lemon-project-template-glpk
comparison deps/glpk/src/glpios11.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:3e2f75b70c07 |
---|---|
1 /* glpios11.c (process cuts stored in the local cut pool) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpios.h" | |
26 | |
27 /*********************************************************************** | |
28 * NAME | |
29 * | |
30 * ios_process_cuts - process cuts stored in the local cut pool | |
31 * | |
32 * SYNOPSIS | |
33 * | |
34 * #include "glpios.h" | |
35 * void ios_process_cuts(glp_tree *T); | |
36 * | |
37 * DESCRIPTION | |
38 * | |
39 * The routine ios_process_cuts analyzes each cut currently stored in | |
40 * the local cut pool, which must be non-empty, and either adds the cut | |
41 * to the current subproblem or just discards it. All cuts are assumed | |
42 * to be locally valid. On exit the local cut pool remains unchanged. | |
43 * | |
44 * REFERENCES | |
45 * | |
46 * 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by | |
47 * Lift-and-Project in a Branch-and-Cut Framework", Management Sc., | |
48 * 42 (1996) 1229-1246. | |
49 * | |
50 * 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in | |
51 * a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts", | |
52 * Preliminary Draft, October 28, 2003, pp.6-8. */ | |
53 | |
54 struct info | |
55 { /* estimated cut efficiency */ | |
56 IOSCUT *cut; | |
57 /* pointer to cut in the cut pool */ | |
58 char flag; | |
59 /* if this flag is set, the cut is included into the current | |
60 subproblem */ | |
61 double eff; | |
62 /* cut efficacy (normalized residual) */ | |
63 double deg; | |
64 /* lower bound to objective degradation */ | |
65 }; | |
66 | |
67 static int fcmp(const void *arg1, const void *arg2) | |
68 { const struct info *info1 = arg1, *info2 = arg2; | |
69 if (info1->deg == 0.0 && info2->deg == 0.0) | |
70 { if (info1->eff > info2->eff) return -1; | |
71 if (info1->eff < info2->eff) return +1; | |
72 } | |
73 else | |
74 { if (info1->deg > info2->deg) return -1; | |
75 if (info1->deg < info2->deg) return +1; | |
76 } | |
77 return 0; | |
78 } | |
79 | |
80 static double parallel(IOSCUT *a, IOSCUT *b, double work[]); | |
81 | |
82 void ios_process_cuts(glp_tree *T) | |
83 { IOSPOOL *pool; | |
84 IOSCUT *cut; | |
85 IOSAIJ *aij; | |
86 struct info *info; | |
87 int k, kk, max_cuts, len, ret, *ind; | |
88 double *val, *work; | |
89 /* the current subproblem must exist */ | |
90 xassert(T->curr != NULL); | |
91 /* the pool must exist and be non-empty */ | |
92 pool = T->local; | |
93 xassert(pool != NULL); | |
94 xassert(pool->size > 0); | |
95 /* allocate working arrays */ | |
96 info = xcalloc(1+pool->size, sizeof(struct info)); | |
97 ind = xcalloc(1+T->n, sizeof(int)); | |
98 val = xcalloc(1+T->n, sizeof(double)); | |
99 work = xcalloc(1+T->n, sizeof(double)); | |
100 for (k = 1; k <= T->n; k++) work[k] = 0.0; | |
101 /* build the list of cuts stored in the cut pool */ | |
102 for (k = 0, cut = pool->head; cut != NULL; cut = cut->next) | |
103 k++, info[k].cut = cut, info[k].flag = 0; | |
104 xassert(k == pool->size); | |
105 /* estimate efficiency of all cuts in the cut pool */ | |
106 for (k = 1; k <= pool->size; k++) | |
107 { double temp, dy, dz; | |
108 cut = info[k].cut; | |
109 /* build the vector of cut coefficients and compute its | |
110 Euclidean norm */ | |
111 len = 0; temp = 0.0; | |
112 for (aij = cut->ptr; aij != NULL; aij = aij->next) | |
113 { xassert(1 <= aij->j && aij->j <= T->n); | |
114 len++, ind[len] = aij->j, val[len] = aij->val; | |
115 temp += aij->val * aij->val; | |
116 } | |
117 if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; | |
118 /* transform the cut to express it only through non-basic | |
119 (auxiliary and structural) variables */ | |
120 len = glp_transform_row(T->mip, len, ind, val); | |
121 /* determine change in the cut value and in the objective | |
122 value for the adjacent basis by simulating one step of the | |
123 dual simplex */ | |
124 ret = _glp_analyze_row(T->mip, len, ind, val, cut->type, | |
125 cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz); | |
126 /* determine normalized residual and lower bound to objective | |
127 degradation */ | |
128 if (ret == 0) | |
129 { info[k].eff = fabs(dy) / sqrt(temp); | |
130 /* if some reduced costs violates (slightly) their zero | |
131 bounds (i.e. have wrong signs) due to round-off errors, | |
132 dz also may have wrong sign being close to zero */ | |
133 if (T->mip->dir == GLP_MIN) | |
134 { if (dz < 0.0) dz = 0.0; | |
135 info[k].deg = + dz; | |
136 } | |
137 else /* GLP_MAX */ | |
138 { if (dz > 0.0) dz = 0.0; | |
139 info[k].deg = - dz; | |
140 } | |
141 } | |
142 else if (ret == 1) | |
143 { /* the constraint is not violated at the current point */ | |
144 info[k].eff = info[k].deg = 0.0; | |
145 } | |
146 else if (ret == 2) | |
147 { /* no dual feasible adjacent basis exists */ | |
148 info[k].eff = 1.0; | |
149 info[k].deg = DBL_MAX; | |
150 } | |
151 else | |
152 xassert(ret != ret); | |
153 /* if the degradation is too small, just ignore it */ | |
154 if (info[k].deg < 0.01) info[k].deg = 0.0; | |
155 } | |
156 /* sort the list of cuts by decreasing objective degradation and | |
157 then by decreasing efficacy */ | |
158 qsort(&info[1], pool->size, sizeof(struct info), fcmp); | |
159 /* only first (most efficient) max_cuts in the list are qualified | |
160 as candidates to be added to the current subproblem */ | |
161 max_cuts = (T->curr->level == 0 ? 90 : 10); | |
162 if (max_cuts > pool->size) max_cuts = pool->size; | |
163 /* add cuts to the current subproblem */ | |
164 #if 0 | |
165 xprintf("*** adding cuts ***\n"); | |
166 #endif | |
167 for (k = 1; k <= max_cuts; k++) | |
168 { int i, len; | |
169 /* if this cut seems to be inefficient, skip it */ | |
170 if (info[k].deg < 0.01 && info[k].eff < 0.01) continue; | |
171 /* if the angle between this cut and every other cut included | |
172 in the current subproblem is small, skip this cut */ | |
173 for (kk = 1; kk < k; kk++) | |
174 { if (info[kk].flag) | |
175 { if (parallel(info[k].cut, info[kk].cut, work) > 0.90) | |
176 break; | |
177 } | |
178 } | |
179 if (kk < k) continue; | |
180 /* add this cut to the current subproblem */ | |
181 #if 0 | |
182 xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg); | |
183 #endif | |
184 cut = info[k].cut, info[k].flag = 1; | |
185 i = glp_add_rows(T->mip, 1); | |
186 if (cut->name != NULL) | |
187 glp_set_row_name(T->mip, i, cut->name); | |
188 xassert(T->mip->row[i]->origin == GLP_RF_CUT); | |
189 T->mip->row[i]->klass = cut->klass; | |
190 len = 0; | |
191 for (aij = cut->ptr; aij != NULL; aij = aij->next) | |
192 len++, ind[len] = aij->j, val[len] = aij->val; | |
193 glp_set_mat_row(T->mip, i, len, ind, val); | |
194 xassert(cut->type == GLP_LO || cut->type == GLP_UP); | |
195 glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs); | |
196 } | |
197 /* free working arrays */ | |
198 xfree(info); | |
199 xfree(ind); | |
200 xfree(val); | |
201 xfree(work); | |
202 return; | |
203 } | |
204 | |
205 #if 0 | |
206 /*********************************************************************** | |
207 * Given a cut a * x >= b (<= b) the routine efficacy computes the cut | |
208 * efficacy as follows: | |
209 * | |
210 * eff = d * (a * x~ - b) / ||a||, | |
211 * | |
212 * where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is | |
213 * the vector of values of structural variables in optimal solution to | |
214 * LP relaxation of the current subproblem, ||a|| is the Euclidean norm | |
215 * of the vector of cut coefficients. | |
216 * | |
217 * If the cut is violated at point x~, the efficacy eff is positive, | |
218 * and its value is the Euclidean distance between x~ and the cut plane | |
219 * a * x = b in the space of structural variables. | |
220 * | |
221 * Following geometrical intuition, it is quite natural to consider | |
222 * this distance as a first-order measure of the expected efficacy of | |
223 * the cut: the larger the distance the better the cut [1]. */ | |
224 | |
225 static double efficacy(glp_tree *T, IOSCUT *cut) | |
226 { glp_prob *mip = T->mip; | |
227 IOSAIJ *aij; | |
228 double s = 0.0, t = 0.0, temp; | |
229 for (aij = cut->ptr; aij != NULL; aij = aij->next) | |
230 { xassert(1 <= aij->j && aij->j <= mip->n); | |
231 s += aij->val * mip->col[aij->j]->prim; | |
232 t += aij->val * aij->val; | |
233 } | |
234 temp = sqrt(t); | |
235 if (temp < DBL_EPSILON) temp = DBL_EPSILON; | |
236 if (cut->type == GLP_LO) | |
237 temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp); | |
238 else if (cut->type == GLP_UP) | |
239 temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp); | |
240 else | |
241 xassert(cut != cut); | |
242 return temp; | |
243 } | |
244 #endif | |
245 | |
246 /*********************************************************************** | |
247 * Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the | |
248 * routine parallel computes the cosine of angle between the cut planes | |
249 * a1 * x = b1 and a2 * x = b2 (which is the acute angle between two | |
250 * normals to these planes) in the space of structural variables as | |
251 * follows: | |
252 * | |
253 * cos phi = (a1' * a2) / (||a1|| * ||a2||), | |
254 * | |
255 * where (a1' * a2) is a dot product of vectors of cut coefficients, | |
256 * ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2. | |
257 * | |
258 * Note that requirement cos phi = 0 forces the cuts to be orthogonal, | |
259 * i.e. with disjoint support, while requirement cos phi <= 0.999 means | |
260 * only avoiding duplicate (parallel) cuts [1]. */ | |
261 | |
262 static double parallel(IOSCUT *a, IOSCUT *b, double work[]) | |
263 { IOSAIJ *aij; | |
264 double s = 0.0, sa = 0.0, sb = 0.0, temp; | |
265 for (aij = a->ptr; aij != NULL; aij = aij->next) | |
266 { work[aij->j] = aij->val; | |
267 sa += aij->val * aij->val; | |
268 } | |
269 for (aij = b->ptr; aij != NULL; aij = aij->next) | |
270 { s += work[aij->j] * aij->val; | |
271 sb += aij->val * aij->val; | |
272 } | |
273 for (aij = a->ptr; aij != NULL; aij = aij->next) | |
274 work[aij->j] = 0.0; | |
275 temp = sqrt(sa) * sqrt(sb); | |
276 if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; | |
277 return s / temp; | |
278 } | |
279 | |
280 /* eof */ |