lemon-project-template-glpk
comparison deps/glpk/src/glpini01.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:907fb471ec02 |
---|---|
1 /* glpini01.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpapi.h" | |
26 | |
27 /*---------------------------------------------------------------------- | |
28 -- triang - find maximal triangular part of a rectangular matrix. | |
29 -- | |
30 -- *Synopsis* | |
31 -- | |
32 -- int triang(int m, int n, | |
33 -- void *info, int (*mat)(void *info, int k, int ndx[]), | |
34 -- int rn[], int cn[]); | |
35 -- | |
36 -- *Description* | |
37 -- | |
38 -- For a given rectangular (sparse) matrix A with m rows and n columns | |
39 -- the routine triang tries to find such permutation matrices P and Q | |
40 -- that the first rows and columns of the matrix B = P*A*Q form a lower | |
41 -- triangular submatrix of as greatest size as possible: | |
42 -- | |
43 -- 1 n | |
44 -- 1 * . . . . . . x x x x x x | |
45 -- * * . . . . . x x x x x x | |
46 -- * * * . . . . x x x x x x | |
47 -- * * * * . . . x x x x x x | |
48 -- B = P*A*Q = * * * * * . . x x x x x x | |
49 -- * * * * * * . x x x x x x | |
50 -- * * * * * * * x x x x x x | |
51 -- x x x x x x x x x x x x x | |
52 -- x x x x x x x x x x x x x | |
53 -- m x x x x x x x x x x x x x | |
54 -- | |
55 -- where: '*' - elements of the lower triangular part, '.' - structural | |
56 -- zeros, 'x' - other (either non-zero or zero) elements. | |
57 -- | |
58 -- The parameter info is a transit pointer passed to the formal routine | |
59 -- mat (see below). | |
60 -- | |
61 -- The formal routine mat specifies the given matrix A in both row- and | |
62 -- column-wise formats. In order to obtain an i-th row of the matrix A | |
63 -- the routine triang calls the routine mat with the parameter k = +i, | |
64 -- 1 <= i <= m. In response the routine mat should store column indices | |
65 -- of (non-zero) elements of the i-th row to the locations ndx[1], ..., | |
66 -- ndx[len], where len is number of non-zeros in the i-th row returned | |
67 -- on exit. Analogously, in order to obtain a j-th column of the matrix | |
68 -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n, | |
69 -- and should return pattern of the j-th column in the same way as for | |
70 -- row patterns. Note that the routine mat may be called more than once | |
71 -- for the same rows and columns. | |
72 -- | |
73 -- On exit the routine computes two resultant arrays rn and cn, which | |
74 -- define the permutation matrices P and Q, respectively. The array rn | |
75 -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m) | |
76 -- means that i-th row of the original matrix A corresponds to i'-th row | |
77 -- of the matrix B = P*A*Q. Similarly, the array cn should have at least | |
78 -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column | |
79 -- of the matrix A corresponds to j'-th column of the matrix B. | |
80 -- | |
81 -- *Returns* | |
82 -- | |
83 -- The routine triang returns the size of the lower tringular part of | |
84 -- the matrix B = P*A*Q (see the figure above). | |
85 -- | |
86 -- *Complexity* | |
87 -- | |
88 -- The time complexity of the routine triang is O(nnz), where nnz is | |
89 -- number of non-zeros in the given matrix A. | |
90 -- | |
91 -- *Algorithm* | |
92 -- | |
93 -- The routine triang starts from the matrix B = P*Q*A, where P and Q | |
94 -- are unity matrices, so initially B = A. | |
95 -- | |
96 -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially | |
97 -- built a lower triangular submatrix, B2 is the active submatrix, and | |
98 -- B3 is a submatrix that contains rejected columns. Thus, the current | |
99 -- matrix B looks like follows (initially k1 = 1 and k2 = n): | |
100 -- | |
101 -- 1 k1 k2 n | |
102 -- 1 x . . . . . . . . . . . . . # # # | |
103 -- x x . . . . . . . . . . . . # # # | |
104 -- x x x . . . . . . . . . . # # # # | |
105 -- x x x x . . . . . . . . . # # # # | |
106 -- x x x x x . . . . . . . # # # # # | |
107 -- k1 x x x x x * * * * * * * # # # # # | |
108 -- x x x x x * * * * * * * # # # # # | |
109 -- x x x x x * * * * * * * # # # # # | |
110 -- x x x x x * * * * * * * # # # # # | |
111 -- m x x x x x * * * * * * * # # # # # | |
112 -- <--B1---> <----B2-----> <---B3--> | |
113 -- | |
114 -- On each iteartion the routine looks for a singleton row, i.e. some | |
115 -- row that has the only non-zero in the active submatrix B2. If such | |
116 -- row exists and the corresponding non-zero is b[i,j], where (by the | |
117 -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes | |
118 -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in | |
119 -- order to place the element in the position b[k1,k1]), removes the | |
120 -- k1-th column from the active submatrix B2, and adds this column to | |
121 -- the submatrix B1. If no row singletons exist, but B2 is not empty | |
122 -- yet, the routine chooses a j-th column, which has maximal number of | |
123 -- non-zeros among other columns of B2, removes this column from B2 and | |
124 -- adds it to the submatrix B3 in the hope that new row singletons will | |
125 -- appear in the active submatrix. */ | |
126 | |
127 static int triang(int m, int n, | |
128 void *info, int (*mat)(void *info, int k, int ndx[]), | |
129 int rn[], int cn[]) | |
130 { int *ndx; /* int ndx[1+max(m,n)]; */ | |
131 /* this array is used for querying row and column patterns of the | |
132 given matrix A (the third parameter to the routine mat) */ | |
133 int *rs_len; /* int rs_len[1+m]; */ | |
134 /* rs_len[0] is not used; | |
135 rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row | |
136 of the matrix A, which (non-zeros) belong to the current active | |
137 submatrix */ | |
138 int *rs_head; /* int rs_head[1+n]; */ | |
139 /* rs_head[len], 0 <= len <= n, is the number i of the first row | |
140 of the matrix A, for which rs_len[i] = len */ | |
141 int *rs_prev; /* int rs_prev[1+m]; */ | |
142 /* rs_prev[0] is not used; | |
143 rs_prev[i], 1 <= i <= m, is a number i' of the previous row of | |
144 the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the | |
145 end of this linked list) */ | |
146 int *rs_next; /* int rs_next[1+m]; */ | |
147 /* rs_next[0] is not used; | |
148 rs_next[i], 1 <= i <= m, is a number i' of the next row of the | |
149 matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end | |
150 this linked list) */ | |
151 int cs_head; | |
152 /* is a number j of the first column of the matrix A, which has | |
153 maximal number of non-zeros among other columns */ | |
154 int *cs_prev; /* cs_prev[1+n]; */ | |
155 /* cs_prev[0] is not used; | |
156 cs_prev[j], 1 <= j <= n, is a number of the previous column of | |
157 the matrix A with the same or greater number of non-zeros than | |
158 in the j-th column (zero marks the end of this linked list) */ | |
159 int *cs_next; /* cs_next[1+n]; */ | |
160 /* cs_next[0] is not used; | |
161 cs_next[j], 1 <= j <= n, is a number of the next column of | |
162 the matrix A with the same or lesser number of non-zeros than | |
163 in the j-th column (zero marks the end of this linked list) */ | |
164 int i, j, ii, jj, k1, k2, len, t, size = 0; | |
165 int *head, *rn_inv, *cn_inv; | |
166 if (!(m > 0 && n > 0)) | |
167 xerror("triang: m = %d; n = %d; invalid dimension\n", m, n); | |
168 /* allocate working arrays */ | |
169 ndx = xcalloc(1+(m >= n ? m : n), sizeof(int)); | |
170 rs_len = xcalloc(1+m, sizeof(int)); | |
171 rs_head = xcalloc(1+n, sizeof(int)); | |
172 rs_prev = xcalloc(1+m, sizeof(int)); | |
173 rs_next = xcalloc(1+m, sizeof(int)); | |
174 cs_prev = xcalloc(1+n, sizeof(int)); | |
175 cs_next = xcalloc(1+n, sizeof(int)); | |
176 /* build linked lists of columns of the matrix A with the same | |
177 number of non-zeros */ | |
178 head = rs_len; /* currently rs_len is used as working array */ | |
179 for (len = 0; len <= m; len ++) head[len] = 0; | |
180 for (j = 1; j <= n; j++) | |
181 { /* obtain length of the j-th column */ | |
182 len = mat(info, -j, ndx); | |
183 xassert(0 <= len && len <= m); | |
184 /* include the j-th column in the corresponding linked list */ | |
185 cs_prev[j] = head[len]; | |
186 head[len] = j; | |
187 } | |
188 /* merge all linked lists of columns in one linked list, where | |
189 columns are ordered by descending of their lengths */ | |
190 cs_head = 0; | |
191 for (len = 0; len <= m; len++) | |
192 { for (j = head[len]; j != 0; j = cs_prev[j]) | |
193 { cs_next[j] = cs_head; | |
194 cs_head = j; | |
195 } | |
196 } | |
197 jj = 0; | |
198 for (j = cs_head; j != 0; j = cs_next[j]) | |
199 { cs_prev[j] = jj; | |
200 jj = j; | |
201 } | |
202 /* build initial doubly linked lists of rows of the matrix A with | |
203 the same number of non-zeros */ | |
204 for (len = 0; len <= n; len++) rs_head[len] = 0; | |
205 for (i = 1; i <= m; i++) | |
206 { /* obtain length of the i-th row */ | |
207 rs_len[i] = len = mat(info, +i, ndx); | |
208 xassert(0 <= len && len <= n); | |
209 /* include the i-th row in the correspondng linked list */ | |
210 rs_prev[i] = 0; | |
211 rs_next[i] = rs_head[len]; | |
212 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; | |
213 rs_head[len] = i; | |
214 } | |
215 /* initially all rows and columns of the matrix A are active */ | |
216 for (i = 1; i <= m; i++) rn[i] = 0; | |
217 for (j = 1; j <= n; j++) cn[j] = 0; | |
218 /* set initial bounds of the active submatrix */ | |
219 k1 = 1, k2 = n; | |
220 /* main loop starts here */ | |
221 while (k1 <= k2) | |
222 { i = rs_head[1]; | |
223 if (i != 0) | |
224 { /* the i-th row of the matrix A is a row singleton, since | |
225 it has the only non-zero in the active submatrix */ | |
226 xassert(rs_len[i] == 1); | |
227 /* determine the number j of an active column of the matrix | |
228 A, in which this non-zero is placed */ | |
229 j = 0; | |
230 t = mat(info, +i, ndx); | |
231 xassert(0 <= t && t <= n); | |
232 for (t = t; t >= 1; t--) | |
233 { jj = ndx[t]; | |
234 xassert(1 <= jj && jj <= n); | |
235 if (cn[jj] == 0) | |
236 { xassert(j == 0); | |
237 j = jj; | |
238 } | |
239 } | |
240 xassert(j != 0); | |
241 /* the singleton is a[i,j]; move a[i,j] to the position | |
242 b[k1,k1] of the matrix B */ | |
243 rn[i] = cn[j] = k1; | |
244 /* shift the left bound of the active submatrix */ | |
245 k1++; | |
246 /* increase the size of the lower triangular part */ | |
247 size++; | |
248 } | |
249 else | |
250 { /* the current active submatrix has no row singletons */ | |
251 /* remove an active column with maximal number of non-zeros | |
252 from the active submatrix */ | |
253 j = cs_head; | |
254 xassert(j != 0); | |
255 cn[j] = k2; | |
256 /* shift the right bound of the active submatrix */ | |
257 k2--; | |
258 } | |
259 /* the j-th column of the matrix A has been removed from the | |
260 active submatrix */ | |
261 /* remove the j-th column from the linked list */ | |
262 if (cs_prev[j] == 0) | |
263 cs_head = cs_next[j]; | |
264 else | |
265 cs_next[cs_prev[j]] = cs_next[j]; | |
266 if (cs_next[j] == 0) | |
267 /* nop */; | |
268 else | |
269 cs_prev[cs_next[j]] = cs_prev[j]; | |
270 /* go through non-zeros of the j-th columns and update active | |
271 lengths of the corresponding rows */ | |
272 t = mat(info, -j, ndx); | |
273 xassert(0 <= t && t <= m); | |
274 for (t = t; t >= 1; t--) | |
275 { i = ndx[t]; | |
276 xassert(1 <= i && i <= m); | |
277 /* the non-zero a[i,j] has left the active submatrix */ | |
278 len = rs_len[i]; | |
279 xassert(len >= 1); | |
280 /* remove the i-th row from the linked list of rows with | |
281 active length len */ | |
282 if (rs_prev[i] == 0) | |
283 rs_head[len] = rs_next[i]; | |
284 else | |
285 rs_next[rs_prev[i]] = rs_next[i]; | |
286 if (rs_next[i] == 0) | |
287 /* nop */; | |
288 else | |
289 rs_prev[rs_next[i]] = rs_prev[i]; | |
290 /* decrease the active length of the i-th row */ | |
291 rs_len[i] = --len; | |
292 /* return the i-th row to the corresponding linked list */ | |
293 rs_prev[i] = 0; | |
294 rs_next[i] = rs_head[len]; | |
295 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; | |
296 rs_head[len] = i; | |
297 } | |
298 } | |
299 /* other rows of the matrix A, which are still active, correspond | |
300 to rows k1, ..., m of the matrix B (in arbitrary order) */ | |
301 for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++; | |
302 /* but for columns this is not needed, because now the submatrix | |
303 B2 has no columns */ | |
304 for (j = 1; j <= n; j++) xassert(cn[j] != 0); | |
305 /* perform some optional checks */ | |
306 /* make sure that rn is a permutation of {1, ..., m} and cn is a | |
307 permutation of {1, ..., n} */ | |
308 rn_inv = rs_len; /* used as working array */ | |
309 for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0; | |
310 for (i = 1; i <= m; i++) | |
311 { ii = rn[i]; | |
312 xassert(1 <= ii && ii <= m); | |
313 xassert(rn_inv[ii] == 0); | |
314 rn_inv[ii] = i; | |
315 } | |
316 cn_inv = rs_head; /* used as working array */ | |
317 for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0; | |
318 for (j = 1; j <= n; j++) | |
319 { jj = cn[j]; | |
320 xassert(1 <= jj && jj <= n); | |
321 xassert(cn_inv[jj] == 0); | |
322 cn_inv[jj] = j; | |
323 } | |
324 /* make sure that the matrix B = P*A*Q really has the form, which | |
325 was declared */ | |
326 for (ii = 1; ii <= size; ii++) | |
327 { int diag = 0; | |
328 i = rn_inv[ii]; | |
329 t = mat(info, +i, ndx); | |
330 xassert(0 <= t && t <= n); | |
331 for (t = t; t >= 1; t--) | |
332 { j = ndx[t]; | |
333 xassert(1 <= j && j <= n); | |
334 jj = cn[j]; | |
335 if (jj <= size) xassert(jj <= ii); | |
336 if (jj == ii) | |
337 { xassert(!diag); | |
338 diag = 1; | |
339 } | |
340 } | |
341 xassert(diag); | |
342 } | |
343 /* free working arrays */ | |
344 xfree(ndx); | |
345 xfree(rs_len); | |
346 xfree(rs_head); | |
347 xfree(rs_prev); | |
348 xfree(rs_next); | |
349 xfree(cs_prev); | |
350 xfree(cs_next); | |
351 /* return to the calling program */ | |
352 return size; | |
353 } | |
354 | |
355 /*---------------------------------------------------------------------- | |
356 -- adv_basis - construct advanced initial LP basis. | |
357 -- | |
358 -- *Synopsis* | |
359 -- | |
360 -- #include "glpini.h" | |
361 -- void adv_basis(glp_prob *lp); | |
362 -- | |
363 -- *Description* | |
364 -- | |
365 -- The routine adv_basis constructs an advanced initial basis for an LP | |
366 -- problem object, which the parameter lp points to. | |
367 -- | |
368 -- In order to build the initial basis the routine does the following: | |
369 -- | |
370 -- 1) includes in the basis all non-fixed auxiliary variables; | |
371 -- | |
372 -- 2) includes in the basis as many as possible non-fixed structural | |
373 -- variables preserving triangular form of the basis matrix; | |
374 -- | |
375 -- 3) includes in the basis appropriate (fixed) auxiliary variables | |
376 -- in order to complete the basis. | |
377 -- | |
378 -- As a result the initial basis has minimum of fixed variables and the | |
379 -- corresponding basis matrix is triangular. */ | |
380 | |
381 static int mat(void *info, int k, int ndx[]) | |
382 { /* this auxiliary routine returns the pattern of a given row or | |
383 a given column of the augmented constraint matrix A~ = (I|-A), | |
384 in which columns of fixed variables are implicitly cleared */ | |
385 LPX *lp = info; | |
386 int m = lpx_get_num_rows(lp); | |
387 int n = lpx_get_num_cols(lp); | |
388 int typx, i, j, lll, len = 0; | |
389 if (k > 0) | |
390 { /* the pattern of the i-th row is required */ | |
391 i = +k; | |
392 xassert(1 <= i && i <= m); | |
393 #if 0 /* 22/XII-2003 */ | |
394 /* if the auxiliary variable x[i] is non-fixed, include its | |
395 element (placed in the i-th column) in the pattern */ | |
396 lpx_get_row_bnds(lp, i, &typx, NULL, NULL); | |
397 if (typx != LPX_FX) ndx[++len] = i; | |
398 /* include in the pattern elements placed in columns, which | |
399 correspond to non-fixed structural varables */ | |
400 i_beg = aa_ptr[i]; | |
401 i_end = i_beg + aa_len[i] - 1; | |
402 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
403 { j = m + sv_ndx[i_ptr]; | |
404 lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); | |
405 if (typx != LPX_FX) ndx[++len] = j; | |
406 } | |
407 #else | |
408 lll = lpx_get_mat_row(lp, i, ndx, NULL); | |
409 for (k = 1; k <= lll; k++) | |
410 { lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL); | |
411 if (typx != LPX_FX) ndx[++len] = m + ndx[k]; | |
412 } | |
413 lpx_get_row_bnds(lp, i, &typx, NULL, NULL); | |
414 if (typx != LPX_FX) ndx[++len] = i; | |
415 #endif | |
416 } | |
417 else | |
418 { /* the pattern of the j-th column is required */ | |
419 j = -k; | |
420 xassert(1 <= j && j <= m+n); | |
421 /* if the (auxiliary or structural) variable x[j] is fixed, | |
422 the pattern of its column is empty */ | |
423 if (j <= m) | |
424 lpx_get_row_bnds(lp, j, &typx, NULL, NULL); | |
425 else | |
426 lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); | |
427 if (typx != LPX_FX) | |
428 { if (j <= m) | |
429 { /* x[j] is non-fixed auxiliary variable */ | |
430 ndx[++len] = j; | |
431 } | |
432 else | |
433 { /* x[j] is non-fixed structural variables */ | |
434 #if 0 /* 22/XII-2003 */ | |
435 j_beg = aa_ptr[j]; | |
436 j_end = j_beg + aa_len[j] - 1; | |
437 for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) | |
438 ndx[++len] = sv_ndx[j_ptr]; | |
439 #else | |
440 len = lpx_get_mat_col(lp, j-m, ndx, NULL); | |
441 #endif | |
442 } | |
443 } | |
444 } | |
445 /* return the length of the row/column pattern */ | |
446 return len; | |
447 } | |
448 | |
449 static void adv_basis(glp_prob *lp) | |
450 { int m = lpx_get_num_rows(lp); | |
451 int n = lpx_get_num_cols(lp); | |
452 int i, j, jj, k, size; | |
453 int *rn, *cn, *rn_inv, *cn_inv; | |
454 int typx, *tagx = xcalloc(1+m+n, sizeof(int)); | |
455 double lb, ub; | |
456 xprintf("Constructing initial basis...\n"); | |
457 #if 0 /* 13/V-2009 */ | |
458 if (m == 0) | |
459 xerror("glp_adv_basis: problem has no rows\n"); | |
460 if (n == 0) | |
461 xerror("glp_adv_basis: problem has no columns\n"); | |
462 #else | |
463 if (m == 0 || n == 0) | |
464 { glp_std_basis(lp); | |
465 return; | |
466 } | |
467 #endif | |
468 /* use the routine triang (see above) to find maximal triangular | |
469 part of the augmented constraint matrix A~ = (I|-A); in order | |
470 to prevent columns of fixed variables to be included in the | |
471 triangular part, such columns are implictly removed from the | |
472 matrix A~ by the routine adv_mat */ | |
473 rn = xcalloc(1+m, sizeof(int)); | |
474 cn = xcalloc(1+m+n, sizeof(int)); | |
475 size = triang(m, m+n, lp, mat, rn, cn); | |
476 if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3) | |
477 xprintf("Size of triangular part = %d\n", size); | |
478 /* the first size rows and columns of the matrix P*A~*Q (where | |
479 P and Q are permutation matrices defined by the arrays rn and | |
480 cn) form a lower triangular matrix; build the arrays (rn_inv | |
481 and cn_inv), which define the matrices inv(P) and inv(Q) */ | |
482 rn_inv = xcalloc(1+m, sizeof(int)); | |
483 cn_inv = xcalloc(1+m+n, sizeof(int)); | |
484 for (i = 1; i <= m; i++) rn_inv[rn[i]] = i; | |
485 for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j; | |
486 /* include the columns of the matrix A~, which correspond to the | |
487 first size columns of the matrix P*A~*Q, in the basis */ | |
488 for (k = 1; k <= m+n; k++) tagx[k] = -1; | |
489 for (jj = 1; jj <= size; jj++) | |
490 { j = cn_inv[jj]; | |
491 /* the j-th column of A~ is the jj-th column of P*A~*Q */ | |
492 tagx[j] = LPX_BS; | |
493 } | |
494 /* if size < m, we need to add appropriate columns of auxiliary | |
495 variables to the basis */ | |
496 for (jj = size + 1; jj <= m; jj++) | |
497 { /* the jj-th column of P*A~*Q should be replaced by the column | |
498 of the auxiliary variable, for which the only unity element | |
499 is placed in the position [jj,jj] */ | |
500 i = rn_inv[jj]; | |
501 /* the jj-th row of P*A~*Q is the i-th row of A~, but in the | |
502 i-th row of A~ the unity element belongs to the i-th column | |
503 of A~; therefore the disired column corresponds to the i-th | |
504 auxiliary variable (note that this column doesn't belong to | |
505 the triangular part found by the routine triang) */ | |
506 xassert(1 <= i && i <= m); | |
507 xassert(cn[i] > size); | |
508 tagx[i] = LPX_BS; | |
509 } | |
510 /* free working arrays */ | |
511 xfree(rn); | |
512 xfree(cn); | |
513 xfree(rn_inv); | |
514 xfree(cn_inv); | |
515 /* build tags of non-basic variables */ | |
516 for (k = 1; k <= m+n; k++) | |
517 { if (tagx[k] != LPX_BS) | |
518 { if (k <= m) | |
519 lpx_get_row_bnds(lp, k, &typx, &lb, &ub); | |
520 else | |
521 lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); | |
522 switch (typx) | |
523 { case LPX_FR: | |
524 tagx[k] = LPX_NF; break; | |
525 case LPX_LO: | |
526 tagx[k] = LPX_NL; break; | |
527 case LPX_UP: | |
528 tagx[k] = LPX_NU; break; | |
529 case LPX_DB: | |
530 tagx[k] = | |
531 (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU); | |
532 break; | |
533 case LPX_FX: | |
534 tagx[k] = LPX_NS; break; | |
535 default: | |
536 xassert(typx != typx); | |
537 } | |
538 } | |
539 } | |
540 for (k = 1; k <= m+n; k++) | |
541 { if (k <= m) | |
542 lpx_set_row_stat(lp, k, tagx[k]); | |
543 else | |
544 lpx_set_col_stat(lp, k-m, tagx[k]); | |
545 } | |
546 xfree(tagx); | |
547 return; | |
548 } | |
549 | |
550 /*********************************************************************** | |
551 * NAME | |
552 * | |
553 * glp_adv_basis - construct advanced initial LP basis | |
554 * | |
555 * SYNOPSIS | |
556 * | |
557 * void glp_adv_basis(glp_prob *lp, int flags); | |
558 * | |
559 * DESCRIPTION | |
560 * | |
561 * The routine glp_adv_basis constructs an advanced initial basis for | |
562 * the specified problem object. | |
563 * | |
564 * The parameter flags is reserved for use in the future and must be | |
565 * specified as zero. */ | |
566 | |
567 void glp_adv_basis(glp_prob *lp, int flags) | |
568 { if (flags != 0) | |
569 xerror("glp_adv_basis: flags = %d; invalid flags\n", flags); | |
570 if (lp->m == 0 || lp->n == 0) | |
571 glp_std_basis(lp); | |
572 else | |
573 adv_basis(lp); | |
574 return; | |
575 } | |
576 | |
577 /* eof */ |