 /* restore the original objective function */
246 if (obj_ind != NULL)
247 { P->c0 = obj_val[0];
248 for (k = 1; k <= obj_len; k++)
249 P->col[obj_ind[k]]->coef = obj_val[k];
250 xfree(obj_ind);
251 xfree(obj_val);
252 }
253 return ret;
254 }
255
256 /* eof */