lemon-project-template-glpk
comparison deps/glpk/src/glpluf.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b58727849782 |
---|---|
1 /* glpluf.c (LU-factorization) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpenv.h" | |
26 #include "glpluf.h" | |
27 #define xfault xerror | |
28 | |
29 /* CAUTION: DO NOT CHANGE THE LIMIT BELOW */ | |
30 | |
31 #define N_MAX 100000000 /* = 100*10^6 */ | |
32 /* maximal order of the original matrix */ | |
33 | |
34 /*********************************************************************** | |
35 * NAME | |
36 * | |
37 * luf_create_it - create LU-factorization | |
38 * | |
39 * SYNOPSIS | |
40 * | |
41 * #include "glpluf.h" | |
42 * LUF *luf_create_it(void); | |
43 * | |
44 * DESCRIPTION | |
45 * | |
46 * The routine luf_create_it creates a program object, which represents | |
47 * LU-factorization of a square matrix. | |
48 * | |
49 * RETURNS | |
50 * | |
51 * The routine luf_create_it returns a pointer to the object created. */ | |
52 | |
53 LUF *luf_create_it(void) | |
54 { LUF *luf; | |
55 luf = xmalloc(sizeof(LUF)); | |
56 luf->n_max = luf->n = 0; | |
57 luf->valid = 0; | |
58 luf->fr_ptr = luf->fr_len = NULL; | |
59 luf->fc_ptr = luf->fc_len = NULL; | |
60 luf->vr_ptr = luf->vr_len = luf->vr_cap = NULL; | |
61 luf->vr_piv = NULL; | |
62 luf->vc_ptr = luf->vc_len = luf->vc_cap = NULL; | |
63 luf->pp_row = luf->pp_col = NULL; | |
64 luf->qq_row = luf->qq_col = NULL; | |
65 luf->sv_size = 0; | |
66 luf->sv_beg = luf->sv_end = 0; | |
67 luf->sv_ind = NULL; | |
68 luf->sv_val = NULL; | |
69 luf->sv_head = luf->sv_tail = 0; | |
70 luf->sv_prev = luf->sv_next = NULL; | |
71 luf->vr_max = NULL; | |
72 luf->rs_head = luf->rs_prev = luf->rs_next = NULL; | |
73 luf->cs_head = luf->cs_prev = luf->cs_next = NULL; | |
74 luf->flag = NULL; | |
75 luf->work = NULL; | |
76 luf->new_sva = 0; | |
77 luf->piv_tol = 0.10; | |
78 luf->piv_lim = 4; | |
79 luf->suhl = 1; | |
80 luf->eps_tol = 1e-15; | |
81 luf->max_gro = 1e+10; | |
82 luf->nnz_a = luf->nnz_f = luf->nnz_v = 0; | |
83 luf->max_a = luf->big_v = 0.0; | |
84 luf->rank = 0; | |
85 return luf; | |
86 } | |
87 | |
88 /*********************************************************************** | |
89 * NAME | |
90 * | |
91 * luf_defrag_sva - defragment the sparse vector area | |
92 * | |
93 * SYNOPSIS | |
94 * | |
95 * #include "glpluf.h" | |
96 * void luf_defrag_sva(LUF *luf); | |
97 * | |
98 * DESCRIPTION | |
99 * | |
100 * The routine luf_defrag_sva defragments the sparse vector area (SVA) | |
101 * gathering all unused locations in one continuous extent. In order to | |
102 * do that the routine moves all unused locations from the left part of | |
103 * SVA (which contains rows and columns of the matrix V) to the middle | |
104 * part (which contains free locations). This is attained by relocating | |
105 * elements of rows and columns of the matrix V toward the beginning of | |
106 * the left part. | |
107 * | |
108 * NOTE that this "garbage collection" involves changing row and column | |
109 * pointers of the matrix V. */ | |
110 | |
111 void luf_defrag_sva(LUF *luf) | |
112 { int n = luf->n; | |
113 int *vr_ptr = luf->vr_ptr; | |
114 int *vr_len = luf->vr_len; | |
115 int *vr_cap = luf->vr_cap; | |
116 int *vc_ptr = luf->vc_ptr; | |
117 int *vc_len = luf->vc_len; | |
118 int *vc_cap = luf->vc_cap; | |
119 int *sv_ind = luf->sv_ind; | |
120 double *sv_val = luf->sv_val; | |
121 int *sv_next = luf->sv_next; | |
122 int sv_beg = 1; | |
123 int i, j, k; | |
124 /* skip rows and columns, which do not need to be relocated */ | |
125 for (k = luf->sv_head; k != 0; k = sv_next[k]) | |
126 { if (k <= n) | |
127 { /* i-th row of the matrix V */ | |
128 i = k; | |
129 if (vr_ptr[i] != sv_beg) break; | |
130 vr_cap[i] = vr_len[i]; | |
131 sv_beg += vr_cap[i]; | |
132 } | |
133 else | |
134 { /* j-th column of the matrix V */ | |
135 j = k - n; | |
136 if (vc_ptr[j] != sv_beg) break; | |
137 vc_cap[j] = vc_len[j]; | |
138 sv_beg += vc_cap[j]; | |
139 } | |
140 } | |
141 /* relocate other rows and columns in order to gather all unused | |
142 locations in one continuous extent */ | |
143 for (k = k; k != 0; k = sv_next[k]) | |
144 { if (k <= n) | |
145 { /* i-th row of the matrix V */ | |
146 i = k; | |
147 memmove(&sv_ind[sv_beg], &sv_ind[vr_ptr[i]], | |
148 vr_len[i] * sizeof(int)); | |
149 memmove(&sv_val[sv_beg], &sv_val[vr_ptr[i]], | |
150 vr_len[i] * sizeof(double)); | |
151 vr_ptr[i] = sv_beg; | |
152 vr_cap[i] = vr_len[i]; | |
153 sv_beg += vr_cap[i]; | |
154 } | |
155 else | |
156 { /* j-th column of the matrix V */ | |
157 j = k - n; | |
158 memmove(&sv_ind[sv_beg], &sv_ind[vc_ptr[j]], | |
159 vc_len[j] * sizeof(int)); | |
160 memmove(&sv_val[sv_beg], &sv_val[vc_ptr[j]], | |
161 vc_len[j] * sizeof(double)); | |
162 vc_ptr[j] = sv_beg; | |
163 vc_cap[j] = vc_len[j]; | |
164 sv_beg += vc_cap[j]; | |
165 } | |
166 } | |
167 /* set new pointer to the beginning of the free part */ | |
168 luf->sv_beg = sv_beg; | |
169 return; | |
170 } | |
171 | |
172 /*********************************************************************** | |
173 * NAME | |
174 * | |
175 * luf_enlarge_row - enlarge row capacity | |
176 * | |
177 * SYNOPSIS | |
178 * | |
179 * #include "glpluf.h" | |
180 * int luf_enlarge_row(LUF *luf, int i, int cap); | |
181 * | |
182 * DESCRIPTION | |
183 * | |
184 * The routine luf_enlarge_row enlarges capacity of the i-th row of the | |
185 * matrix V to cap locations (assuming that its current capacity is less | |
186 * than cap). In order to do that the routine relocates elements of the | |
187 * i-th row to the end of the left part of SVA (which contains rows and | |
188 * columns of the matrix V) and then expands the left part by allocating | |
189 * cap free locations from the free part. If there are less than cap | |
190 * free locations, the routine defragments the sparse vector area. | |
191 * | |
192 * Due to "garbage collection" this operation may change row and column | |
193 * pointers of the matrix V. | |
194 * | |
195 * RETURNS | |
196 * | |
197 * If no error occured, the routine returns zero. Otherwise, in case of | |
198 * overflow of the sparse vector area, the routine returns non-zero. */ | |
199 | |
200 int luf_enlarge_row(LUF *luf, int i, int cap) | |
201 { int n = luf->n; | |
202 int *vr_ptr = luf->vr_ptr; | |
203 int *vr_len = luf->vr_len; | |
204 int *vr_cap = luf->vr_cap; | |
205 int *vc_cap = luf->vc_cap; | |
206 int *sv_ind = luf->sv_ind; | |
207 double *sv_val = luf->sv_val; | |
208 int *sv_prev = luf->sv_prev; | |
209 int *sv_next = luf->sv_next; | |
210 int ret = 0; | |
211 int cur, k, kk; | |
212 xassert(1 <= i && i <= n); | |
213 xassert(vr_cap[i] < cap); | |
214 /* if there are less than cap free locations, defragment SVA */ | |
215 if (luf->sv_end - luf->sv_beg < cap) | |
216 { luf_defrag_sva(luf); | |
217 if (luf->sv_end - luf->sv_beg < cap) | |
218 { ret = 1; | |
219 goto done; | |
220 } | |
221 } | |
222 /* save current capacity of the i-th row */ | |
223 cur = vr_cap[i]; | |
224 /* copy existing elements to the beginning of the free part */ | |
225 memmove(&sv_ind[luf->sv_beg], &sv_ind[vr_ptr[i]], | |
226 vr_len[i] * sizeof(int)); | |
227 memmove(&sv_val[luf->sv_beg], &sv_val[vr_ptr[i]], | |
228 vr_len[i] * sizeof(double)); | |
229 /* set new pointer and new capacity of the i-th row */ | |
230 vr_ptr[i] = luf->sv_beg; | |
231 vr_cap[i] = cap; | |
232 /* set new pointer to the beginning of the free part */ | |
233 luf->sv_beg += cap; | |
234 /* now the i-th row starts in the rightmost location among other | |
235 rows and columns of the matrix V, so its node should be moved | |
236 to the end of the row/column linked list */ | |
237 k = i; | |
238 /* remove the i-th row node from the linked list */ | |
239 if (sv_prev[k] == 0) | |
240 luf->sv_head = sv_next[k]; | |
241 else | |
242 { /* capacity of the previous row/column can be increased at the | |
243 expense of old locations of the i-th row */ | |
244 kk = sv_prev[k]; | |
245 if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; | |
246 sv_next[sv_prev[k]] = sv_next[k]; | |
247 } | |
248 if (sv_next[k] == 0) | |
249 luf->sv_tail = sv_prev[k]; | |
250 else | |
251 sv_prev[sv_next[k]] = sv_prev[k]; | |
252 /* insert the i-th row node to the end of the linked list */ | |
253 sv_prev[k] = luf->sv_tail; | |
254 sv_next[k] = 0; | |
255 if (sv_prev[k] == 0) | |
256 luf->sv_head = k; | |
257 else | |
258 sv_next[sv_prev[k]] = k; | |
259 luf->sv_tail = k; | |
260 done: return ret; | |
261 } | |
262 | |
263 /*********************************************************************** | |
264 * NAME | |
265 * | |
266 * luf_enlarge_col - enlarge column capacity | |
267 * | |
268 * SYNOPSIS | |
269 * | |
270 * #include "glpluf.h" | |
271 * int luf_enlarge_col(LUF *luf, int j, int cap); | |
272 * | |
273 * DESCRIPTION | |
274 * | |
275 * The routine luf_enlarge_col enlarges capacity of the j-th column of | |
276 * the matrix V to cap locations (assuming that its current capacity is | |
277 * less than cap). In order to do that the routine relocates elements | |
278 * of the j-th column to the end of the left part of SVA (which contains | |
279 * rows and columns of the matrix V) and then expands the left part by | |
280 * allocating cap free locations from the free part. If there are less | |
281 * than cap free locations, the routine defragments the sparse vector | |
282 * area. | |
283 * | |
284 * Due to "garbage collection" this operation may change row and column | |
285 * pointers of the matrix V. | |
286 * | |
287 * RETURNS | |
288 * | |
289 * If no error occured, the routine returns zero. Otherwise, in case of | |
290 * overflow of the sparse vector area, the routine returns non-zero. */ | |
291 | |
292 int luf_enlarge_col(LUF *luf, int j, int cap) | |
293 { int n = luf->n; | |
294 int *vr_cap = luf->vr_cap; | |
295 int *vc_ptr = luf->vc_ptr; | |
296 int *vc_len = luf->vc_len; | |
297 int *vc_cap = luf->vc_cap; | |
298 int *sv_ind = luf->sv_ind; | |
299 double *sv_val = luf->sv_val; | |
300 int *sv_prev = luf->sv_prev; | |
301 int *sv_next = luf->sv_next; | |
302 int ret = 0; | |
303 int cur, k, kk; | |
304 xassert(1 <= j && j <= n); | |
305 xassert(vc_cap[j] < cap); | |
306 /* if there are less than cap free locations, defragment SVA */ | |
307 if (luf->sv_end - luf->sv_beg < cap) | |
308 { luf_defrag_sva(luf); | |
309 if (luf->sv_end - luf->sv_beg < cap) | |
310 { ret = 1; | |
311 goto done; | |
312 } | |
313 } | |
314 /* save current capacity of the j-th column */ | |
315 cur = vc_cap[j]; | |
316 /* copy existing elements to the beginning of the free part */ | |
317 memmove(&sv_ind[luf->sv_beg], &sv_ind[vc_ptr[j]], | |
318 vc_len[j] * sizeof(int)); | |
319 memmove(&sv_val[luf->sv_beg], &sv_val[vc_ptr[j]], | |
320 vc_len[j] * sizeof(double)); | |
321 /* set new pointer and new capacity of the j-th column */ | |
322 vc_ptr[j] = luf->sv_beg; | |
323 vc_cap[j] = cap; | |
324 /* set new pointer to the beginning of the free part */ | |
325 luf->sv_beg += cap; | |
326 /* now the j-th column starts in the rightmost location among | |
327 other rows and columns of the matrix V, so its node should be | |
328 moved to the end of the row/column linked list */ | |
329 k = n + j; | |
330 /* remove the j-th column node from the linked list */ | |
331 if (sv_prev[k] == 0) | |
332 luf->sv_head = sv_next[k]; | |
333 else | |
334 { /* capacity of the previous row/column can be increased at the | |
335 expense of old locations of the j-th column */ | |
336 kk = sv_prev[k]; | |
337 if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; | |
338 sv_next[sv_prev[k]] = sv_next[k]; | |
339 } | |
340 if (sv_next[k] == 0) | |
341 luf->sv_tail = sv_prev[k]; | |
342 else | |
343 sv_prev[sv_next[k]] = sv_prev[k]; | |
344 /* insert the j-th column node to the end of the linked list */ | |
345 sv_prev[k] = luf->sv_tail; | |
346 sv_next[k] = 0; | |
347 if (sv_prev[k] == 0) | |
348 luf->sv_head = k; | |
349 else | |
350 sv_next[sv_prev[k]] = k; | |
351 luf->sv_tail = k; | |
352 done: return ret; | |
353 } | |
354 | |
355 /*********************************************************************** | |
356 * reallocate - reallocate LU-factorization arrays | |
357 * | |
358 * This routine reallocates arrays, whose size depends of n, the order | |
359 * of the matrix A to be factorized. */ | |
360 | |
361 static void reallocate(LUF *luf, int n) | |
362 { int n_max = luf->n_max; | |
363 luf->n = n; | |
364 if (n <= n_max) goto done; | |
365 if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); | |
366 if (luf->fr_len != NULL) xfree(luf->fr_len); | |
367 if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); | |
368 if (luf->fc_len != NULL) xfree(luf->fc_len); | |
369 if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); | |
370 if (luf->vr_len != NULL) xfree(luf->vr_len); | |
371 if (luf->vr_cap != NULL) xfree(luf->vr_cap); | |
372 if (luf->vr_piv != NULL) xfree(luf->vr_piv); | |
373 if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); | |
374 if (luf->vc_len != NULL) xfree(luf->vc_len); | |
375 if (luf->vc_cap != NULL) xfree(luf->vc_cap); | |
376 if (luf->pp_row != NULL) xfree(luf->pp_row); | |
377 if (luf->pp_col != NULL) xfree(luf->pp_col); | |
378 if (luf->qq_row != NULL) xfree(luf->qq_row); | |
379 if (luf->qq_col != NULL) xfree(luf->qq_col); | |
380 if (luf->sv_prev != NULL) xfree(luf->sv_prev); | |
381 if (luf->sv_next != NULL) xfree(luf->sv_next); | |
382 if (luf->vr_max != NULL) xfree(luf->vr_max); | |
383 if (luf->rs_head != NULL) xfree(luf->rs_head); | |
384 if (luf->rs_prev != NULL) xfree(luf->rs_prev); | |
385 if (luf->rs_next != NULL) xfree(luf->rs_next); | |
386 if (luf->cs_head != NULL) xfree(luf->cs_head); | |
387 if (luf->cs_prev != NULL) xfree(luf->cs_prev); | |
388 if (luf->cs_next != NULL) xfree(luf->cs_next); | |
389 if (luf->flag != NULL) xfree(luf->flag); | |
390 if (luf->work != NULL) xfree(luf->work); | |
391 luf->n_max = n_max = n + 100; | |
392 luf->fr_ptr = xcalloc(1+n_max, sizeof(int)); | |
393 luf->fr_len = xcalloc(1+n_max, sizeof(int)); | |
394 luf->fc_ptr = xcalloc(1+n_max, sizeof(int)); | |
395 luf->fc_len = xcalloc(1+n_max, sizeof(int)); | |
396 luf->vr_ptr = xcalloc(1+n_max, sizeof(int)); | |
397 luf->vr_len = xcalloc(1+n_max, sizeof(int)); | |
398 luf->vr_cap = xcalloc(1+n_max, sizeof(int)); | |
399 luf->vr_piv = xcalloc(1+n_max, sizeof(double)); | |
400 luf->vc_ptr = xcalloc(1+n_max, sizeof(int)); | |
401 luf->vc_len = xcalloc(1+n_max, sizeof(int)); | |
402 luf->vc_cap = xcalloc(1+n_max, sizeof(int)); | |
403 luf->pp_row = xcalloc(1+n_max, sizeof(int)); | |
404 luf->pp_col = xcalloc(1+n_max, sizeof(int)); | |
405 luf->qq_row = xcalloc(1+n_max, sizeof(int)); | |
406 luf->qq_col = xcalloc(1+n_max, sizeof(int)); | |
407 luf->sv_prev = xcalloc(1+n_max+n_max, sizeof(int)); | |
408 luf->sv_next = xcalloc(1+n_max+n_max, sizeof(int)); | |
409 luf->vr_max = xcalloc(1+n_max, sizeof(double)); | |
410 luf->rs_head = xcalloc(1+n_max, sizeof(int)); | |
411 luf->rs_prev = xcalloc(1+n_max, sizeof(int)); | |
412 luf->rs_next = xcalloc(1+n_max, sizeof(int)); | |
413 luf->cs_head = xcalloc(1+n_max, sizeof(int)); | |
414 luf->cs_prev = xcalloc(1+n_max, sizeof(int)); | |
415 luf->cs_next = xcalloc(1+n_max, sizeof(int)); | |
416 luf->flag = xcalloc(1+n_max, sizeof(int)); | |
417 luf->work = xcalloc(1+n_max, sizeof(double)); | |
418 done: return; | |
419 } | |
420 | |
421 /*********************************************************************** | |
422 * initialize - initialize LU-factorization data structures | |
423 * | |
424 * This routine initializes data structures for subsequent computing | |
425 * the LU-factorization of a given matrix A, which is specified by the | |
426 * formal routine col. On exit V = A and F = P = Q = I, where I is the | |
427 * unity matrix. (Row-wise representation of the matrix F is not used | |
428 * at the factorization stage and therefore is not initialized.) | |
429 * | |
430 * If no error occured, the routine returns zero. Otherwise, in case of | |
431 * overflow of the sparse vector area, the routine returns non-zero. */ | |
432 | |
433 static int initialize(LUF *luf, int (*col)(void *info, int j, int rn[], | |
434 double aj[]), void *info) | |
435 { int n = luf->n; | |
436 int *fc_ptr = luf->fc_ptr; | |
437 int *fc_len = luf->fc_len; | |
438 int *vr_ptr = luf->vr_ptr; | |
439 int *vr_len = luf->vr_len; | |
440 int *vr_cap = luf->vr_cap; | |
441 int *vc_ptr = luf->vc_ptr; | |
442 int *vc_len = luf->vc_len; | |
443 int *vc_cap = luf->vc_cap; | |
444 int *pp_row = luf->pp_row; | |
445 int *pp_col = luf->pp_col; | |
446 int *qq_row = luf->qq_row; | |
447 int *qq_col = luf->qq_col; | |
448 int *sv_ind = luf->sv_ind; | |
449 double *sv_val = luf->sv_val; | |
450 int *sv_prev = luf->sv_prev; | |
451 int *sv_next = luf->sv_next; | |
452 double *vr_max = luf->vr_max; | |
453 int *rs_head = luf->rs_head; | |
454 int *rs_prev = luf->rs_prev; | |
455 int *rs_next = luf->rs_next; | |
456 int *cs_head = luf->cs_head; | |
457 int *cs_prev = luf->cs_prev; | |
458 int *cs_next = luf->cs_next; | |
459 int *flag = luf->flag; | |
460 double *work = luf->work; | |
461 int ret = 0; | |
462 int i, i_ptr, j, j_beg, j_end, k, len, nnz, sv_beg, sv_end, ptr; | |
463 double big, val; | |
464 /* free all locations of the sparse vector area */ | |
465 sv_beg = 1; | |
466 sv_end = luf->sv_size + 1; | |
467 /* (row-wise representation of the matrix F is not initialized, | |
468 because it is not used at the factorization stage) */ | |
469 /* build the matrix F in column-wise format (initially F = I) */ | |
470 for (j = 1; j <= n; j++) | |
471 { fc_ptr[j] = sv_end; | |
472 fc_len[j] = 0; | |
473 } | |
474 /* clear rows of the matrix V; clear the flag array */ | |
475 for (i = 1; i <= n; i++) | |
476 vr_len[i] = vr_cap[i] = 0, flag[i] = 0; | |
477 /* build the matrix V in column-wise format (initially V = A); | |
478 count non-zeros in rows of this matrix; count total number of | |
479 non-zeros; compute largest of absolute values of elements */ | |
480 nnz = 0; | |
481 big = 0.0; | |
482 for (j = 1; j <= n; j++) | |
483 { int *rn = pp_row; | |
484 double *aj = work; | |
485 /* obtain j-th column of the matrix A */ | |
486 len = col(info, j, rn, aj); | |
487 if (!(0 <= len && len <= n)) | |
488 xfault("luf_factorize: j = %d; len = %d; invalid column len" | |
489 "gth\n", j, len); | |
490 /* check for free locations */ | |
491 if (sv_end - sv_beg < len) | |
492 { /* overflow of the sparse vector area */ | |
493 ret = 1; | |
494 goto done; | |
495 } | |
496 /* set pointer to the j-th column */ | |
497 vc_ptr[j] = sv_beg; | |
498 /* set length of the j-th column */ | |
499 vc_len[j] = vc_cap[j] = len; | |
500 /* count total number of non-zeros */ | |
501 nnz += len; | |
502 /* walk through elements of the j-th column */ | |
503 for (ptr = 1; ptr <= len; ptr++) | |
504 { /* get row index and numerical value of a[i,j] */ | |
505 i = rn[ptr]; | |
506 val = aj[ptr]; | |
507 if (!(1 <= i && i <= n)) | |
508 xfault("luf_factorize: i = %d; j = %d; invalid row index" | |
509 "\n", i, j); | |
510 if (flag[i]) | |
511 xfault("luf_factorize: i = %d; j = %d; duplicate element" | |
512 " not allowed\n", i, j); | |
513 if (val == 0.0) | |
514 xfault("luf_factorize: i = %d; j = %d; zero element not " | |
515 "allowed\n", i, j); | |
516 /* add new element v[i,j] = a[i,j] to j-th column */ | |
517 sv_ind[sv_beg] = i; | |
518 sv_val[sv_beg] = val; | |
519 sv_beg++; | |
520 /* big := max(big, |a[i,j]|) */ | |
521 if (val < 0.0) val = - val; | |
522 if (big < val) big = val; | |
523 /* mark non-zero in the i-th position of the j-th column */ | |
524 flag[i] = 1; | |
525 /* increase length of the i-th row */ | |
526 vr_cap[i]++; | |
527 } | |
528 /* reset all non-zero marks */ | |
529 for (ptr = 1; ptr <= len; ptr++) flag[rn[ptr]] = 0; | |
530 } | |
531 /* allocate rows of the matrix V */ | |
532 for (i = 1; i <= n; i++) | |
533 { /* get length of the i-th row */ | |
534 len = vr_cap[i]; | |
535 /* check for free locations */ | |
536 if (sv_end - sv_beg < len) | |
537 { /* overflow of the sparse vector area */ | |
538 ret = 1; | |
539 goto done; | |
540 } | |
541 /* set pointer to the i-th row */ | |
542 vr_ptr[i] = sv_beg; | |
543 /* reserve locations for the i-th row */ | |
544 sv_beg += len; | |
545 } | |
546 /* build the matrix V in row-wise format using representation of | |
547 this matrix in column-wise format */ | |
548 for (j = 1; j <= n; j++) | |
549 { /* walk through elements of the j-th column */ | |
550 j_beg = vc_ptr[j]; | |
551 j_end = j_beg + vc_len[j] - 1; | |
552 for (k = j_beg; k <= j_end; k++) | |
553 { /* get row index and numerical value of v[i,j] */ | |
554 i = sv_ind[k]; | |
555 val = sv_val[k]; | |
556 /* store element in the i-th row */ | |
557 i_ptr = vr_ptr[i] + vr_len[i]; | |
558 sv_ind[i_ptr] = j; | |
559 sv_val[i_ptr] = val; | |
560 /* increase count of the i-th row */ | |
561 vr_len[i]++; | |
562 } | |
563 } | |
564 /* initialize the matrices P and Q (initially P = Q = I) */ | |
565 for (k = 1; k <= n; k++) | |
566 pp_row[k] = pp_col[k] = qq_row[k] = qq_col[k] = k; | |
567 /* set sva partitioning pointers */ | |
568 luf->sv_beg = sv_beg; | |
569 luf->sv_end = sv_end; | |
570 /* the initial physical order of rows and columns of the matrix V | |
571 is n+1, ..., n+n, 1, ..., n (firstly columns, then rows) */ | |
572 luf->sv_head = n+1; | |
573 luf->sv_tail = n; | |
574 for (i = 1; i <= n; i++) | |
575 { sv_prev[i] = i-1; | |
576 sv_next[i] = i+1; | |
577 } | |
578 sv_prev[1] = n+n; | |
579 sv_next[n] = 0; | |
580 for (j = 1; j <= n; j++) | |
581 { sv_prev[n+j] = n+j-1; | |
582 sv_next[n+j] = n+j+1; | |
583 } | |
584 sv_prev[n+1] = 0; | |
585 sv_next[n+n] = 1; | |
586 /* clear working arrays */ | |
587 for (k = 1; k <= n; k++) | |
588 { flag[k] = 0; | |
589 work[k] = 0.0; | |
590 } | |
591 /* initialize some statistics */ | |
592 luf->nnz_a = nnz; | |
593 luf->nnz_f = 0; | |
594 luf->nnz_v = nnz; | |
595 luf->max_a = big; | |
596 luf->big_v = big; | |
597 luf->rank = -1; | |
598 /* initially the active submatrix is the entire matrix V */ | |
599 /* largest of absolute values of elements in each active row is | |
600 unknown yet */ | |
601 for (i = 1; i <= n; i++) vr_max[i] = -1.0; | |
602 /* build linked lists of active rows */ | |
603 for (len = 0; len <= n; len++) rs_head[len] = 0; | |
604 for (i = 1; i <= n; i++) | |
605 { len = vr_len[i]; | |
606 rs_prev[i] = 0; | |
607 rs_next[i] = rs_head[len]; | |
608 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; | |
609 rs_head[len] = i; | |
610 } | |
611 /* build linked lists of active columns */ | |
612 for (len = 0; len <= n; len++) cs_head[len] = 0; | |
613 for (j = 1; j <= n; j++) | |
614 { len = vc_len[j]; | |
615 cs_prev[j] = 0; | |
616 cs_next[j] = cs_head[len]; | |
617 if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; | |
618 cs_head[len] = j; | |
619 } | |
620 done: /* return to the factorizing routine */ | |
621 return ret; | |
622 } | |
623 | |
624 /*********************************************************************** | |
625 * find_pivot - choose a pivot element | |
626 * | |
627 * This routine chooses a pivot element in the active submatrix of the | |
628 * matrix U = P*V*Q. | |
629 * | |
630 * It is assumed that on entry the matrix U has the following partially | |
631 * triangularized form: | |
632 * | |
633 * 1 k n | |
634 * 1 x x x x x x x x x x | |
635 * . x x x x x x x x x | |
636 * . . x x x x x x x x | |
637 * . . . x x x x x x x | |
638 * k . . . . * * * * * * | |
639 * . . . . * * * * * * | |
640 * . . . . * * * * * * | |
641 * . . . . * * * * * * | |
642 * . . . . * * * * * * | |
643 * n . . . . * * * * * * | |
644 * | |
645 * where rows and columns k, k+1, ..., n belong to the active submatrix | |
646 * (elements of the active submatrix are marked by '*'). | |
647 * | |
648 * Since the matrix U = P*V*Q is not stored, the routine works with the | |
649 * matrix V. It is assumed that the row-wise representation corresponds | |
650 * to the matrix V, but the column-wise representation corresponds to | |
651 * the active submatrix of the matrix V, i.e. elements of the matrix V, | |
652 * which doesn't belong to the active submatrix, are missing from the | |
653 * column linked lists. It is also assumed that each active row of the | |
654 * matrix V is in the set R[len], where len is number of non-zeros in | |
655 * the row, and each active column of the matrix V is in the set C[len], | |
656 * where len is number of non-zeros in the column (in the latter case | |
657 * only elements of the active submatrix are counted; such elements are | |
658 * marked by '*' on the figure above). | |
659 * | |
660 * For the reason of numerical stability the routine applies so called | |
661 * threshold pivoting proposed by J.Reid. It is assumed that an element | |
662 * v[i,j] can be selected as a pivot candidate if it is not very small | |
663 * (in absolute value) among other elements in the same row, i.e. if it | |
664 * satisfies to the stability condition |v[i,j]| >= tol * max|v[i,*]|, | |
665 * where 0 < tol < 1 is a given tolerance. | |
666 * | |
667 * In order to keep sparsity of the matrix V the routine uses Markowitz | |
668 * strategy, trying to choose such element v[p,q], which satisfies to | |
669 * the stability condition (see above) and has smallest Markowitz cost | |
670 * (nr[p]-1) * (nc[q]-1), where nr[p] and nc[q] are numbers of non-zero | |
671 * elements, respectively, in the p-th row and in the q-th column of the | |
672 * active submatrix. | |
673 * | |
674 * In order to reduce the search, i.e. not to walk through all elements | |
675 * of the active submatrix, the routine exploits a technique proposed by | |
676 * I.Duff. This technique is based on using the sets R[len] and C[len] | |
677 * of active rows and columns. | |
678 * | |
679 * If the pivot element v[p,q] has been chosen, the routine stores its | |
680 * indices to the locations *p and *q and returns zero. Otherwise, if | |
681 * the active submatrix is empty and therefore the pivot element can't | |
682 * be chosen, the routine returns non-zero. */ | |
683 | |
684 static int find_pivot(LUF *luf, int *_p, int *_q) | |
685 { int n = luf->n; | |
686 int *vr_ptr = luf->vr_ptr; | |
687 int *vr_len = luf->vr_len; | |
688 int *vc_ptr = luf->vc_ptr; | |
689 int *vc_len = luf->vc_len; | |
690 int *sv_ind = luf->sv_ind; | |
691 double *sv_val = luf->sv_val; | |
692 double *vr_max = luf->vr_max; | |
693 int *rs_head = luf->rs_head; | |
694 int *rs_next = luf->rs_next; | |
695 int *cs_head = luf->cs_head; | |
696 int *cs_prev = luf->cs_prev; | |
697 int *cs_next = luf->cs_next; | |
698 double piv_tol = luf->piv_tol; | |
699 int piv_lim = luf->piv_lim; | |
700 int suhl = luf->suhl; | |
701 int p, q, len, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, | |
702 ncand, next_j, min_p, min_q, min_len; | |
703 double best, cost, big, temp; | |
704 /* initially no pivot candidates have been found so far */ | |
705 p = q = 0, best = DBL_MAX, ncand = 0; | |
706 /* if in the active submatrix there is a column that has the only | |
707 non-zero (column singleton), choose it as pivot */ | |
708 j = cs_head[1]; | |
709 if (j != 0) | |
710 { xassert(vc_len[j] == 1); | |
711 p = sv_ind[vc_ptr[j]], q = j; | |
712 goto done; | |
713 } | |
714 /* if in the active submatrix there is a row that has the only | |
715 non-zero (row singleton), choose it as pivot */ | |
716 i = rs_head[1]; | |
717 if (i != 0) | |
718 { xassert(vr_len[i] == 1); | |
719 p = i, q = sv_ind[vr_ptr[i]]; | |
720 goto done; | |
721 } | |
722 /* there are no singletons in the active submatrix; walk through | |
723 other non-empty rows and columns */ | |
724 for (len = 2; len <= n; len++) | |
725 { /* consider active columns that have len non-zeros */ | |
726 for (j = cs_head[len]; j != 0; j = next_j) | |
727 { /* the j-th column has len non-zeros */ | |
728 j_beg = vc_ptr[j]; | |
729 j_end = j_beg + vc_len[j] - 1; | |
730 /* save pointer to the next column with the same length */ | |
731 next_j = cs_next[j]; | |
732 /* find an element in the j-th column, which is placed in a | |
733 row with minimal number of non-zeros and satisfies to the | |
734 stability condition (such element may not exist) */ | |
735 min_p = min_q = 0, min_len = INT_MAX; | |
736 for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) | |
737 { /* get row index of v[i,j] */ | |
738 i = sv_ind[j_ptr]; | |
739 i_beg = vr_ptr[i]; | |
740 i_end = i_beg + vr_len[i] - 1; | |
741 /* if the i-th row is not shorter than that one, where | |
742 minimal element is currently placed, skip v[i,j] */ | |
743 if (vr_len[i] >= min_len) continue; | |
744 /* determine the largest of absolute values of elements | |
745 in the i-th row */ | |
746 big = vr_max[i]; | |
747 if (big < 0.0) | |
748 { /* the largest value is unknown yet; compute it */ | |
749 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
750 { temp = sv_val[i_ptr]; | |
751 if (temp < 0.0) temp = - temp; | |
752 if (big < temp) big = temp; | |
753 } | |
754 vr_max[i] = big; | |
755 } | |
756 /* find v[i,j] in the i-th row */ | |
757 for (i_ptr = vr_ptr[i]; sv_ind[i_ptr] != j; i_ptr++); | |
758 xassert(i_ptr <= i_end); | |
759 /* if v[i,j] doesn't satisfy to the stability condition, | |
760 skip it */ | |
761 temp = sv_val[i_ptr]; | |
762 if (temp < 0.0) temp = - temp; | |
763 if (temp < piv_tol * big) continue; | |
764 /* v[i,j] is better than the current minimal element */ | |
765 min_p = i, min_q = j, min_len = vr_len[i]; | |
766 /* if Markowitz cost of the current minimal element is | |
767 not greater than (len-1)**2, it can be chosen right | |
768 now; this heuristic reduces the search and works well | |
769 in many cases */ | |
770 if (min_len <= len) | |
771 { p = min_p, q = min_q; | |
772 goto done; | |
773 } | |
774 } | |
775 /* the j-th column has been scanned */ | |
776 if (min_p != 0) | |
777 { /* the minimal element is a next pivot candidate */ | |
778 ncand++; | |
779 /* compute its Markowitz cost */ | |
780 cost = (double)(min_len - 1) * (double)(len - 1); | |
781 /* choose between the minimal element and the current | |
782 candidate */ | |
783 if (cost < best) p = min_p, q = min_q, best = cost; | |
784 /* if piv_lim candidates have been considered, there are | |
785 doubts that a much better candidate exists; therefore | |
786 it's time to terminate the search */ | |
787 if (ncand == piv_lim) goto done; | |
788 } | |
789 else | |
790 { /* the j-th column has no elements, which satisfy to the | |
791 stability condition; Uwe Suhl suggests to exclude such | |
792 column from the further consideration until it becomes | |
793 a column singleton; in hard cases this significantly | |
794 reduces a time needed for pivot searching */ | |
795 if (suhl) | |
796 { /* remove the j-th column from the active set */ | |
797 if (cs_prev[j] == 0) | |
798 cs_head[len] = cs_next[j]; | |
799 else | |
800 cs_next[cs_prev[j]] = cs_next[j]; | |
801 if (cs_next[j] == 0) | |
802 /* nop */; | |
803 else | |
804 cs_prev[cs_next[j]] = cs_prev[j]; | |
805 /* the following assignment is used to avoid an error | |
806 when the routine eliminate (see below) will try to | |
807 remove the j-th column from the active set */ | |
808 cs_prev[j] = cs_next[j] = j; | |
809 } | |
810 } | |
811 } | |
812 /* consider active rows that have len non-zeros */ | |
813 for (i = rs_head[len]; i != 0; i = rs_next[i]) | |
814 { /* the i-th row has len non-zeros */ | |
815 i_beg = vr_ptr[i]; | |
816 i_end = i_beg + vr_len[i] - 1; | |
817 /* determine the largest of absolute values of elements in | |
818 the i-th row */ | |
819 big = vr_max[i]; | |
820 if (big < 0.0) | |
821 { /* the largest value is unknown yet; compute it */ | |
822 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
823 { temp = sv_val[i_ptr]; | |
824 if (temp < 0.0) temp = - temp; | |
825 if (big < temp) big = temp; | |
826 } | |
827 vr_max[i] = big; | |
828 } | |
829 /* find an element in the i-th row, which is placed in a | |
830 column with minimal number of non-zeros and satisfies to | |
831 the stability condition (such element always exists) */ | |
832 min_p = min_q = 0, min_len = INT_MAX; | |
833 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
834 { /* get column index of v[i,j] */ | |
835 j = sv_ind[i_ptr]; | |
836 /* if the j-th column is not shorter than that one, where | |
837 minimal element is currently placed, skip v[i,j] */ | |
838 if (vc_len[j] >= min_len) continue; | |
839 /* if v[i,j] doesn't satisfy to the stability condition, | |
840 skip it */ | |
841 temp = sv_val[i_ptr]; | |
842 if (temp < 0.0) temp = - temp; | |
843 if (temp < piv_tol * big) continue; | |
844 /* v[i,j] is better than the current minimal element */ | |
845 min_p = i, min_q = j, min_len = vc_len[j]; | |
846 /* if Markowitz cost of the current minimal element is | |
847 not greater than (len-1)**2, it can be chosen right | |
848 now; this heuristic reduces the search and works well | |
849 in many cases */ | |
850 if (min_len <= len) | |
851 { p = min_p, q = min_q; | |
852 goto done; | |
853 } | |
854 } | |
855 /* the i-th row has been scanned */ | |
856 if (min_p != 0) | |
857 { /* the minimal element is a next pivot candidate */ | |
858 ncand++; | |
859 /* compute its Markowitz cost */ | |
860 cost = (double)(len - 1) * (double)(min_len - 1); | |
861 /* choose between the minimal element and the current | |
862 candidate */ | |
863 if (cost < best) p = min_p, q = min_q, best = cost; | |
864 /* if piv_lim candidates have been considered, there are | |
865 doubts that a much better candidate exists; therefore | |
866 it's time to terminate the search */ | |
867 if (ncand == piv_lim) goto done; | |
868 } | |
869 else | |
870 { /* this can't be because this can never be */ | |
871 xassert(min_p != min_p); | |
872 } | |
873 } | |
874 } | |
875 done: /* bring the pivot to the factorizing routine */ | |
876 *_p = p, *_q = q; | |
877 return (p == 0); | |
878 } | |
879 | |
880 /*********************************************************************** | |
881 * eliminate - perform gaussian elimination. | |
882 * | |
883 * This routine performs elementary gaussian transformations in order | |
884 * to eliminate subdiagonal elements in the k-th column of the matrix | |
885 * U = P*V*Q using the pivot element u[k,k], where k is the number of | |
886 * the current elimination step. | |
887 * | |
888 * The parameters p and q are, respectively, row and column indices of | |
889 * the element v[p,q], which corresponds to the element u[k,k]. | |
890 * | |
891 * Each time when the routine applies the elementary transformation to | |
892 * a non-pivot row of the matrix V, it stores the corresponding element | |
893 * to the matrix F in order to keep the main equality A = F*V. | |
894 * | |
895 * The routine assumes that on entry the matrices L = P*F*inv(P) and | |
896 * U = P*V*Q are the following: | |
897 * | |
898 * 1 k 1 k n | |
899 * 1 1 . . . . . . . . . 1 x x x x x x x x x x | |
900 * x 1 . . . . . . . . . x x x x x x x x x | |
901 * x x 1 . . . . . . . . . x x x x x x x x | |
902 * x x x 1 . . . . . . . . . x x x x x x x | |
903 * k x x x x 1 . . . . . k . . . . * * * * * * | |
904 * x x x x _ 1 . . . . . . . . # * * * * * | |
905 * x x x x _ . 1 . . . . . . . # * * * * * | |
906 * x x x x _ . . 1 . . . . . . # * * * * * | |
907 * x x x x _ . . . 1 . . . . . # * * * * * | |
908 * n x x x x _ . . . . 1 n . . . . # * * * * * | |
909 * | |
910 * matrix L matrix U | |
911 * | |
912 * where rows and columns of the matrix U with numbers k, k+1, ..., n | |
913 * form the active submatrix (eliminated elements are marked by '#' and | |
914 * other elements of the active submatrix are marked by '*'). Note that | |
915 * each eliminated non-zero element u[i,k] of the matrix U gives the | |
916 * corresponding element l[i,k] of the matrix L (marked by '_'). | |
917 * | |
918 * Actually all operations are performed on the matrix V. Should note | |
919 * that the row-wise representation corresponds to the matrix V, but the | |
920 * column-wise representation corresponds to the active submatrix of the | |
921 * matrix V, i.e. elements of the matrix V, which doesn't belong to the | |
922 * active submatrix, are missing from the column linked lists. | |
923 * | |
924 * Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal | |
925 * elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies | |
926 * the following elementary gaussian transformations: | |
927 * | |
928 * (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V), | |
929 * | |
930 * where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier. | |
931 * | |
932 * Additionally, in order to keep the main equality A = F*V, each time | |
933 * when the routine applies the transformation to i-th row of the matrix | |
934 * V, it also adds f[i,p] as a new element to the matrix F. | |
935 * | |
936 * IMPORTANT: On entry the working arrays flag and work should contain | |
937 * zeros. This status is provided by the routine on exit. | |
938 * | |
939 * If no error occured, the routine returns zero. Otherwise, in case of | |
940 * overflow of the sparse vector area, the routine returns non-zero. */ | |
941 | |
942 static int eliminate(LUF *luf, int p, int q) | |
943 { int n = luf->n; | |
944 int *fc_ptr = luf->fc_ptr; | |
945 int *fc_len = luf->fc_len; | |
946 int *vr_ptr = luf->vr_ptr; | |
947 int *vr_len = luf->vr_len; | |
948 int *vr_cap = luf->vr_cap; | |
949 double *vr_piv = luf->vr_piv; | |
950 int *vc_ptr = luf->vc_ptr; | |
951 int *vc_len = luf->vc_len; | |
952 int *vc_cap = luf->vc_cap; | |
953 int *sv_ind = luf->sv_ind; | |
954 double *sv_val = luf->sv_val; | |
955 int *sv_prev = luf->sv_prev; | |
956 int *sv_next = luf->sv_next; | |
957 double *vr_max = luf->vr_max; | |
958 int *rs_head = luf->rs_head; | |
959 int *rs_prev = luf->rs_prev; | |
960 int *rs_next = luf->rs_next; | |
961 int *cs_head = luf->cs_head; | |
962 int *cs_prev = luf->cs_prev; | |
963 int *cs_next = luf->cs_next; | |
964 int *flag = luf->flag; | |
965 double *work = luf->work; | |
966 double eps_tol = luf->eps_tol; | |
967 /* at this stage the row-wise representation of the matrix F is | |
968 not used, so fr_len can be used as a working array */ | |
969 int *ndx = luf->fr_len; | |
970 int ret = 0; | |
971 int len, fill, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, k, | |
972 p_beg, p_end, p_ptr, q_beg, q_end, q_ptr; | |
973 double fip, val, vpq, temp; | |
974 xassert(1 <= p && p <= n); | |
975 xassert(1 <= q && q <= n); | |
976 /* remove the p-th (pivot) row from the active set; this row will | |
977 never return there */ | |
978 if (rs_prev[p] == 0) | |
979 rs_head[vr_len[p]] = rs_next[p]; | |
980 else | |
981 rs_next[rs_prev[p]] = rs_next[p]; | |
982 if (rs_next[p] == 0) | |
983 ; | |
984 else | |
985 rs_prev[rs_next[p]] = rs_prev[p]; | |
986 /* remove the q-th (pivot) column from the active set; this column | |
987 will never return there */ | |
988 if (cs_prev[q] == 0) | |
989 cs_head[vc_len[q]] = cs_next[q]; | |
990 else | |
991 cs_next[cs_prev[q]] = cs_next[q]; | |
992 if (cs_next[q] == 0) | |
993 ; | |
994 else | |
995 cs_prev[cs_next[q]] = cs_prev[q]; | |
996 /* find the pivot v[p,q] = u[k,k] in the p-th row */ | |
997 p_beg = vr_ptr[p]; | |
998 p_end = p_beg + vr_len[p] - 1; | |
999 for (p_ptr = p_beg; sv_ind[p_ptr] != q; p_ptr++) /* nop */; | |
1000 xassert(p_ptr <= p_end); | |
1001 /* store value of the pivot */ | |
1002 vpq = (vr_piv[p] = sv_val[p_ptr]); | |
1003 /* remove the pivot from the p-th row */ | |
1004 sv_ind[p_ptr] = sv_ind[p_end]; | |
1005 sv_val[p_ptr] = sv_val[p_end]; | |
1006 vr_len[p]--; | |
1007 p_end--; | |
1008 /* find the pivot v[p,q] = u[k,k] in the q-th column */ | |
1009 q_beg = vc_ptr[q]; | |
1010 q_end = q_beg + vc_len[q] - 1; | |
1011 for (q_ptr = q_beg; sv_ind[q_ptr] != p; q_ptr++) /* nop */; | |
1012 xassert(q_ptr <= q_end); | |
1013 /* remove the pivot from the q-th column */ | |
1014 sv_ind[q_ptr] = sv_ind[q_end]; | |
1015 vc_len[q]--; | |
1016 q_end--; | |
1017 /* walk through the p-th (pivot) row, which doesn't contain the | |
1018 pivot v[p,q] already, and do the following... */ | |
1019 for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) | |
1020 { /* get column index of v[p,j] */ | |
1021 j = sv_ind[p_ptr]; | |
1022 /* store v[p,j] to the working array */ | |
1023 flag[j] = 1; | |
1024 work[j] = sv_val[p_ptr]; | |
1025 /* remove the j-th column from the active set; this column will | |
1026 return there later with new length */ | |
1027 if (cs_prev[j] == 0) | |
1028 cs_head[vc_len[j]] = cs_next[j]; | |
1029 else | |
1030 cs_next[cs_prev[j]] = cs_next[j]; | |
1031 if (cs_next[j] == 0) | |
1032 ; | |
1033 else | |
1034 cs_prev[cs_next[j]] = cs_prev[j]; | |
1035 /* find v[p,j] in the j-th column */ | |
1036 j_beg = vc_ptr[j]; | |
1037 j_end = j_beg + vc_len[j] - 1; | |
1038 for (j_ptr = j_beg; sv_ind[j_ptr] != p; j_ptr++) /* nop */; | |
1039 xassert(j_ptr <= j_end); | |
1040 /* since v[p,j] leaves the active submatrix, remove it from the | |
1041 j-th column; however, v[p,j] is kept in the p-th row */ | |
1042 sv_ind[j_ptr] = sv_ind[j_end]; | |
1043 vc_len[j]--; | |
1044 } | |
1045 /* walk through the q-th (pivot) column, which doesn't contain the | |
1046 pivot v[p,q] already, and perform gaussian elimination */ | |
1047 while (q_beg <= q_end) | |
1048 { /* element v[i,q] should be eliminated */ | |
1049 /* get row index of v[i,q] */ | |
1050 i = sv_ind[q_beg]; | |
1051 /* remove the i-th row from the active set; later this row will | |
1052 return there with new length */ | |
1053 if (rs_prev[i] == 0) | |
1054 rs_head[vr_len[i]] = rs_next[i]; | |
1055 else | |
1056 rs_next[rs_prev[i]] = rs_next[i]; | |
1057 if (rs_next[i] == 0) | |
1058 ; | |
1059 else | |
1060 rs_prev[rs_next[i]] = rs_prev[i]; | |
1061 /* find v[i,q] in the i-th row */ | |
1062 i_beg = vr_ptr[i]; | |
1063 i_end = i_beg + vr_len[i] - 1; | |
1064 for (i_ptr = i_beg; sv_ind[i_ptr] != q; i_ptr++) /* nop */; | |
1065 xassert(i_ptr <= i_end); | |
1066 /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] */ | |
1067 fip = sv_val[i_ptr] / vpq; | |
1068 /* since v[i,q] should be eliminated, remove it from the i-th | |
1069 row */ | |
1070 sv_ind[i_ptr] = sv_ind[i_end]; | |
1071 sv_val[i_ptr] = sv_val[i_end]; | |
1072 vr_len[i]--; | |
1073 i_end--; | |
1074 /* and from the q-th column */ | |
1075 sv_ind[q_beg] = sv_ind[q_end]; | |
1076 vc_len[q]--; | |
1077 q_end--; | |
1078 /* perform gaussian transformation: | |
1079 (i-th row) := (i-th row) - f[i,p] * (p-th row) | |
1080 note that now the p-th row, which is in the working array, | |
1081 doesn't contain the pivot v[p,q], and the i-th row doesn't | |
1082 contain the eliminated element v[i,q] */ | |
1083 /* walk through the i-th row and transform existing non-zero | |
1084 elements */ | |
1085 fill = vr_len[p]; | |
1086 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
1087 { /* get column index of v[i,j] */ | |
1088 j = sv_ind[i_ptr]; | |
1089 /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */ | |
1090 if (flag[j]) | |
1091 { /* v[p,j] != 0 */ | |
1092 temp = (sv_val[i_ptr] -= fip * work[j]); | |
1093 if (temp < 0.0) temp = - temp; | |
1094 flag[j] = 0; | |
1095 fill--; /* since both v[i,j] and v[p,j] exist */ | |
1096 if (temp == 0.0 || temp < eps_tol) | |
1097 { /* new v[i,j] is closer to zero; replace it by exact | |
1098 zero, i.e. remove it from the active submatrix */ | |
1099 /* remove v[i,j] from the i-th row */ | |
1100 sv_ind[i_ptr] = sv_ind[i_end]; | |
1101 sv_val[i_ptr] = sv_val[i_end]; | |
1102 vr_len[i]--; | |
1103 i_ptr--; | |
1104 i_end--; | |
1105 /* find v[i,j] in the j-th column */ | |
1106 j_beg = vc_ptr[j]; | |
1107 j_end = j_beg + vc_len[j] - 1; | |
1108 for (j_ptr = j_beg; sv_ind[j_ptr] != i; j_ptr++); | |
1109 xassert(j_ptr <= j_end); | |
1110 /* remove v[i,j] from the j-th column */ | |
1111 sv_ind[j_ptr] = sv_ind[j_end]; | |
1112 vc_len[j]--; | |
1113 } | |
1114 else | |
1115 { /* v_big := max(v_big, |v[i,j]|) */ | |
1116 if (luf->big_v < temp) luf->big_v = temp; | |
1117 } | |
1118 } | |
1119 } | |
1120 /* now flag is the pattern of the set v[p,*] \ v[i,*], and fill | |
1121 is number of non-zeros in this set; therefore up to fill new | |
1122 non-zeros may appear in the i-th row */ | |
1123 if (vr_len[i] + fill > vr_cap[i]) | |
1124 { /* enlarge the i-th row */ | |
1125 if (luf_enlarge_row(luf, i, vr_len[i] + fill)) | |
1126 { /* overflow of the sparse vector area */ | |
1127 ret = 1; | |
1128 goto done; | |
1129 } | |
1130 /* defragmentation may change row and column pointers of the | |
1131 matrix V */ | |
1132 p_beg = vr_ptr[p]; | |
1133 p_end = p_beg + vr_len[p] - 1; | |
1134 q_beg = vc_ptr[q]; | |
1135 q_end = q_beg + vc_len[q] - 1; | |
1136 } | |
1137 /* walk through the p-th (pivot) row and create new elements | |
1138 of the i-th row that appear due to fill-in; column indices | |
1139 of these new elements are accumulated in the array ndx */ | |
1140 len = 0; | |
1141 for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) | |
1142 { /* get column index of v[p,j], which may cause fill-in */ | |
1143 j = sv_ind[p_ptr]; | |
1144 if (flag[j]) | |
1145 { /* compute new non-zero v[i,j] = 0 - f[i,p] * v[p,j] */ | |
1146 temp = (val = - fip * work[j]); | |
1147 if (temp < 0.0) temp = - temp; | |
1148 if (temp == 0.0 || temp < eps_tol) | |
1149 /* if v[i,j] is closer to zero; just ignore it */; | |
1150 else | |
1151 { /* add v[i,j] to the i-th row */ | |
1152 i_ptr = vr_ptr[i] + vr_len[i]; | |
1153 sv_ind[i_ptr] = j; | |
1154 sv_val[i_ptr] = val; | |
1155 vr_len[i]++; | |
1156 /* remember column index of v[i,j] */ | |
1157 ndx[++len] = j; | |
1158 /* big_v := max(big_v, |v[i,j]|) */ | |
1159 if (luf->big_v < temp) luf->big_v = temp; | |
1160 } | |
1161 } | |
1162 else | |
1163 { /* there is no fill-in, because v[i,j] already exists in | |
1164 the i-th row; restore the flag of the element v[p,j], | |
1165 which was reset before */ | |
1166 flag[j] = 1; | |
1167 } | |
1168 } | |
1169 /* add new non-zeros v[i,j] to the corresponding columns */ | |
1170 for (k = 1; k <= len; k++) | |
1171 { /* get column index of new non-zero v[i,j] */ | |
1172 j = ndx[k]; | |
1173 /* one free location is needed in the j-th column */ | |
1174 if (vc_len[j] + 1 > vc_cap[j]) | |
1175 { /* enlarge the j-th column */ | |
1176 if (luf_enlarge_col(luf, j, vc_len[j] + 10)) | |
1177 { /* overflow of the sparse vector area */ | |
1178 ret = 1; | |
1179 goto done; | |
1180 } | |
1181 /* defragmentation may change row and column pointers of | |
1182 the matrix V */ | |
1183 p_beg = vr_ptr[p]; | |
1184 p_end = p_beg + vr_len[p] - 1; | |
1185 q_beg = vc_ptr[q]; | |
1186 q_end = q_beg + vc_len[q] - 1; | |
1187 } | |
1188 /* add new non-zero v[i,j] to the j-th column */ | |
1189 j_ptr = vc_ptr[j] + vc_len[j]; | |
1190 sv_ind[j_ptr] = i; | |
1191 vc_len[j]++; | |
1192 } | |
1193 /* now the i-th row has been completely transformed, therefore | |
1194 it can return to the active set with new length */ | |
1195 rs_prev[i] = 0; | |
1196 rs_next[i] = rs_head[vr_len[i]]; | |
1197 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; | |
1198 rs_head[vr_len[i]] = i; | |
1199 /* the largest of absolute values of elements in the i-th row | |
1200 is currently unknown */ | |
1201 vr_max[i] = -1.0; | |
1202 /* at least one free location is needed to store the gaussian | |
1203 multiplier */ | |
1204 if (luf->sv_end - luf->sv_beg < 1) | |
1205 { /* there are no free locations at all; defragment SVA */ | |
1206 luf_defrag_sva(luf); | |
1207 if (luf->sv_end - luf->sv_beg < 1) | |
1208 { /* overflow of the sparse vector area */ | |
1209 ret = 1; | |
1210 goto done; | |
1211 } | |
1212 /* defragmentation may change row and column pointers of the | |
1213 matrix V */ | |
1214 p_beg = vr_ptr[p]; | |
1215 p_end = p_beg + vr_len[p] - 1; | |
1216 q_beg = vc_ptr[q]; | |
1217 q_end = q_beg + vc_len[q] - 1; | |
1218 } | |
1219 /* add the element f[i,p], which is the gaussian multiplier, | |
1220 to the matrix F */ | |
1221 luf->sv_end--; | |
1222 sv_ind[luf->sv_end] = i; | |
1223 sv_val[luf->sv_end] = fip; | |
1224 fc_len[p]++; | |
1225 /* end of elimination loop */ | |
1226 } | |
1227 /* at this point the q-th (pivot) column should be empty */ | |
1228 xassert(vc_len[q] == 0); | |
1229 /* reset capacity of the q-th column */ | |
1230 vc_cap[q] = 0; | |
1231 /* remove node of the q-th column from the addressing list */ | |
1232 k = n + q; | |
1233 if (sv_prev[k] == 0) | |
1234 luf->sv_head = sv_next[k]; | |
1235 else | |
1236 sv_next[sv_prev[k]] = sv_next[k]; | |
1237 if (sv_next[k] == 0) | |
1238 luf->sv_tail = sv_prev[k]; | |
1239 else | |
1240 sv_prev[sv_next[k]] = sv_prev[k]; | |
1241 /* the p-th column of the matrix F has been completely built; set | |
1242 its pointer */ | |
1243 fc_ptr[p] = luf->sv_end; | |
1244 /* walk through the p-th (pivot) row and do the following... */ | |
1245 for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) | |
1246 { /* get column index of v[p,j] */ | |
1247 j = sv_ind[p_ptr]; | |
1248 /* erase v[p,j] from the working array */ | |
1249 flag[j] = 0; | |
1250 work[j] = 0.0; | |
1251 /* the j-th column has been completely transformed, therefore | |
1252 it can return to the active set with new length; however | |
1253 the special case c_prev[j] = c_next[j] = j means that the | |
1254 routine find_pivot excluded the j-th column from the active | |
1255 set due to Uwe Suhl's rule, and therefore in this case the | |
1256 column can return to the active set only if it is a column | |
1257 singleton */ | |
1258 if (!(vc_len[j] != 1 && cs_prev[j] == j && cs_next[j] == j)) | |
1259 { cs_prev[j] = 0; | |
1260 cs_next[j] = cs_head[vc_len[j]]; | |
1261 if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; | |
1262 cs_head[vc_len[j]] = j; | |
1263 } | |
1264 } | |
1265 done: /* return to the factorizing routine */ | |
1266 return ret; | |
1267 } | |
1268 | |
1269 /*********************************************************************** | |
1270 * build_v_cols - build the matrix V in column-wise format | |
1271 * | |
1272 * This routine builds the column-wise representation of the matrix V | |
1273 * using its row-wise representation. | |
1274 * | |
1275 * If no error occured, the routine returns zero. Otherwise, in case of | |
1276 * overflow of the sparse vector area, the routine returns non-zero. */ | |
1277 | |
1278 static int build_v_cols(LUF *luf) | |
1279 { int n = luf->n; | |
1280 int *vr_ptr = luf->vr_ptr; | |
1281 int *vr_len = luf->vr_len; | |
1282 int *vc_ptr = luf->vc_ptr; | |
1283 int *vc_len = luf->vc_len; | |
1284 int *vc_cap = luf->vc_cap; | |
1285 int *sv_ind = luf->sv_ind; | |
1286 double *sv_val = luf->sv_val; | |
1287 int *sv_prev = luf->sv_prev; | |
1288 int *sv_next = luf->sv_next; | |
1289 int ret = 0; | |
1290 int i, i_beg, i_end, i_ptr, j, j_ptr, k, nnz; | |
1291 /* it is assumed that on entry all columns of the matrix V are | |
1292 empty, i.e. vc_len[j] = vc_cap[j] = 0 for all j = 1, ..., n, | |
1293 and have been removed from the addressing list */ | |
1294 /* count non-zeros in columns of the matrix V; count total number | |
1295 of non-zeros in this matrix */ | |
1296 nnz = 0; | |
1297 for (i = 1; i <= n; i++) | |
1298 { /* walk through elements of the i-th row and count non-zeros | |
1299 in the corresponding columns */ | |
1300 i_beg = vr_ptr[i]; | |
1301 i_end = i_beg + vr_len[i] - 1; | |
1302 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
1303 vc_cap[sv_ind[i_ptr]]++; | |
1304 /* count total number of non-zeros */ | |
1305 nnz += vr_len[i]; | |
1306 } | |
1307 /* store total number of non-zeros */ | |
1308 luf->nnz_v = nnz; | |
1309 /* check for free locations */ | |
1310 if (luf->sv_end - luf->sv_beg < nnz) | |
1311 { /* overflow of the sparse vector area */ | |
1312 ret = 1; | |
1313 goto done; | |
1314 } | |
1315 /* allocate columns of the matrix V */ | |
1316 for (j = 1; j <= n; j++) | |
1317 { /* set pointer to the j-th column */ | |
1318 vc_ptr[j] = luf->sv_beg; | |
1319 /* reserve locations for the j-th column */ | |
1320 luf->sv_beg += vc_cap[j]; | |
1321 } | |
1322 /* build the matrix V in column-wise format using this matrix in | |
1323 row-wise format */ | |
1324 for (i = 1; i <= n; i++) | |
1325 { /* walk through elements of the i-th row */ | |
1326 i_beg = vr_ptr[i]; | |
1327 i_end = i_beg + vr_len[i] - 1; | |
1328 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) | |
1329 { /* get column index */ | |
1330 j = sv_ind[i_ptr]; | |
1331 /* store element in the j-th column */ | |
1332 j_ptr = vc_ptr[j] + vc_len[j]; | |
1333 sv_ind[j_ptr] = i; | |
1334 sv_val[j_ptr] = sv_val[i_ptr]; | |
1335 /* increase length of the j-th column */ | |
1336 vc_len[j]++; | |
1337 } | |
1338 } | |
1339 /* now columns are placed in the sparse vector area behind rows | |
1340 in the order n+1, n+2, ..., n+n; so insert column nodes in the | |
1341 addressing list using this order */ | |
1342 for (k = n+1; k <= n+n; k++) | |
1343 { sv_prev[k] = k-1; | |
1344 sv_next[k] = k+1; | |
1345 } | |
1346 sv_prev[n+1] = luf->sv_tail; | |
1347 sv_next[luf->sv_tail] = n+1; | |
1348 sv_next[n+n] = 0; | |
1349 luf->sv_tail = n+n; | |
1350 done: /* return to the factorizing routine */ | |
1351 return ret; | |
1352 } | |
1353 | |
1354 /*********************************************************************** | |
1355 * build_f_rows - build the matrix F in row-wise format | |
1356 * | |
1357 * This routine builds the row-wise representation of the matrix F using | |
1358 * its column-wise representation. | |
1359 * | |
1360 * If no error occured, the routine returns zero. Otherwise, in case of | |
1361 * overflow of the sparse vector area, the routine returns non-zero. */ | |
1362 | |
1363 static int build_f_rows(LUF *luf) | |
1364 { int n = luf->n; | |
1365 int *fr_ptr = luf->fr_ptr; | |
1366 int *fr_len = luf->fr_len; | |
1367 int *fc_ptr = luf->fc_ptr; | |
1368 int *fc_len = luf->fc_len; | |
1369 int *sv_ind = luf->sv_ind; | |
1370 double *sv_val = luf->sv_val; | |
1371 int ret = 0; | |
1372 int i, j, j_beg, j_end, j_ptr, ptr, nnz; | |
1373 /* clear rows of the matrix F */ | |
1374 for (i = 1; i <= n; i++) fr_len[i] = 0; | |
1375 /* count non-zeros in rows of the matrix F; count total number of | |
1376 non-zeros in this matrix */ | |
1377 nnz = 0; | |
1378 for (j = 1; j <= n; j++) | |
1379 { /* walk through elements of the j-th column and count non-zeros | |
1380 in the corresponding rows */ | |
1381 j_beg = fc_ptr[j]; | |
1382 j_end = j_beg + fc_len[j] - 1; | |
1383 for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) | |
1384 fr_len[sv_ind[j_ptr]]++; | |
1385 /* increase total number of non-zeros */ | |
1386 nnz += fc_len[j]; | |
1387 } | |
1388 /* store total number of non-zeros */ | |
1389 luf->nnz_f = nnz; | |
1390 /* check for free locations */ | |
1391 if (luf->sv_end - luf->sv_beg < nnz) | |
1392 { /* overflow of the sparse vector area */ | |
1393 ret = 1; | |
1394 goto done; | |
1395 } | |
1396 /* allocate rows of the matrix F */ | |
1397 for (i = 1; i <= n; i++) | |
1398 { /* set pointer to the end of the i-th row; later this pointer | |
1399 will be set to the beginning of the i-th row */ | |
1400 fr_ptr[i] = luf->sv_end; | |
1401 /* reserve locations for the i-th row */ | |
1402 luf->sv_end -= fr_len[i]; | |
1403 } | |
1404 /* build the matrix F in row-wise format using this matrix in | |
1405 column-wise format */ | |
1406 for (j = 1; j <= n; j++) | |
1407 { /* walk through elements of the j-th column */ | |
1408 j_beg = fc_ptr[j]; | |
1409 j_end = j_beg + fc_len[j] - 1; | |
1410 for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) | |
1411 { /* get row index */ | |
1412 i = sv_ind[j_ptr]; | |
1413 /* store element in the i-th row */ | |
1414 ptr = --fr_ptr[i]; | |
1415 sv_ind[ptr] = j; | |
1416 sv_val[ptr] = sv_val[j_ptr]; | |
1417 } | |
1418 } | |
1419 done: /* return to the factorizing routine */ | |
1420 return ret; | |
1421 } | |
1422 | |
1423 /*********************************************************************** | |
1424 * NAME | |
1425 * | |
1426 * luf_factorize - compute LU-factorization | |
1427 * | |
1428 * SYNOPSIS | |
1429 * | |
1430 * #include "glpluf.h" | |
1431 * int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, | |
1432 * int ind[], double val[]), void *info); | |
1433 * | |
1434 * DESCRIPTION | |
1435 * | |
1436 * The routine luf_factorize computes LU-factorization of a specified | |
1437 * square matrix A. | |
1438 * | |
1439 * The parameter luf specifies LU-factorization program object created | |
1440 * by the routine luf_create_it. | |
1441 * | |
1442 * The parameter n specifies the order of A, n > 0. | |
1443 * | |
1444 * The formal routine col specifies the matrix A to be factorized. To | |
1445 * obtain j-th column of A the routine luf_factorize calls the routine | |
1446 * col with the parameter j (1 <= j <= n). In response the routine col | |
1447 * should store row indices and numerical values of non-zero elements | |
1448 * of j-th column of A to locations ind[1,...,len] and val[1,...,len], | |
1449 * respectively, where len is the number of non-zeros in j-th column | |
1450 * returned on exit. Neither zero nor duplicate elements are allowed. | |
1451 * | |
1452 * The parameter info is a transit pointer passed to the routine col. | |
1453 * | |
1454 * RETURNS | |
1455 * | |
1456 * 0 LU-factorization has been successfully computed. | |
1457 * | |
1458 * LUF_ESING | |
1459 * The specified matrix is singular within the working precision. | |
1460 * (On some elimination step the active submatrix is exactly zero, | |
1461 * so no pivot can be chosen.) | |
1462 * | |
1463 * LUF_ECOND | |
1464 * The specified matrix is ill-conditioned. | |
1465 * (On some elimination step too intensive growth of elements of the | |
1466 * active submatix has been detected.) | |
1467 * | |
1468 * If matrix A is well scaled, the return code LUF_ECOND may also mean | |
1469 * that the threshold pivoting tolerance piv_tol should be increased. | |
1470 * | |
1471 * In case of non-zero return code the factorization becomes invalid. | |
1472 * It should not be used in other operations until the cause of failure | |
1473 * has been eliminated and the factorization has been recomputed again | |
1474 * with the routine luf_factorize. | |
1475 * | |
1476 * REPAIRING SINGULAR MATRIX | |
1477 * | |
1478 * If the routine luf_factorize returns non-zero code, it provides all | |
1479 * necessary information that can be used for "repairing" the matrix A, | |
1480 * where "repairing" means replacing linearly dependent columns of the | |
1481 * matrix A by appropriate columns of the unity matrix. This feature is | |
1482 * needed when this routine is used for factorizing the basis matrix | |
1483 * within the simplex method procedure. | |
1484 * | |
1485 * On exit linearly dependent columns of the (partially transformed) | |
1486 * matrix U have numbers rank+1, rank+2, ..., n, where rank is estimated | |
1487 * rank of the matrix A stored by the routine to the member luf->rank. | |
1488 * The correspondence between columns of A and U is the same as between | |
1489 * columns of V and U. Thus, linearly dependent columns of the matrix A | |
1490 * have numbers qq_col[rank+1], qq_col[rank+2], ..., qq_col[n], where | |
1491 * qq_col is the column-like representation of the permutation matrix Q. | |
1492 * It is understood that each j-th linearly dependent column of the | |
1493 * matrix U should be replaced by the unity vector, where all elements | |
1494 * are zero except the unity diagonal element u[j,j]. On the other hand | |
1495 * j-th row of the matrix U corresponds to the row of the matrix V (and | |
1496 * therefore of the matrix A) with the number pp_row[j], where pp_row is | |
1497 * the row-like representation of the permutation matrix P. Thus, each | |
1498 * j-th linearly dependent column of the matrix U should be replaced by | |
1499 * column of the unity matrix with the number pp_row[j]. | |
1500 * | |
1501 * The code that repairs the matrix A may look like follows: | |
1502 * | |
1503 * for (j = rank+1; j <= n; j++) | |
1504 * { replace the column qq_col[j] of the matrix A by the column | |
1505 * pp_row[j] of the unity matrix; | |
1506 * } | |
1507 * | |
1508 * where rank, pp_row, and qq_col are members of the structure LUF. */ | |
1509 | |
1510 int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, | |
1511 int ind[], double val[]), void *info) | |
1512 { int *pp_row, *pp_col, *qq_row, *qq_col; | |
1513 double max_gro = luf->max_gro; | |
1514 int i, j, k, p, q, t, ret; | |
1515 if (n < 1) | |
1516 xfault("luf_factorize: n = %d; invalid parameter\n", n); | |
1517 if (n > N_MAX) | |
1518 xfault("luf_factorize: n = %d; matrix too big\n", n); | |
1519 /* invalidate the factorization */ | |
1520 luf->valid = 0; | |
1521 /* reallocate arrays, if necessary */ | |
1522 reallocate(luf, n); | |
1523 pp_row = luf->pp_row; | |
1524 pp_col = luf->pp_col; | |
1525 qq_row = luf->qq_row; | |
1526 qq_col = luf->qq_col; | |
1527 /* estimate initial size of the SVA, if not specified */ | |
1528 if (luf->sv_size == 0 && luf->new_sva == 0) | |
1529 luf->new_sva = 5 * (n + 10); | |
1530 more: /* reallocate the sparse vector area, if required */ | |
1531 if (luf->new_sva > 0) | |
1532 { if (luf->sv_ind != NULL) xfree(luf->sv_ind); | |
1533 if (luf->sv_val != NULL) xfree(luf->sv_val); | |
1534 luf->sv_size = luf->new_sva; | |
1535 luf->sv_ind = xcalloc(1+luf->sv_size, sizeof(int)); | |
1536 luf->sv_val = xcalloc(1+luf->sv_size, sizeof(double)); | |
1537 luf->new_sva = 0; | |
1538 } | |
1539 /* initialize LU-factorization data structures */ | |
1540 if (initialize(luf, col, info)) | |
1541 { /* overflow of the sparse vector area */ | |
1542 luf->new_sva = luf->sv_size + luf->sv_size; | |
1543 xassert(luf->new_sva > luf->sv_size); | |
1544 goto more; | |
1545 } | |
1546 /* main elimination loop */ | |
1547 for (k = 1; k <= n; k++) | |
1548 { /* choose a pivot element v[p,q] */ | |
1549 if (find_pivot(luf, &p, &q)) | |
1550 { /* no pivot can be chosen, because the active submatrix is | |
1551 exactly zero */ | |
1552 luf->rank = k - 1; | |
1553 ret = LUF_ESING; | |
1554 goto done; | |
1555 } | |
1556 /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th | |
1557 rows and k-th and j'-th columns of the matrix U = P*V*Q to | |
1558 move the element u[i',j'] to the position u[k,k] */ | |
1559 i = pp_col[p], j = qq_row[q]; | |
1560 xassert(k <= i && i <= n && k <= j && j <= n); | |
1561 /* permute k-th and i-th rows of the matrix U */ | |
1562 t = pp_row[k]; | |
1563 pp_row[i] = t, pp_col[t] = i; | |
1564 pp_row[k] = p, pp_col[p] = k; | |
1565 /* permute k-th and j-th columns of the matrix U */ | |
1566 t = qq_col[k]; | |
1567 qq_col[j] = t, qq_row[t] = j; | |
1568 qq_col[k] = q, qq_row[q] = k; | |
1569 /* eliminate subdiagonal elements of k-th column of the matrix | |
1570 U = P*V*Q using the pivot element u[k,k] = v[p,q] */ | |
1571 if (eliminate(luf, p, q)) | |
1572 { /* overflow of the sparse vector area */ | |
1573 luf->new_sva = luf->sv_size + luf->sv_size; | |
1574 xassert(luf->new_sva > luf->sv_size); | |
1575 goto more; | |
1576 } | |
1577 /* check relative growth of elements of the matrix V */ | |
1578 if (luf->big_v > max_gro * luf->max_a) | |
1579 { /* the growth is too intensive, therefore most probably the | |
1580 matrix A is ill-conditioned */ | |
1581 luf->rank = k - 1; | |
1582 ret = LUF_ECOND; | |
1583 goto done; | |
1584 } | |
1585 } | |
1586 /* now the matrix U = P*V*Q is upper triangular, the matrix V has | |
1587 been built in row-wise format, and the matrix F has been built | |
1588 in column-wise format */ | |
1589 /* defragment the sparse vector area in order to merge all free | |
1590 locations in one continuous extent */ | |
1591 luf_defrag_sva(luf); | |
1592 /* build the matrix V in column-wise format */ | |
1593 if (build_v_cols(luf)) | |
1594 { /* overflow of the sparse vector area */ | |
1595 luf->new_sva = luf->sv_size + luf->sv_size; | |
1596 xassert(luf->new_sva > luf->sv_size); | |
1597 goto more; | |
1598 } | |
1599 /* build the matrix F in row-wise format */ | |
1600 if (build_f_rows(luf)) | |
1601 { /* overflow of the sparse vector area */ | |
1602 luf->new_sva = luf->sv_size + luf->sv_size; | |
1603 xassert(luf->new_sva > luf->sv_size); | |
1604 goto more; | |
1605 } | |
1606 /* the LU-factorization has been successfully computed */ | |
1607 luf->valid = 1; | |
1608 luf->rank = n; | |
1609 ret = 0; | |
1610 /* if there are few free locations in the sparse vector area, try | |
1611 increasing its size in the future */ | |
1612 t = 3 * (n + luf->nnz_v) + 2 * luf->nnz_f; | |
1613 if (luf->sv_size < t) | |
1614 { luf->new_sva = luf->sv_size; | |
1615 while (luf->new_sva < t) | |
1616 { k = luf->new_sva; | |
1617 luf->new_sva = k + k; | |
1618 xassert(luf->new_sva > k); | |
1619 } | |
1620 } | |
1621 done: /* return to the calling program */ | |
1622 return ret; | |
1623 } | |
1624 | |
1625 /*********************************************************************** | |
1626 * NAME | |
1627 * | |
1628 * luf_f_solve - solve system F*x = b or F'*x = b | |
1629 * | |
1630 * SYNOPSIS | |
1631 * | |
1632 * #include "glpluf.h" | |
1633 * void luf_f_solve(LUF *luf, int tr, double x[]); | |
1634 * | |
1635 * DESCRIPTION | |
1636 * | |
1637 * The routine luf_f_solve solves either the system F*x = b (if the | |
1638 * flag tr is zero) or the system F'*x = b (if the flag tr is non-zero), | |
1639 * where the matrix F is a component of LU-factorization specified by | |
1640 * the parameter luf, F' is a matrix transposed to F. | |
1641 * | |
1642 * On entry the array x should contain elements of the right-hand side | |
1643 * vector b in locations x[1], ..., x[n], where n is the order of the | |
1644 * matrix F. On exit this array will contain elements of the solution | |
1645 * vector x in the same locations. */ | |
1646 | |
1647 void luf_f_solve(LUF *luf, int tr, double x[]) | |
1648 { int n = luf->n; | |
1649 int *fr_ptr = luf->fr_ptr; | |
1650 int *fr_len = luf->fr_len; | |
1651 int *fc_ptr = luf->fc_ptr; | |
1652 int *fc_len = luf->fc_len; | |
1653 int *pp_row = luf->pp_row; | |
1654 int *sv_ind = luf->sv_ind; | |
1655 double *sv_val = luf->sv_val; | |
1656 int i, j, k, beg, end, ptr; | |
1657 double xk; | |
1658 if (!luf->valid) | |
1659 xfault("luf_f_solve: LU-factorization is not valid\n"); | |
1660 if (!tr) | |
1661 { /* solve the system F*x = b */ | |
1662 for (j = 1; j <= n; j++) | |
1663 { k = pp_row[j]; | |
1664 xk = x[k]; | |
1665 if (xk != 0.0) | |
1666 { beg = fc_ptr[k]; | |
1667 end = beg + fc_len[k] - 1; | |
1668 for (ptr = beg; ptr <= end; ptr++) | |
1669 x[sv_ind[ptr]] -= sv_val[ptr] * xk; | |
1670 } | |
1671 } | |
1672 } | |
1673 else | |
1674 { /* solve the system F'*x = b */ | |
1675 for (i = n; i >= 1; i--) | |
1676 { k = pp_row[i]; | |
1677 xk = x[k]; | |
1678 if (xk != 0.0) | |
1679 { beg = fr_ptr[k]; | |
1680 end = beg + fr_len[k] - 1; | |
1681 for (ptr = beg; ptr <= end; ptr++) | |
1682 x[sv_ind[ptr]] -= sv_val[ptr] * xk; | |
1683 } | |
1684 } | |
1685 } | |
1686 return; | |
1687 } | |
1688 | |
1689 /*********************************************************************** | |
1690 * NAME | |
1691 * | |
1692 * luf_v_solve - solve system V*x = b or V'*x = b | |
1693 * | |
1694 * SYNOPSIS | |
1695 * | |
1696 * #include "glpluf.h" | |
1697 * void luf_v_solve(LUF *luf, int tr, double x[]); | |
1698 * | |
1699 * DESCRIPTION | |
1700 * | |
1701 * The routine luf_v_solve solves either the system V*x = b (if the | |
1702 * flag tr is zero) or the system V'*x = b (if the flag tr is non-zero), | |
1703 * where the matrix V is a component of LU-factorization specified by | |
1704 * the parameter luf, V' is a matrix transposed to V. | |
1705 * | |
1706 * On entry the array x should contain elements of the right-hand side | |
1707 * vector b in locations x[1], ..., x[n], where n is the order of the | |
1708 * matrix V. On exit this array will contain elements of the solution | |
1709 * vector x in the same locations. */ | |
1710 | |
1711 void luf_v_solve(LUF *luf, int tr, double x[]) | |
1712 { int n = luf->n; | |
1713 int *vr_ptr = luf->vr_ptr; | |
1714 int *vr_len = luf->vr_len; | |
1715 double *vr_piv = luf->vr_piv; | |
1716 int *vc_ptr = luf->vc_ptr; | |
1717 int *vc_len = luf->vc_len; | |
1718 int *pp_row = luf->pp_row; | |
1719 int *qq_col = luf->qq_col; | |
1720 int *sv_ind = luf->sv_ind; | |
1721 double *sv_val = luf->sv_val; | |
1722 double *b = luf->work; | |
1723 int i, j, k, beg, end, ptr; | |
1724 double temp; | |
1725 if (!luf->valid) | |
1726 xfault("luf_v_solve: LU-factorization is not valid\n"); | |
1727 for (k = 1; k <= n; k++) b[k] = x[k], x[k] = 0.0; | |
1728 if (!tr) | |
1729 { /* solve the system V*x = b */ | |
1730 for (k = n; k >= 1; k--) | |
1731 { i = pp_row[k], j = qq_col[k]; | |
1732 temp = b[i]; | |
1733 if (temp != 0.0) | |
1734 { x[j] = (temp /= vr_piv[i]); | |
1735 beg = vc_ptr[j]; | |
1736 end = beg + vc_len[j] - 1; | |
1737 for (ptr = beg; ptr <= end; ptr++) | |
1738 b[sv_ind[ptr]] -= sv_val[ptr] * temp; | |
1739 } | |
1740 } | |
1741 } | |
1742 else | |
1743 { /* solve the system V'*x = b */ | |
1744 for (k = 1; k <= n; k++) | |
1745 { i = pp_row[k], j = qq_col[k]; | |
1746 temp = b[j]; | |
1747 if (temp != 0.0) | |
1748 { x[i] = (temp /= vr_piv[i]); | |
1749 beg = vr_ptr[i]; | |
1750 end = beg + vr_len[i] - 1; | |
1751 for (ptr = beg; ptr <= end; ptr++) | |
1752 b[sv_ind[ptr]] -= sv_val[ptr] * temp; | |
1753 } | |
1754 } | |
1755 } | |
1756 return; | |
1757 } | |
1758 | |
1759 /*********************************************************************** | |
1760 * NAME | |
1761 * | |
1762 * luf_a_solve - solve system A*x = b or A'*x = b | |
1763 * | |
1764 * SYNOPSIS | |
1765 * | |
1766 * #include "glpluf.h" | |
1767 * void luf_a_solve(LUF *luf, int tr, double x[]); | |
1768 * | |
1769 * DESCRIPTION | |
1770 * | |
1771 * The routine luf_a_solve solves either the system A*x = b (if the | |
1772 * flag tr is zero) or the system A'*x = b (if the flag tr is non-zero), | |
1773 * where the parameter luf specifies LU-factorization of the matrix A, | |
1774 * A' is a matrix transposed to A. | |
1775 * | |
1776 * On entry the array x should contain elements of the right-hand side | |
1777 * vector b in locations x[1], ..., x[n], where n is the order of the | |
1778 * matrix A. On exit this array will contain elements of the solution | |
1779 * vector x in the same locations. */ | |
1780 | |
1781 void luf_a_solve(LUF *luf, int tr, double x[]) | |
1782 { if (!luf->valid) | |
1783 xfault("luf_a_solve: LU-factorization is not valid\n"); | |
1784 if (!tr) | |
1785 { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */ | |
1786 luf_f_solve(luf, 0, x); | |
1787 luf_v_solve(luf, 0, x); | |
1788 } | |
1789 else | |
1790 { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */ | |
1791 luf_v_solve(luf, 1, x); | |
1792 luf_f_solve(luf, 1, x); | |
1793 } | |
1794 return; | |
1795 } | |
1796 | |
1797 /*********************************************************************** | |
1798 * NAME | |
1799 * | |
1800 * luf_delete_it - delete LU-factorization | |
1801 * | |
1802 * SYNOPSIS | |
1803 * | |
1804 * #include "glpluf.h" | |
1805 * void luf_delete_it(LUF *luf); | |
1806 * | |
1807 * DESCRIPTION | |
1808 * | |
1809 * The routine luf_delete deletes LU-factorization specified by the | |
1810 * parameter luf and frees all the memory allocated to this program | |
1811 * object. */ | |
1812 | |
1813 void luf_delete_it(LUF *luf) | |
1814 { if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); | |
1815 if (luf->fr_len != NULL) xfree(luf->fr_len); | |
1816 if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); | |
1817 if (luf->fc_len != NULL) xfree(luf->fc_len); | |
1818 if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); | |
1819 if (luf->vr_len != NULL) xfree(luf->vr_len); | |
1820 if (luf->vr_cap != NULL) xfree(luf->vr_cap); | |
1821 if (luf->vr_piv != NULL) xfree(luf->vr_piv); | |
1822 if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); | |
1823 if (luf->vc_len != NULL) xfree(luf->vc_len); | |
1824 if (luf->vc_cap != NULL) xfree(luf->vc_cap); | |
1825 if (luf->pp_row != NULL) xfree(luf->pp_row); | |
1826 if (luf->pp_col != NULL) xfree(luf->pp_col); | |
1827 if (luf->qq_row != NULL) xfree(luf->qq_row); | |
1828 if (luf->qq_col != NULL) xfree(luf->qq_col); | |
1829 if (luf->sv_ind != NULL) xfree(luf->sv_ind); | |
1830 if (luf->sv_val != NULL) xfree(luf->sv_val); | |
1831 if (luf->sv_prev != NULL) xfree(luf->sv_prev); | |
1832 if (luf->sv_next != NULL) xfree(luf->sv_next); | |
1833 if (luf->vr_max != NULL) xfree(luf->vr_max); | |
1834 if (luf->rs_head != NULL) xfree(luf->rs_head); | |
1835 if (luf->rs_prev != NULL) xfree(luf->rs_prev); | |
1836 if (luf->rs_next != NULL) xfree(luf->rs_next); | |
1837 if (luf->cs_head != NULL) xfree(luf->cs_head); | |
1838 if (luf->cs_prev != NULL) xfree(luf->cs_prev); | |
1839 if (luf->cs_next != NULL) xfree(luf->cs_next); | |
1840 if (luf->flag != NULL) xfree(luf->flag); | |
1841 if (luf->work != NULL) xfree(luf->work); | |
1842 xfree(luf); | |
1843 return; | |
1844 } | |
1845 | |
1846 /* eof */ |