lemon-project-template-glpk
comparison deps/glpk/src/glpmpl03.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:77726e969f34 |
---|---|
1 /* glpmpl03.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #define _GLPSTD_ERRNO | |
26 #define _GLPSTD_STDIO | |
27 #include "glpenv.h" | |
28 #include "glpmpl.h" | |
29 | |
30 /**********************************************************************/ | |
31 /* * * FLOATING-POINT NUMBERS * * */ | |
32 /**********************************************************************/ | |
33 | |
34 /*---------------------------------------------------------------------- | |
35 -- fp_add - floating-point addition. | |
36 -- | |
37 -- This routine computes the sum x + y. */ | |
38 | |
39 double fp_add(MPL *mpl, double x, double y) | |
40 { if (x > 0.0 && y > 0.0 && x > + 0.999 * DBL_MAX - y || | |
41 x < 0.0 && y < 0.0 && x < - 0.999 * DBL_MAX - y) | |
42 error(mpl, "%.*g + %.*g; floating-point overflow", | |
43 DBL_DIG, x, DBL_DIG, y); | |
44 return x + y; | |
45 } | |
46 | |
47 /*---------------------------------------------------------------------- | |
48 -- fp_sub - floating-point subtraction. | |
49 -- | |
50 -- This routine computes the difference x - y. */ | |
51 | |
52 double fp_sub(MPL *mpl, double x, double y) | |
53 { if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y || | |
54 x < 0.0 && y > 0.0 && x < - 0.999 * DBL_MAX + y) | |
55 error(mpl, "%.*g - %.*g; floating-point overflow", | |
56 DBL_DIG, x, DBL_DIG, y); | |
57 return x - y; | |
58 } | |
59 | |
60 /*---------------------------------------------------------------------- | |
61 -- fp_less - floating-point non-negative subtraction. | |
62 -- | |
63 -- This routine computes the non-negative difference max(0, x - y). */ | |
64 | |
65 double fp_less(MPL *mpl, double x, double y) | |
66 { if (x < y) return 0.0; | |
67 if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y) | |
68 error(mpl, "%.*g less %.*g; floating-point overflow", | |
69 DBL_DIG, x, DBL_DIG, y); | |
70 return x - y; | |
71 } | |
72 | |
73 /*---------------------------------------------------------------------- | |
74 -- fp_mul - floating-point multiplication. | |
75 -- | |
76 -- This routine computes the product x * y. */ | |
77 | |
78 double fp_mul(MPL *mpl, double x, double y) | |
79 { if (fabs(y) > 1.0 && fabs(x) > (0.999 * DBL_MAX) / fabs(y)) | |
80 error(mpl, "%.*g * %.*g; floating-point overflow", | |
81 DBL_DIG, x, DBL_DIG, y); | |
82 return x * y; | |
83 } | |
84 | |
85 /*---------------------------------------------------------------------- | |
86 -- fp_div - floating-point division. | |
87 -- | |
88 -- This routine computes the quotient x / y. */ | |
89 | |
90 double fp_div(MPL *mpl, double x, double y) | |
91 { if (fabs(y) < DBL_MIN) | |
92 error(mpl, "%.*g / %.*g; floating-point zero divide", | |
93 DBL_DIG, x, DBL_DIG, y); | |
94 if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y)) | |
95 error(mpl, "%.*g / %.*g; floating-point overflow", | |
96 DBL_DIG, x, DBL_DIG, y); | |
97 return x / y; | |
98 } | |
99 | |
100 /*---------------------------------------------------------------------- | |
101 -- fp_idiv - floating-point quotient of exact division. | |
102 -- | |
103 -- This routine computes the quotient of exact division x div y. */ | |
104 | |
105 double fp_idiv(MPL *mpl, double x, double y) | |
106 { if (fabs(y) < DBL_MIN) | |
107 error(mpl, "%.*g div %.*g; floating-point zero divide", | |
108 DBL_DIG, x, DBL_DIG, y); | |
109 if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y)) | |
110 error(mpl, "%.*g div %.*g; floating-point overflow", | |
111 DBL_DIG, x, DBL_DIG, y); | |
112 x /= y; | |
113 return x > 0.0 ? floor(x) : x < 0.0 ? ceil(x) : 0.0; | |
114 } | |
115 | |
116 /*---------------------------------------------------------------------- | |
117 -- fp_mod - floating-point remainder of exact division. | |
118 -- | |
119 -- This routine computes the remainder of exact division x mod y. | |
120 -- | |
121 -- NOTE: By definition x mod y = x - y * floor(x / y). */ | |
122 | |
123 double fp_mod(MPL *mpl, double x, double y) | |
124 { double r; | |
125 xassert(mpl == mpl); | |
126 if (x == 0.0) | |
127 r = 0.0; | |
128 else if (y == 0.0) | |
129 r = x; | |
130 else | |
131 { r = fmod(fabs(x), fabs(y)); | |
132 if (r != 0.0) | |
133 { if (x < 0.0) r = - r; | |
134 if (x > 0.0 && y < 0.0 || x < 0.0 && y > 0.0) r += y; | |
135 } | |
136 } | |
137 return r; | |
138 } | |
139 | |
140 /*---------------------------------------------------------------------- | |
141 -- fp_power - floating-point exponentiation (raise to power). | |
142 -- | |
143 -- This routine computes the exponentiation x ** y. */ | |
144 | |
145 double fp_power(MPL *mpl, double x, double y) | |
146 { double r; | |
147 if (x == 0.0 && y <= 0.0 || x < 0.0 && y != floor(y)) | |
148 error(mpl, "%.*g ** %.*g; result undefined", | |
149 DBL_DIG, x, DBL_DIG, y); | |
150 if (x == 0.0) goto eval; | |
151 if (fabs(x) > 1.0 && y > +1.0 && | |
152 +log(fabs(x)) > (0.999 * log(DBL_MAX)) / y || | |
153 fabs(x) < 1.0 && y < -1.0 && | |
154 +log(fabs(x)) < (0.999 * log(DBL_MAX)) / y) | |
155 error(mpl, "%.*g ** %.*g; floating-point overflow", | |
156 DBL_DIG, x, DBL_DIG, y); | |
157 if (fabs(x) > 1.0 && y < -1.0 && | |
158 -log(fabs(x)) < (0.999 * log(DBL_MAX)) / y || | |
159 fabs(x) < 1.0 && y > +1.0 && | |
160 -log(fabs(x)) > (0.999 * log(DBL_MAX)) / y) | |
161 r = 0.0; | |
162 else | |
163 eval: r = pow(x, y); | |
164 return r; | |
165 } | |
166 | |
167 /*---------------------------------------------------------------------- | |
168 -- fp_exp - floating-point base-e exponential. | |
169 -- | |
170 -- This routine computes the base-e exponential e ** x. */ | |
171 | |
172 double fp_exp(MPL *mpl, double x) | |
173 { if (x > 0.999 * log(DBL_MAX)) | |
174 error(mpl, "exp(%.*g); floating-point overflow", DBL_DIG, x); | |
175 return exp(x); | |
176 } | |
177 | |
178 /*---------------------------------------------------------------------- | |
179 -- fp_log - floating-point natural logarithm. | |
180 -- | |
181 -- This routine computes the natural logarithm log x. */ | |
182 | |
183 double fp_log(MPL *mpl, double x) | |
184 { if (x <= 0.0) | |
185 error(mpl, "log(%.*g); non-positive argument", DBL_DIG, x); | |
186 return log(x); | |
187 } | |
188 | |
189 /*---------------------------------------------------------------------- | |
190 -- fp_log10 - floating-point common (decimal) logarithm. | |
191 -- | |
192 -- This routine computes the common (decimal) logarithm lg x. */ | |
193 | |
194 double fp_log10(MPL *mpl, double x) | |
195 { if (x <= 0.0) | |
196 error(mpl, "log10(%.*g); non-positive argument", DBL_DIG, x); | |
197 return log10(x); | |
198 } | |
199 | |
200 /*---------------------------------------------------------------------- | |
201 -- fp_sqrt - floating-point square root. | |
202 -- | |
203 -- This routine computes the square root x ** 0.5. */ | |
204 | |
205 double fp_sqrt(MPL *mpl, double x) | |
206 { if (x < 0.0) | |
207 error(mpl, "sqrt(%.*g); negative argument", DBL_DIG, x); | |
208 return sqrt(x); | |
209 } | |
210 | |
211 /*---------------------------------------------------------------------- | |
212 -- fp_sin - floating-point trigonometric sine. | |
213 -- | |
214 -- This routine computes the trigonometric sine sin(x). */ | |
215 | |
216 double fp_sin(MPL *mpl, double x) | |
217 { if (!(-1e6 <= x && x <= +1e6)) | |
218 error(mpl, "sin(%.*g); argument too large", DBL_DIG, x); | |
219 return sin(x); | |
220 } | |
221 | |
222 /*---------------------------------------------------------------------- | |
223 -- fp_cos - floating-point trigonometric cosine. | |
224 -- | |
225 -- This routine computes the trigonometric cosine cos(x). */ | |
226 | |
227 double fp_cos(MPL *mpl, double x) | |
228 { if (!(-1e6 <= x && x <= +1e6)) | |
229 error(mpl, "cos(%.*g); argument too large", DBL_DIG, x); | |
230 return cos(x); | |
231 } | |
232 | |
233 /*---------------------------------------------------------------------- | |
234 -- fp_atan - floating-point trigonometric arctangent. | |
235 -- | |
236 -- This routine computes the trigonometric arctangent atan(x). */ | |
237 | |
238 double fp_atan(MPL *mpl, double x) | |
239 { xassert(mpl == mpl); | |
240 return atan(x); | |
241 } | |
242 | |
243 /*---------------------------------------------------------------------- | |
244 -- fp_atan2 - floating-point trigonometric arctangent. | |
245 -- | |
246 -- This routine computes the trigonometric arctangent atan(y / x). */ | |
247 | |
248 double fp_atan2(MPL *mpl, double y, double x) | |
249 { xassert(mpl == mpl); | |
250 return atan2(y, x); | |
251 } | |
252 | |
253 /*---------------------------------------------------------------------- | |
254 -- fp_round - round floating-point value to n fractional digits. | |
255 -- | |
256 -- This routine rounds given floating-point value x to n fractional | |
257 -- digits with the formula: | |
258 -- | |
259 -- round(x, n) = floor(x * 10^n + 0.5) / 10^n. | |
260 -- | |
261 -- The parameter n is assumed to be integer. */ | |
262 | |
263 double fp_round(MPL *mpl, double x, double n) | |
264 { double ten_to_n; | |
265 if (n != floor(n)) | |
266 error(mpl, "round(%.*g, %.*g); non-integer second argument", | |
267 DBL_DIG, x, DBL_DIG, n); | |
268 if (n <= DBL_DIG + 2) | |
269 { ten_to_n = pow(10.0, n); | |
270 if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n) | |
271 { x = floor(x * ten_to_n + 0.5); | |
272 if (x != 0.0) x /= ten_to_n; | |
273 } | |
274 } | |
275 return x; | |
276 } | |
277 | |
278 /*---------------------------------------------------------------------- | |
279 -- fp_trunc - truncate floating-point value to n fractional digits. | |
280 -- | |
281 -- This routine truncates given floating-point value x to n fractional | |
282 -- digits with the formula: | |
283 -- | |
284 -- ( floor(x * 10^n) / 10^n, if x >= 0 | |
285 -- trunc(x, n) = < | |
286 -- ( ceil(x * 10^n) / 10^n, if x < 0 | |
287 -- | |
288 -- The parameter n is assumed to be integer. */ | |
289 | |
290 double fp_trunc(MPL *mpl, double x, double n) | |
291 { double ten_to_n; | |
292 if (n != floor(n)) | |
293 error(mpl, "trunc(%.*g, %.*g); non-integer second argument", | |
294 DBL_DIG, x, DBL_DIG, n); | |
295 if (n <= DBL_DIG + 2) | |
296 { ten_to_n = pow(10.0, n); | |
297 if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n) | |
298 { x = (x >= 0.0 ? floor(x * ten_to_n) : ceil(x * ten_to_n)); | |
299 if (x != 0.0) x /= ten_to_n; | |
300 } | |
301 } | |
302 return x; | |
303 } | |
304 | |
305 /**********************************************************************/ | |
306 /* * * PSEUDO-RANDOM NUMBER GENERATORS * * */ | |
307 /**********************************************************************/ | |
308 | |
309 /*---------------------------------------------------------------------- | |
310 -- fp_irand224 - pseudo-random integer in the range [0, 2^24). | |
311 -- | |
312 -- This routine returns a next pseudo-random integer (converted to | |
313 -- floating-point) which is uniformly distributed between 0 and 2^24-1, | |
314 -- inclusive. */ | |
315 | |
316 #define two_to_the_24 0x1000000 | |
317 | |
318 double fp_irand224(MPL *mpl) | |
319 { return | |
320 (double)rng_unif_rand(mpl->rand, two_to_the_24); | |
321 } | |
322 | |
323 /*---------------------------------------------------------------------- | |
324 -- fp_uniform01 - pseudo-random number in the range [0, 1). | |
325 -- | |
326 -- This routine returns a next pseudo-random number which is uniformly | |
327 -- distributed in the range [0, 1). */ | |
328 | |
329 #define two_to_the_31 ((unsigned int)0x80000000) | |
330 | |
331 double fp_uniform01(MPL *mpl) | |
332 { return | |
333 (double)rng_next_rand(mpl->rand) / (double)two_to_the_31; | |
334 } | |
335 | |
336 /*---------------------------------------------------------------------- | |
337 -- fp_uniform - pseudo-random number in the range [a, b). | |
338 -- | |
339 -- This routine returns a next pseudo-random number which is uniformly | |
340 -- distributed in the range [a, b). */ | |
341 | |
342 double fp_uniform(MPL *mpl, double a, double b) | |
343 { double x; | |
344 if (a >= b) | |
345 error(mpl, "Uniform(%.*g, %.*g); invalid range", | |
346 DBL_DIG, a, DBL_DIG, b); | |
347 x = fp_uniform01(mpl); | |
348 #if 0 | |
349 x = a * (1.0 - x) + b * x; | |
350 #else | |
351 x = fp_add(mpl, a * (1.0 - x), b * x); | |
352 #endif | |
353 return x; | |
354 } | |
355 | |
356 /*---------------------------------------------------------------------- | |
357 -- fp_normal01 - Gaussian random variate with mu = 0 and sigma = 1. | |
358 -- | |
359 -- This routine returns a Gaussian random variate with zero mean and | |
360 -- unit standard deviation. The polar (Box-Mueller) method is used. | |
361 -- | |
362 -- This code is a modified version of the routine gsl_ran_gaussian from | |
363 -- the GNU Scientific Library Version 1.0. */ | |
364 | |
365 double fp_normal01(MPL *mpl) | |
366 { double x, y, r2; | |
367 do | |
368 { /* choose x, y in uniform square (-1,-1) to (+1,+1) */ | |
369 x = -1.0 + 2.0 * fp_uniform01(mpl); | |
370 y = -1.0 + 2.0 * fp_uniform01(mpl); | |
371 /* see if it is in the unit circle */ | |
372 r2 = x * x + y * y; | |
373 } while (r2 > 1.0 || r2 == 0.0); | |
374 /* Box-Muller transform */ | |
375 return y * sqrt(-2.0 * log (r2) / r2); | |
376 } | |
377 | |
378 /*---------------------------------------------------------------------- | |
379 -- fp_normal - Gaussian random variate with specified mu and sigma. | |
380 -- | |
381 -- This routine returns a Gaussian random variate with mean mu and | |
382 -- standard deviation sigma. */ | |
383 | |
384 double fp_normal(MPL *mpl, double mu, double sigma) | |
385 { double x; | |
386 #if 0 | |
387 x = mu + sigma * fp_normal01(mpl); | |
388 #else | |
389 x = fp_add(mpl, mu, fp_mul(mpl, sigma, fp_normal01(mpl))); | |
390 #endif | |
391 return x; | |
392 } | |
393 | |
394 /**********************************************************************/ | |
395 /* * * SEGMENTED CHARACTER STRINGS * * */ | |
396 /**********************************************************************/ | |
397 | |
398 /*---------------------------------------------------------------------- | |
399 -- create_string - create character string. | |
400 -- | |
401 -- This routine creates a segmented character string, which is exactly | |
402 -- equivalent to specified character string. */ | |
403 | |
404 STRING *create_string | |
405 ( MPL *mpl, | |
406 char buf[MAX_LENGTH+1] /* not changed */ | |
407 ) | |
408 #if 0 | |
409 { STRING *head, *tail; | |
410 int i, j; | |
411 xassert(buf != NULL); | |
412 xassert(strlen(buf) <= MAX_LENGTH); | |
413 head = tail = dmp_get_atom(mpl->strings, sizeof(STRING)); | |
414 for (i = j = 0; ; i++) | |
415 { if ((tail->seg[j++] = buf[i]) == '\0') break; | |
416 if (j == STRSEG_SIZE) | |
417 tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))), j = 0; | |
418 } | |
419 tail->next = NULL; | |
420 return head; | |
421 } | |
422 #else | |
423 { STRING *str; | |
424 xassert(strlen(buf) <= MAX_LENGTH); | |
425 str = dmp_get_atom(mpl->strings, strlen(buf)+1); | |
426 strcpy(str, buf); | |
427 return str; | |
428 } | |
429 #endif | |
430 | |
431 /*---------------------------------------------------------------------- | |
432 -- copy_string - make copy of character string. | |
433 -- | |
434 -- This routine returns an exact copy of segmented character string. */ | |
435 | |
436 STRING *copy_string | |
437 ( MPL *mpl, | |
438 STRING *str /* not changed */ | |
439 ) | |
440 #if 0 | |
441 { STRING *head, *tail; | |
442 xassert(str != NULL); | |
443 head = tail = dmp_get_atom(mpl->strings, sizeof(STRING)); | |
444 for (; str != NULL; str = str->next) | |
445 { memcpy(tail->seg, str->seg, STRSEG_SIZE); | |
446 if (str->next != NULL) | |
447 tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))); | |
448 } | |
449 tail->next = NULL; | |
450 return head; | |
451 } | |
452 #else | |
453 { xassert(mpl == mpl); | |
454 return create_string(mpl, str); | |
455 } | |
456 #endif | |
457 | |
458 /*---------------------------------------------------------------------- | |
459 -- compare_strings - compare one character string with another. | |
460 -- | |
461 -- This routine compares one segmented character strings with another | |
462 -- and returns the result of comparison as follows: | |
463 -- | |
464 -- = 0 - both strings are identical; | |
465 -- < 0 - the first string precedes the second one; | |
466 -- > 0 - the first string follows the second one. */ | |
467 | |
468 int compare_strings | |
469 ( MPL *mpl, | |
470 STRING *str1, /* not changed */ | |
471 STRING *str2 /* not changed */ | |
472 ) | |
473 #if 0 | |
474 { int j, c1, c2; | |
475 xassert(mpl == mpl); | |
476 for (;; str1 = str1->next, str2 = str2->next) | |
477 { xassert(str1 != NULL); | |
478 xassert(str2 != NULL); | |
479 for (j = 0; j < STRSEG_SIZE; j++) | |
480 { c1 = (unsigned char)str1->seg[j]; | |
481 c2 = (unsigned char)str2->seg[j]; | |
482 if (c1 < c2) return -1; | |
483 if (c1 > c2) return +1; | |
484 if (c1 == '\0') goto done; | |
485 } | |
486 } | |
487 done: return 0; | |
488 } | |
489 #else | |
490 { xassert(mpl == mpl); | |
491 return strcmp(str1, str2); | |
492 } | |
493 #endif | |
494 | |
495 /*---------------------------------------------------------------------- | |
496 -- fetch_string - extract content of character string. | |
497 -- | |
498 -- This routine returns a character string, which is exactly equivalent | |
499 -- to specified segmented character string. */ | |
500 | |
501 char *fetch_string | |
502 ( MPL *mpl, | |
503 STRING *str, /* not changed */ | |
504 char buf[MAX_LENGTH+1] /* modified */ | |
505 ) | |
506 #if 0 | |
507 { int i, j; | |
508 xassert(mpl == mpl); | |
509 xassert(buf != NULL); | |
510 for (i = 0; ; str = str->next) | |
511 { xassert(str != NULL); | |
512 for (j = 0; j < STRSEG_SIZE; j++) | |
513 if ((buf[i++] = str->seg[j]) == '\0') goto done; | |
514 } | |
515 done: xassert(strlen(buf) <= MAX_LENGTH); | |
516 return buf; | |
517 } | |
518 #else | |
519 { xassert(mpl == mpl); | |
520 return strcpy(buf, str); | |
521 } | |
522 #endif | |
523 | |
524 /*---------------------------------------------------------------------- | |
525 -- delete_string - delete character string. | |
526 -- | |
527 -- This routine deletes specified segmented character string. */ | |
528 | |
529 void delete_string | |
530 ( MPL *mpl, | |
531 STRING *str /* destroyed */ | |
532 ) | |
533 #if 0 | |
534 { STRING *temp; | |
535 xassert(str != NULL); | |
536 while (str != NULL) | |
537 { temp = str; | |
538 str = str->next; | |
539 dmp_free_atom(mpl->strings, temp, sizeof(STRING)); | |
540 } | |
541 return; | |
542 } | |
543 #else | |
544 { dmp_free_atom(mpl->strings, str, strlen(str)+1); | |
545 return; | |
546 } | |
547 #endif | |
548 | |
549 /**********************************************************************/ | |
550 /* * * SYMBOLS * * */ | |
551 /**********************************************************************/ | |
552 | |
553 /*---------------------------------------------------------------------- | |
554 -- create_symbol_num - create symbol of numeric type. | |
555 -- | |
556 -- This routine creates a symbol, which has a numeric value specified | |
557 -- as floating-point number. */ | |
558 | |
559 SYMBOL *create_symbol_num(MPL *mpl, double num) | |
560 { SYMBOL *sym; | |
561 sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); | |
562 sym->num = num; | |
563 sym->str = NULL; | |
564 return sym; | |
565 } | |
566 | |
567 /*---------------------------------------------------------------------- | |
568 -- create_symbol_str - create symbol of abstract type. | |
569 -- | |
570 -- This routine creates a symbol, which has an abstract value specified | |
571 -- as segmented character string. */ | |
572 | |
573 SYMBOL *create_symbol_str | |
574 ( MPL *mpl, | |
575 STRING *str /* destroyed */ | |
576 ) | |
577 { SYMBOL *sym; | |
578 xassert(str != NULL); | |
579 sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); | |
580 sym->num = 0.0; | |
581 sym->str = str; | |
582 return sym; | |
583 } | |
584 | |
585 /*---------------------------------------------------------------------- | |
586 -- copy_symbol - make copy of symbol. | |
587 -- | |
588 -- This routine returns an exact copy of symbol. */ | |
589 | |
590 SYMBOL *copy_symbol | |
591 ( MPL *mpl, | |
592 SYMBOL *sym /* not changed */ | |
593 ) | |
594 { SYMBOL *copy; | |
595 xassert(sym != NULL); | |
596 copy = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); | |
597 if (sym->str == NULL) | |
598 { copy->num = sym->num; | |
599 copy->str = NULL; | |
600 } | |
601 else | |
602 { copy->num = 0.0; | |
603 copy->str = copy_string(mpl, sym->str); | |
604 } | |
605 return copy; | |
606 } | |
607 | |
608 /*---------------------------------------------------------------------- | |
609 -- compare_symbols - compare one symbol with another. | |
610 -- | |
611 -- This routine compares one symbol with another and returns the result | |
612 -- of comparison as follows: | |
613 -- | |
614 -- = 0 - both symbols are identical; | |
615 -- < 0 - the first symbol precedes the second one; | |
616 -- > 0 - the first symbol follows the second one. | |
617 -- | |
618 -- Note that the linear order, in which symbols follow each other, is | |
619 -- implementation-dependent. It may be not an alphabetical order. */ | |
620 | |
621 int compare_symbols | |
622 ( MPL *mpl, | |
623 SYMBOL *sym1, /* not changed */ | |
624 SYMBOL *sym2 /* not changed */ | |
625 ) | |
626 { xassert(sym1 != NULL); | |
627 xassert(sym2 != NULL); | |
628 /* let all numeric quantities precede all symbolic quantities */ | |
629 if (sym1->str == NULL && sym2->str == NULL) | |
630 { if (sym1->num < sym2->num) return -1; | |
631 if (sym1->num > sym2->num) return +1; | |
632 return 0; | |
633 } | |
634 if (sym1->str == NULL) return -1; | |
635 if (sym2->str == NULL) return +1; | |
636 return compare_strings(mpl, sym1->str, sym2->str); | |
637 } | |
638 | |
639 /*---------------------------------------------------------------------- | |
640 -- delete_symbol - delete symbol. | |
641 -- | |
642 -- This routine deletes specified symbol. */ | |
643 | |
644 void delete_symbol | |
645 ( MPL *mpl, | |
646 SYMBOL *sym /* destroyed */ | |
647 ) | |
648 { xassert(sym != NULL); | |
649 if (sym->str != NULL) delete_string(mpl, sym->str); | |
650 dmp_free_atom(mpl->symbols, sym, sizeof(SYMBOL)); | |
651 return; | |
652 } | |
653 | |
654 /*---------------------------------------------------------------------- | |
655 -- format_symbol - format symbol for displaying or printing. | |
656 -- | |
657 -- This routine converts specified symbol to a charater string, which | |
658 -- is suitable for displaying or printing. | |
659 -- | |
660 -- The resultant string is never longer than 255 characters. If it gets | |
661 -- longer, it is truncated from the right and appended by dots. */ | |
662 | |
663 char *format_symbol | |
664 ( MPL *mpl, | |
665 SYMBOL *sym /* not changed */ | |
666 ) | |
667 { char *buf = mpl->sym_buf; | |
668 xassert(sym != NULL); | |
669 if (sym->str == NULL) | |
670 sprintf(buf, "%.*g", DBL_DIG, sym->num); | |
671 else | |
672 { char str[MAX_LENGTH+1]; | |
673 int quoted, j, len; | |
674 fetch_string(mpl, sym->str, str); | |
675 if (!(isalpha((unsigned char)str[0]) || str[0] == '_')) | |
676 quoted = 1; | |
677 else | |
678 { quoted = 0; | |
679 for (j = 1; str[j] != '\0'; j++) | |
680 { if (!(isalnum((unsigned char)str[j]) || | |
681 strchr("+-._", (unsigned char)str[j]) != NULL)) | |
682 { quoted = 1; | |
683 break; | |
684 } | |
685 } | |
686 } | |
687 # define safe_append(c) \ | |
688 (void)(len < 255 ? (buf[len++] = (char)(c)) : 0) | |
689 buf[0] = '\0', len = 0; | |
690 if (quoted) safe_append('\''); | |
691 for (j = 0; str[j] != '\0'; j++) | |
692 { if (quoted && str[j] == '\'') safe_append('\''); | |
693 safe_append(str[j]); | |
694 } | |
695 if (quoted) safe_append('\''); | |
696 # undef safe_append | |
697 buf[len] = '\0'; | |
698 if (len == 255) strcpy(buf+252, "..."); | |
699 } | |
700 xassert(strlen(buf) <= 255); | |
701 return buf; | |
702 } | |
703 | |
704 /*---------------------------------------------------------------------- | |
705 -- concat_symbols - concatenate one symbol with another. | |
706 -- | |
707 -- This routine concatenates values of two given symbols and assigns | |
708 -- the resultant character string to a new symbol, which is returned on | |
709 -- exit. Both original symbols are destroyed. */ | |
710 | |
711 SYMBOL *concat_symbols | |
712 ( MPL *mpl, | |
713 SYMBOL *sym1, /* destroyed */ | |
714 SYMBOL *sym2 /* destroyed */ | |
715 ) | |
716 { char str1[MAX_LENGTH+1], str2[MAX_LENGTH+1]; | |
717 xassert(MAX_LENGTH >= DBL_DIG + DBL_DIG); | |
718 if (sym1->str == NULL) | |
719 sprintf(str1, "%.*g", DBL_DIG, sym1->num); | |
720 else | |
721 fetch_string(mpl, sym1->str, str1); | |
722 if (sym2->str == NULL) | |
723 sprintf(str2, "%.*g", DBL_DIG, sym2->num); | |
724 else | |
725 fetch_string(mpl, sym2->str, str2); | |
726 if (strlen(str1) + strlen(str2) > MAX_LENGTH) | |
727 { char buf[255+1]; | |
728 strcpy(buf, format_symbol(mpl, sym1)); | |
729 xassert(strlen(buf) < sizeof(buf)); | |
730 error(mpl, "%s & %s; resultant symbol exceeds %d characters", | |
731 buf, format_symbol(mpl, sym2), MAX_LENGTH); | |
732 } | |
733 delete_symbol(mpl, sym1); | |
734 delete_symbol(mpl, sym2); | |
735 return create_symbol_str(mpl, create_string(mpl, strcat(str1, | |
736 str2))); | |
737 } | |
738 | |
739 /**********************************************************************/ | |
740 /* * * N-TUPLES * * */ | |
741 /**********************************************************************/ | |
742 | |
743 /*---------------------------------------------------------------------- | |
744 -- create_tuple - create n-tuple. | |
745 -- | |
746 -- This routine creates a n-tuple, which initially has no components, | |
747 -- i.e. which is 0-tuple. */ | |
748 | |
749 TUPLE *create_tuple(MPL *mpl) | |
750 { TUPLE *tuple; | |
751 xassert(mpl == mpl); | |
752 tuple = NULL; | |
753 return tuple; | |
754 } | |
755 | |
756 /*---------------------------------------------------------------------- | |
757 -- expand_tuple - append symbol to n-tuple. | |
758 -- | |
759 -- This routine expands n-tuple appending to it a given symbol, which | |
760 -- becomes its new last component. */ | |
761 | |
762 TUPLE *expand_tuple | |
763 ( MPL *mpl, | |
764 TUPLE *tuple, /* destroyed */ | |
765 SYMBOL *sym /* destroyed */ | |
766 ) | |
767 { TUPLE *tail, *temp; | |
768 xassert(sym != NULL); | |
769 /* create a new component */ | |
770 tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); | |
771 tail->sym = sym; | |
772 tail->next = NULL; | |
773 /* and append it to the component list */ | |
774 if (tuple == NULL) | |
775 tuple = tail; | |
776 else | |
777 { for (temp = tuple; temp->next != NULL; temp = temp->next); | |
778 temp->next = tail; | |
779 } | |
780 return tuple; | |
781 } | |
782 | |
783 /*---------------------------------------------------------------------- | |
784 -- tuple_dimen - determine dimension of n-tuple. | |
785 -- | |
786 -- This routine returns dimension of n-tuple, i.e. number of components | |
787 -- in the n-tuple. */ | |
788 | |
789 int tuple_dimen | |
790 ( MPL *mpl, | |
791 TUPLE *tuple /* not changed */ | |
792 ) | |
793 { TUPLE *temp; | |
794 int dim = 0; | |
795 xassert(mpl == mpl); | |
796 for (temp = tuple; temp != NULL; temp = temp->next) dim++; | |
797 return dim; | |
798 } | |
799 | |
800 /*---------------------------------------------------------------------- | |
801 -- copy_tuple - make copy of n-tuple. | |
802 -- | |
803 -- This routine returns an exact copy of n-tuple. */ | |
804 | |
805 TUPLE *copy_tuple | |
806 ( MPL *mpl, | |
807 TUPLE *tuple /* not changed */ | |
808 ) | |
809 { TUPLE *head, *tail; | |
810 if (tuple == NULL) | |
811 head = NULL; | |
812 else | |
813 { head = tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); | |
814 for (; tuple != NULL; tuple = tuple->next) | |
815 { xassert(tuple->sym != NULL); | |
816 tail->sym = copy_symbol(mpl, tuple->sym); | |
817 if (tuple->next != NULL) | |
818 tail = (tail->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE))); | |
819 } | |
820 tail->next = NULL; | |
821 } | |
822 return head; | |
823 } | |
824 | |
825 /*---------------------------------------------------------------------- | |
826 -- compare_tuples - compare one n-tuple with another. | |
827 -- | |
828 -- This routine compares two given n-tuples, which must have the same | |
829 -- dimension (not checked for the sake of efficiency), and returns one | |
830 -- of the following codes: | |
831 -- | |
832 -- = 0 - both n-tuples are identical; | |
833 -- < 0 - the first n-tuple precedes the second one; | |
834 -- > 0 - the first n-tuple follows the second one. | |
835 -- | |
836 -- Note that the linear order, in which n-tuples follow each other, is | |
837 -- implementation-dependent. It may be not an alphabetical order. */ | |
838 | |
839 int compare_tuples | |
840 ( MPL *mpl, | |
841 TUPLE *tuple1, /* not changed */ | |
842 TUPLE *tuple2 /* not changed */ | |
843 ) | |
844 { TUPLE *item1, *item2; | |
845 int ret; | |
846 xassert(mpl == mpl); | |
847 for (item1 = tuple1, item2 = tuple2; item1 != NULL; | |
848 item1 = item1->next, item2 = item2->next) | |
849 { xassert(item2 != NULL); | |
850 xassert(item1->sym != NULL); | |
851 xassert(item2->sym != NULL); | |
852 ret = compare_symbols(mpl, item1->sym, item2->sym); | |
853 if (ret != 0) return ret; | |
854 } | |
855 xassert(item2 == NULL); | |
856 return 0; | |
857 } | |
858 | |
859 /*---------------------------------------------------------------------- | |
860 -- build_subtuple - build subtuple of given n-tuple. | |
861 -- | |
862 -- This routine builds subtuple, which consists of first dim components | |
863 -- of given n-tuple. */ | |
864 | |
865 TUPLE *build_subtuple | |
866 ( MPL *mpl, | |
867 TUPLE *tuple, /* not changed */ | |
868 int dim | |
869 ) | |
870 { TUPLE *head, *temp; | |
871 int j; | |
872 head = create_tuple(mpl); | |
873 for (j = 1, temp = tuple; j <= dim; j++, temp = temp->next) | |
874 { xassert(temp != NULL); | |
875 head = expand_tuple(mpl, head, copy_symbol(mpl, temp->sym)); | |
876 } | |
877 return head; | |
878 } | |
879 | |
880 /*---------------------------------------------------------------------- | |
881 -- delete_tuple - delete n-tuple. | |
882 -- | |
883 -- This routine deletes specified n-tuple. */ | |
884 | |
885 void delete_tuple | |
886 ( MPL *mpl, | |
887 TUPLE *tuple /* destroyed */ | |
888 ) | |
889 { TUPLE *temp; | |
890 while (tuple != NULL) | |
891 { temp = tuple; | |
892 tuple = temp->next; | |
893 xassert(temp->sym != NULL); | |
894 delete_symbol(mpl, temp->sym); | |
895 dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE)); | |
896 } | |
897 return; | |
898 } | |
899 | |
900 /*---------------------------------------------------------------------- | |
901 -- format_tuple - format n-tuple for displaying or printing. | |
902 -- | |
903 -- This routine converts specified n-tuple to a character string, which | |
904 -- is suitable for displaying or printing. | |
905 -- | |
906 -- The resultant string is never longer than 255 characters. If it gets | |
907 -- longer, it is truncated from the right and appended by dots. */ | |
908 | |
909 char *format_tuple | |
910 ( MPL *mpl, | |
911 int c, | |
912 TUPLE *tuple /* not changed */ | |
913 ) | |
914 { TUPLE *temp; | |
915 int dim, j, len; | |
916 char *buf = mpl->tup_buf, str[255+1], *save; | |
917 # define safe_append(c) \ | |
918 (void)(len < 255 ? (buf[len++] = (char)(c)) : 0) | |
919 buf[0] = '\0', len = 0; | |
920 dim = tuple_dimen(mpl, tuple); | |
921 if (c == '[' && dim > 0) safe_append('['); | |
922 if (c == '(' && dim > 1) safe_append('('); | |
923 for (temp = tuple; temp != NULL; temp = temp->next) | |
924 { if (temp != tuple) safe_append(','); | |
925 xassert(temp->sym != NULL); | |
926 save = mpl->sym_buf; | |
927 mpl->sym_buf = str; | |
928 format_symbol(mpl, temp->sym); | |
929 mpl->sym_buf = save; | |
930 xassert(strlen(str) < sizeof(str)); | |
931 for (j = 0; str[j] != '\0'; j++) safe_append(str[j]); | |
932 } | |
933 if (c == '[' && dim > 0) safe_append(']'); | |
934 if (c == '(' && dim > 1) safe_append(')'); | |
935 # undef safe_append | |
936 buf[len] = '\0'; | |
937 if (len == 255) strcpy(buf+252, "..."); | |
938 xassert(strlen(buf) <= 255); | |
939 return buf; | |
940 } | |
941 | |
942 /**********************************************************************/ | |
943 /* * * ELEMENTAL SETS * * */ | |
944 /**********************************************************************/ | |
945 | |
946 /*---------------------------------------------------------------------- | |
947 -- create_elemset - create elemental set. | |
948 -- | |
949 -- This routine creates an elemental set, whose members are n-tuples of | |
950 -- specified dimension. Being created the set is initially empty. */ | |
951 | |
952 ELEMSET *create_elemset(MPL *mpl, int dim) | |
953 { ELEMSET *set; | |
954 xassert(dim > 0); | |
955 set = create_array(mpl, A_NONE, dim); | |
956 return set; | |
957 } | |
958 | |
959 /*---------------------------------------------------------------------- | |
960 -- find_tuple - check if elemental set contains given n-tuple. | |
961 -- | |
962 -- This routine finds given n-tuple in specified elemental set in order | |
963 -- to check if the set contains that n-tuple. If the n-tuple is found, | |
964 -- the routine returns pointer to corresponding array member. Otherwise | |
965 -- null pointer is returned. */ | |
966 | |
967 MEMBER *find_tuple | |
968 ( MPL *mpl, | |
969 ELEMSET *set, /* not changed */ | |
970 TUPLE *tuple /* not changed */ | |
971 ) | |
972 { xassert(set != NULL); | |
973 xassert(set->type == A_NONE); | |
974 xassert(set->dim == tuple_dimen(mpl, tuple)); | |
975 return find_member(mpl, set, tuple); | |
976 } | |
977 | |
978 /*---------------------------------------------------------------------- | |
979 -- add_tuple - add new n-tuple to elemental set. | |
980 -- | |
981 -- This routine adds given n-tuple to specified elemental set. | |
982 -- | |
983 -- For the sake of efficiency this routine doesn't check whether the | |
984 -- set already contains the same n-tuple or not. Therefore the calling | |
985 -- program should use the routine find_tuple (if necessary) in order to | |
986 -- make sure that the given n-tuple is not contained in the set, since | |
987 -- duplicate n-tuples within the same set are not allowed. */ | |
988 | |
989 MEMBER *add_tuple | |
990 ( MPL *mpl, | |
991 ELEMSET *set, /* modified */ | |
992 TUPLE *tuple /* destroyed */ | |
993 ) | |
994 { MEMBER *memb; | |
995 xassert(set != NULL); | |
996 xassert(set->type == A_NONE); | |
997 xassert(set->dim == tuple_dimen(mpl, tuple)); | |
998 memb = add_member(mpl, set, tuple); | |
999 memb->value.none = NULL; | |
1000 return memb; | |
1001 } | |
1002 | |
1003 /*---------------------------------------------------------------------- | |
1004 -- check_then_add - check and add new n-tuple to elemental set. | |
1005 -- | |
1006 -- This routine is equivalent to the routine add_tuple except that it | |
1007 -- does check for duplicate n-tuples. */ | |
1008 | |
1009 MEMBER *check_then_add | |
1010 ( MPL *mpl, | |
1011 ELEMSET *set, /* modified */ | |
1012 TUPLE *tuple /* destroyed */ | |
1013 ) | |
1014 { if (find_tuple(mpl, set, tuple) != NULL) | |
1015 error(mpl, "duplicate tuple %s detected", format_tuple(mpl, | |
1016 '(', tuple)); | |
1017 return add_tuple(mpl, set, tuple); | |
1018 } | |
1019 | |
1020 /*---------------------------------------------------------------------- | |
1021 -- copy_elemset - make copy of elemental set. | |
1022 -- | |
1023 -- This routine makes an exact copy of elemental set. */ | |
1024 | |
1025 ELEMSET *copy_elemset | |
1026 ( MPL *mpl, | |
1027 ELEMSET *set /* not changed */ | |
1028 ) | |
1029 { ELEMSET *copy; | |
1030 MEMBER *memb; | |
1031 xassert(set != NULL); | |
1032 xassert(set->type == A_NONE); | |
1033 xassert(set->dim > 0); | |
1034 copy = create_elemset(mpl, set->dim); | |
1035 for (memb = set->head; memb != NULL; memb = memb->next) | |
1036 add_tuple(mpl, copy, copy_tuple(mpl, memb->tuple)); | |
1037 return copy; | |
1038 } | |
1039 | |
1040 /*---------------------------------------------------------------------- | |
1041 -- delete_elemset - delete elemental set. | |
1042 -- | |
1043 -- This routine deletes specified elemental set. */ | |
1044 | |
1045 void delete_elemset | |
1046 ( MPL *mpl, | |
1047 ELEMSET *set /* destroyed */ | |
1048 ) | |
1049 { xassert(set != NULL); | |
1050 xassert(set->type == A_NONE); | |
1051 delete_array(mpl, set); | |
1052 return; | |
1053 } | |
1054 | |
1055 /*---------------------------------------------------------------------- | |
1056 -- arelset_size - compute size of "arithmetic" elemental set. | |
1057 -- | |
1058 -- This routine computes the size of "arithmetic" elemental set, which | |
1059 -- is specified in the form of arithmetic progression: | |
1060 -- | |
1061 -- { t0 .. tf by dt }. | |
1062 -- | |
1063 -- The size is computed using the formula: | |
1064 -- | |
1065 -- n = max(0, floor((tf - t0) / dt) + 1). */ | |
1066 | |
1067 int arelset_size(MPL *mpl, double t0, double tf, double dt) | |
1068 { double temp; | |
1069 if (dt == 0.0) | |
1070 error(mpl, "%.*g .. %.*g by %.*g; zero stride not allowed", | |
1071 DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt); | |
1072 if (tf > 0.0 && t0 < 0.0 && tf > + 0.999 * DBL_MAX + t0) | |
1073 temp = +DBL_MAX; | |
1074 else if (tf < 0.0 && t0 > 0.0 && tf < - 0.999 * DBL_MAX + t0) | |
1075 temp = -DBL_MAX; | |
1076 else | |
1077 temp = tf - t0; | |
1078 if (fabs(dt) < 1.0 && fabs(temp) > (0.999 * DBL_MAX) * fabs(dt)) | |
1079 { if (temp > 0.0 && dt > 0.0 || temp < 0.0 && dt < 0.0) | |
1080 temp = +DBL_MAX; | |
1081 else | |
1082 temp = 0.0; | |
1083 } | |
1084 else | |
1085 { temp = floor(temp / dt) + 1.0; | |
1086 if (temp < 0.0) temp = 0.0; | |
1087 } | |
1088 xassert(temp >= 0.0); | |
1089 if (temp > (double)(INT_MAX - 1)) | |
1090 error(mpl, "%.*g .. %.*g by %.*g; set too large", | |
1091 DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt); | |
1092 return (int)(temp + 0.5); | |
1093 } | |
1094 | |
1095 /*---------------------------------------------------------------------- | |
1096 -- arelset_member - compute member of "arithmetic" elemental set. | |
1097 -- | |
1098 -- This routine returns a numeric value of symbol, which is equivalent | |
1099 -- to j-th member of given "arithmetic" elemental set specified in the | |
1100 -- form of arithmetic progression: | |
1101 -- | |
1102 -- { t0 .. tf by dt }. | |
1103 -- | |
1104 -- The symbol value is computed with the formula: | |
1105 -- | |
1106 -- j-th member = t0 + (j - 1) * dt, | |
1107 -- | |
1108 -- The number j must satisfy to the restriction 1 <= j <= n, where n is | |
1109 -- the set size computed by the routine arelset_size. */ | |
1110 | |
1111 double arelset_member(MPL *mpl, double t0, double tf, double dt, int j) | |
1112 { xassert(1 <= j && j <= arelset_size(mpl, t0, tf, dt)); | |
1113 return t0 + (double)(j - 1) * dt; | |
1114 } | |
1115 | |
1116 /*---------------------------------------------------------------------- | |
1117 -- create_arelset - create "arithmetic" elemental set. | |
1118 -- | |
1119 -- This routine creates "arithmetic" elemental set, which is specified | |
1120 -- in the form of arithmetic progression: | |
1121 -- | |
1122 -- { t0 .. tf by dt }. | |
1123 -- | |
1124 -- Components of this set are 1-tuples. */ | |
1125 | |
1126 ELEMSET *create_arelset(MPL *mpl, double t0, double tf, double dt) | |
1127 { ELEMSET *set; | |
1128 int j, n; | |
1129 set = create_elemset(mpl, 1); | |
1130 n = arelset_size(mpl, t0, tf, dt); | |
1131 for (j = 1; j <= n; j++) | |
1132 { add_tuple | |
1133 ( mpl, | |
1134 set, | |
1135 expand_tuple | |
1136 ( mpl, | |
1137 create_tuple(mpl), | |
1138 create_symbol_num | |
1139 ( mpl, | |
1140 arelset_member(mpl, t0, tf, dt, j) | |
1141 ) | |
1142 ) | |
1143 ); | |
1144 } | |
1145 return set; | |
1146 } | |
1147 | |
1148 /*---------------------------------------------------------------------- | |
1149 -- set_union - union of two elemental sets. | |
1150 -- | |
1151 -- This routine computes the union: | |
1152 -- | |
1153 -- X U Y = { j | (j in X) or (j in Y) }, | |
1154 -- | |
1155 -- where X and Y are given elemental sets (destroyed on exit). */ | |
1156 | |
1157 ELEMSET *set_union | |
1158 ( MPL *mpl, | |
1159 ELEMSET *X, /* destroyed */ | |
1160 ELEMSET *Y /* destroyed */ | |
1161 ) | |
1162 { MEMBER *memb; | |
1163 xassert(X != NULL); | |
1164 xassert(X->type == A_NONE); | |
1165 xassert(X->dim > 0); | |
1166 xassert(Y != NULL); | |
1167 xassert(Y->type == A_NONE); | |
1168 xassert(Y->dim > 0); | |
1169 xassert(X->dim == Y->dim); | |
1170 for (memb = Y->head; memb != NULL; memb = memb->next) | |
1171 { if (find_tuple(mpl, X, memb->tuple) == NULL) | |
1172 add_tuple(mpl, X, copy_tuple(mpl, memb->tuple)); | |
1173 } | |
1174 delete_elemset(mpl, Y); | |
1175 return X; | |
1176 } | |
1177 | |
1178 /*---------------------------------------------------------------------- | |
1179 -- set_diff - difference between two elemental sets. | |
1180 -- | |
1181 -- This routine computes the difference: | |
1182 -- | |
1183 -- X \ Y = { j | (j in X) and (j not in Y) }, | |
1184 -- | |
1185 -- where X and Y are given elemental sets (destroyed on exit). */ | |
1186 | |
1187 ELEMSET *set_diff | |
1188 ( MPL *mpl, | |
1189 ELEMSET *X, /* destroyed */ | |
1190 ELEMSET *Y /* destroyed */ | |
1191 ) | |
1192 { ELEMSET *Z; | |
1193 MEMBER *memb; | |
1194 xassert(X != NULL); | |
1195 xassert(X->type == A_NONE); | |
1196 xassert(X->dim > 0); | |
1197 xassert(Y != NULL); | |
1198 xassert(Y->type == A_NONE); | |
1199 xassert(Y->dim > 0); | |
1200 xassert(X->dim == Y->dim); | |
1201 Z = create_elemset(mpl, X->dim); | |
1202 for (memb = X->head; memb != NULL; memb = memb->next) | |
1203 { if (find_tuple(mpl, Y, memb->tuple) == NULL) | |
1204 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); | |
1205 } | |
1206 delete_elemset(mpl, X); | |
1207 delete_elemset(mpl, Y); | |
1208 return Z; | |
1209 } | |
1210 | |
1211 /*---------------------------------------------------------------------- | |
1212 -- set_symdiff - symmetric difference between two elemental sets. | |
1213 -- | |
1214 -- This routine computes the symmetric difference: | |
1215 -- | |
1216 -- X (+) Y = (X \ Y) U (Y \ X), | |
1217 -- | |
1218 -- where X and Y are given elemental sets (destroyed on exit). */ | |
1219 | |
1220 ELEMSET *set_symdiff | |
1221 ( MPL *mpl, | |
1222 ELEMSET *X, /* destroyed */ | |
1223 ELEMSET *Y /* destroyed */ | |
1224 ) | |
1225 { ELEMSET *Z; | |
1226 MEMBER *memb; | |
1227 xassert(X != NULL); | |
1228 xassert(X->type == A_NONE); | |
1229 xassert(X->dim > 0); | |
1230 xassert(Y != NULL); | |
1231 xassert(Y->type == A_NONE); | |
1232 xassert(Y->dim > 0); | |
1233 xassert(X->dim == Y->dim); | |
1234 /* Z := X \ Y */ | |
1235 Z = create_elemset(mpl, X->dim); | |
1236 for (memb = X->head; memb != NULL; memb = memb->next) | |
1237 { if (find_tuple(mpl, Y, memb->tuple) == NULL) | |
1238 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); | |
1239 } | |
1240 /* Z := Z U (Y \ X) */ | |
1241 for (memb = Y->head; memb != NULL; memb = memb->next) | |
1242 { if (find_tuple(mpl, X, memb->tuple) == NULL) | |
1243 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); | |
1244 } | |
1245 delete_elemset(mpl, X); | |
1246 delete_elemset(mpl, Y); | |
1247 return Z; | |
1248 } | |
1249 | |
1250 /*---------------------------------------------------------------------- | |
1251 -- set_inter - intersection of two elemental sets. | |
1252 -- | |
1253 -- This routine computes the intersection: | |
1254 -- | |
1255 -- X ^ Y = { j | (j in X) and (j in Y) }, | |
1256 -- | |
1257 -- where X and Y are given elemental sets (destroyed on exit). */ | |
1258 | |
1259 ELEMSET *set_inter | |
1260 ( MPL *mpl, | |
1261 ELEMSET *X, /* destroyed */ | |
1262 ELEMSET *Y /* destroyed */ | |
1263 ) | |
1264 { ELEMSET *Z; | |
1265 MEMBER *memb; | |
1266 xassert(X != NULL); | |
1267 xassert(X->type == A_NONE); | |
1268 xassert(X->dim > 0); | |
1269 xassert(Y != NULL); | |
1270 xassert(Y->type == A_NONE); | |
1271 xassert(Y->dim > 0); | |
1272 xassert(X->dim == Y->dim); | |
1273 Z = create_elemset(mpl, X->dim); | |
1274 for (memb = X->head; memb != NULL; memb = memb->next) | |
1275 { if (find_tuple(mpl, Y, memb->tuple) != NULL) | |
1276 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); | |
1277 } | |
1278 delete_elemset(mpl, X); | |
1279 delete_elemset(mpl, Y); | |
1280 return Z; | |
1281 } | |
1282 | |
1283 /*---------------------------------------------------------------------- | |
1284 -- set_cross - cross (Cartesian) product of two elemental sets. | |
1285 -- | |
1286 -- This routine computes the cross (Cartesian) product: | |
1287 -- | |
1288 -- X x Y = { (i,j) | (i in X) and (j in Y) }, | |
1289 -- | |
1290 -- where X and Y are given elemental sets (destroyed on exit). */ | |
1291 | |
1292 ELEMSET *set_cross | |
1293 ( MPL *mpl, | |
1294 ELEMSET *X, /* destroyed */ | |
1295 ELEMSET *Y /* destroyed */ | |
1296 ) | |
1297 { ELEMSET *Z; | |
1298 MEMBER *memx, *memy; | |
1299 TUPLE *tuple, *temp; | |
1300 xassert(X != NULL); | |
1301 xassert(X->type == A_NONE); | |
1302 xassert(X->dim > 0); | |
1303 xassert(Y != NULL); | |
1304 xassert(Y->type == A_NONE); | |
1305 xassert(Y->dim > 0); | |
1306 Z = create_elemset(mpl, X->dim + Y->dim); | |
1307 for (memx = X->head; memx != NULL; memx = memx->next) | |
1308 { for (memy = Y->head; memy != NULL; memy = memy->next) | |
1309 { tuple = copy_tuple(mpl, memx->tuple); | |
1310 for (temp = memy->tuple; temp != NULL; temp = temp->next) | |
1311 tuple = expand_tuple(mpl, tuple, copy_symbol(mpl, | |
1312 temp->sym)); | |
1313 add_tuple(mpl, Z, tuple); | |
1314 } | |
1315 } | |
1316 delete_elemset(mpl, X); | |
1317 delete_elemset(mpl, Y); | |
1318 return Z; | |
1319 } | |
1320 | |
1321 /**********************************************************************/ | |
1322 /* * * ELEMENTAL VARIABLES * * */ | |
1323 /**********************************************************************/ | |
1324 | |
1325 /* (there are no specific routines for elemental variables) */ | |
1326 | |
1327 /**********************************************************************/ | |
1328 /* * * LINEAR FORMS * * */ | |
1329 /**********************************************************************/ | |
1330 | |
1331 /*---------------------------------------------------------------------- | |
1332 -- constant_term - create constant term. | |
1333 -- | |
1334 -- This routine creates the linear form, which is a constant term. */ | |
1335 | |
1336 FORMULA *constant_term(MPL *mpl, double coef) | |
1337 { FORMULA *form; | |
1338 if (coef == 0.0) | |
1339 form = NULL; | |
1340 else | |
1341 { form = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1342 form->coef = coef; | |
1343 form->var = NULL; | |
1344 form->next = NULL; | |
1345 } | |
1346 return form; | |
1347 } | |
1348 | |
1349 /*---------------------------------------------------------------------- | |
1350 -- single_variable - create single variable. | |
1351 -- | |
1352 -- This routine creates the linear form, which is a single elemental | |
1353 -- variable. */ | |
1354 | |
1355 FORMULA *single_variable | |
1356 ( MPL *mpl, | |
1357 ELEMVAR *var /* referenced */ | |
1358 ) | |
1359 { FORMULA *form; | |
1360 xassert(var != NULL); | |
1361 form = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1362 form->coef = 1.0; | |
1363 form->var = var; | |
1364 form->next = NULL; | |
1365 return form; | |
1366 } | |
1367 | |
1368 /*---------------------------------------------------------------------- | |
1369 -- copy_formula - make copy of linear form. | |
1370 -- | |
1371 -- This routine returns an exact copy of linear form. */ | |
1372 | |
1373 FORMULA *copy_formula | |
1374 ( MPL *mpl, | |
1375 FORMULA *form /* not changed */ | |
1376 ) | |
1377 { FORMULA *head, *tail; | |
1378 if (form == NULL) | |
1379 head = NULL; | |
1380 else | |
1381 { head = tail = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1382 for (; form != NULL; form = form->next) | |
1383 { tail->coef = form->coef; | |
1384 tail->var = form->var; | |
1385 if (form->next != NULL) | |
1386 tail = (tail->next = dmp_get_atom(mpl->formulae, sizeof(FORMULA))); | |
1387 } | |
1388 tail->next = NULL; | |
1389 } | |
1390 return head; | |
1391 } | |
1392 | |
1393 /*---------------------------------------------------------------------- | |
1394 -- delete_formula - delete linear form. | |
1395 -- | |
1396 -- This routine deletes specified linear form. */ | |
1397 | |
1398 void delete_formula | |
1399 ( MPL *mpl, | |
1400 FORMULA *form /* destroyed */ | |
1401 ) | |
1402 { FORMULA *temp; | |
1403 while (form != NULL) | |
1404 { temp = form; | |
1405 form = form->next; | |
1406 dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA)); | |
1407 } | |
1408 return; | |
1409 } | |
1410 | |
1411 /*---------------------------------------------------------------------- | |
1412 -- linear_comb - linear combination of two linear forms. | |
1413 -- | |
1414 -- This routine computes the linear combination: | |
1415 -- | |
1416 -- a * fx + b * fy, | |
1417 -- | |
1418 -- where a and b are numeric coefficients, fx and fy are linear forms | |
1419 -- (destroyed on exit). */ | |
1420 | |
1421 FORMULA *linear_comb | |
1422 ( MPL *mpl, | |
1423 double a, FORMULA *fx, /* destroyed */ | |
1424 double b, FORMULA *fy /* destroyed */ | |
1425 ) | |
1426 { FORMULA *form = NULL, *term, *temp; | |
1427 double c0 = 0.0; | |
1428 for (term = fx; term != NULL; term = term->next) | |
1429 { if (term->var == NULL) | |
1430 c0 = fp_add(mpl, c0, fp_mul(mpl, a, term->coef)); | |
1431 else | |
1432 term->var->temp = | |
1433 fp_add(mpl, term->var->temp, fp_mul(mpl, a, term->coef)); | |
1434 } | |
1435 for (term = fy; term != NULL; term = term->next) | |
1436 { if (term->var == NULL) | |
1437 c0 = fp_add(mpl, c0, fp_mul(mpl, b, term->coef)); | |
1438 else | |
1439 term->var->temp = | |
1440 fp_add(mpl, term->var->temp, fp_mul(mpl, b, term->coef)); | |
1441 } | |
1442 for (term = fx; term != NULL; term = term->next) | |
1443 { if (term->var != NULL && term->var->temp != 0.0) | |
1444 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1445 temp->coef = term->var->temp, temp->var = term->var; | |
1446 temp->next = form, form = temp; | |
1447 term->var->temp = 0.0; | |
1448 } | |
1449 } | |
1450 for (term = fy; term != NULL; term = term->next) | |
1451 { if (term->var != NULL && term->var->temp != 0.0) | |
1452 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1453 temp->coef = term->var->temp, temp->var = term->var; | |
1454 temp->next = form, form = temp; | |
1455 term->var->temp = 0.0; | |
1456 } | |
1457 } | |
1458 if (c0 != 0.0) | |
1459 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); | |
1460 temp->coef = c0, temp->var = NULL; | |
1461 temp->next = form, form = temp; | |
1462 } | |
1463 delete_formula(mpl, fx); | |
1464 delete_formula(mpl, fy); | |
1465 return form; | |
1466 } | |
1467 | |
1468 /*---------------------------------------------------------------------- | |
1469 -- remove_constant - remove constant term from linear form. | |
1470 -- | |
1471 -- This routine removes constant term from linear form and stores its | |
1472 -- value to given location. */ | |
1473 | |
1474 FORMULA *remove_constant | |
1475 ( MPL *mpl, | |
1476 FORMULA *form, /* destroyed */ | |
1477 double *coef /* modified */ | |
1478 ) | |
1479 { FORMULA *head = NULL, *temp; | |
1480 *coef = 0.0; | |
1481 while (form != NULL) | |
1482 { temp = form; | |
1483 form = form->next; | |
1484 if (temp->var == NULL) | |
1485 { /* constant term */ | |
1486 *coef = fp_add(mpl, *coef, temp->coef); | |
1487 dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA)); | |
1488 } | |
1489 else | |
1490 { /* linear term */ | |
1491 temp->next = head; | |
1492 head = temp; | |
1493 } | |
1494 } | |
1495 return head; | |
1496 } | |
1497 | |
1498 /*---------------------------------------------------------------------- | |
1499 -- reduce_terms - reduce identical terms in linear form. | |
1500 -- | |
1501 -- This routine reduces identical terms in specified linear form. */ | |
1502 | |
1503 FORMULA *reduce_terms | |
1504 ( MPL *mpl, | |
1505 FORMULA *form /* destroyed */ | |
1506 ) | |
1507 { FORMULA *term, *next_term; | |
1508 double c0 = 0.0; | |
1509 for (term = form; term != NULL; term = term->next) | |
1510 { if (term->var == NULL) | |
1511 c0 = fp_add(mpl, c0, term->coef); | |
1512 else | |
1513 term->var->temp = fp_add(mpl, term->var->temp, term->coef); | |
1514 } | |
1515 next_term = form, form = NULL; | |
1516 for (term = next_term; term != NULL; term = next_term) | |
1517 { next_term = term->next; | |
1518 if (term->var == NULL && c0 != 0.0) | |
1519 { term->coef = c0, c0 = 0.0; | |
1520 term->next = form, form = term; | |
1521 } | |
1522 else if (term->var != NULL && term->var->temp != 0.0) | |
1523 { term->coef = term->var->temp, term->var->temp = 0.0; | |
1524 term->next = form, form = term; | |
1525 } | |
1526 else | |
1527 dmp_free_atom(mpl->formulae, term, sizeof(FORMULA)); | |
1528 } | |
1529 return form; | |
1530 } | |
1531 | |
1532 /**********************************************************************/ | |
1533 /* * * ELEMENTAL CONSTRAINTS * * */ | |
1534 /**********************************************************************/ | |
1535 | |
1536 /* (there are no specific routines for elemental constraints) */ | |
1537 | |
1538 /**********************************************************************/ | |
1539 /* * * GENERIC VALUES * * */ | |
1540 /**********************************************************************/ | |
1541 | |
1542 /*---------------------------------------------------------------------- | |
1543 -- delete_value - delete generic value. | |
1544 -- | |
1545 -- This routine deletes specified generic value. | |
1546 -- | |
1547 -- NOTE: The generic value to be deleted must be valid. */ | |
1548 | |
1549 void delete_value | |
1550 ( MPL *mpl, | |
1551 int type, | |
1552 VALUE *value /* content destroyed */ | |
1553 ) | |
1554 { xassert(value != NULL); | |
1555 switch (type) | |
1556 { case A_NONE: | |
1557 value->none = NULL; | |
1558 break; | |
1559 case A_NUMERIC: | |
1560 value->num = 0.0; | |
1561 break; | |
1562 case A_SYMBOLIC: | |
1563 delete_symbol(mpl, value->sym), value->sym = NULL; | |
1564 break; | |
1565 case A_LOGICAL: | |
1566 value->bit = 0; | |
1567 break; | |
1568 case A_TUPLE: | |
1569 delete_tuple(mpl, value->tuple), value->tuple = NULL; | |
1570 break; | |
1571 case A_ELEMSET: | |
1572 delete_elemset(mpl, value->set), value->set = NULL; | |
1573 break; | |
1574 case A_ELEMVAR: | |
1575 value->var = NULL; | |
1576 break; | |
1577 case A_FORMULA: | |
1578 delete_formula(mpl, value->form), value->form = NULL; | |
1579 break; | |
1580 case A_ELEMCON: | |
1581 value->con = NULL; | |
1582 break; | |
1583 default: | |
1584 xassert(type != type); | |
1585 } | |
1586 return; | |
1587 } | |
1588 | |
1589 /**********************************************************************/ | |
1590 /* * * SYMBOLICALLY INDEXED ARRAYS * * */ | |
1591 /**********************************************************************/ | |
1592 | |
1593 /*---------------------------------------------------------------------- | |
1594 -- create_array - create array. | |
1595 -- | |
1596 -- This routine creates an array of specified type and dimension. Being | |
1597 -- created the array is initially empty. | |
1598 -- | |
1599 -- The type indicator determines generic values, which can be assigned | |
1600 -- to the array members: | |
1601 -- | |
1602 -- A_NONE - none (members have no assigned values) | |
1603 -- A_NUMERIC - floating-point numbers | |
1604 -- A_SYMBOLIC - symbols | |
1605 -- A_ELEMSET - elemental sets | |
1606 -- A_ELEMVAR - elemental variables | |
1607 -- A_ELEMCON - elemental constraints | |
1608 -- | |
1609 -- The dimension may be 0, in which case the array consists of the only | |
1610 -- member (such arrays represent 0-dimensional objects). */ | |
1611 | |
1612 ARRAY *create_array(MPL *mpl, int type, int dim) | |
1613 { ARRAY *array; | |
1614 xassert(type == A_NONE || type == A_NUMERIC || | |
1615 type == A_SYMBOLIC || type == A_ELEMSET || | |
1616 type == A_ELEMVAR || type == A_ELEMCON); | |
1617 xassert(dim >= 0); | |
1618 array = dmp_get_atom(mpl->arrays, sizeof(ARRAY)); | |
1619 array->type = type; | |
1620 array->dim = dim; | |
1621 array->size = 0; | |
1622 array->head = NULL; | |
1623 array->tail = NULL; | |
1624 array->tree = NULL; | |
1625 array->prev = NULL; | |
1626 array->next = mpl->a_list; | |
1627 /* include the array in the global array list */ | |
1628 if (array->next != NULL) array->next->prev = array; | |
1629 mpl->a_list = array; | |
1630 return array; | |
1631 } | |
1632 | |
1633 /*---------------------------------------------------------------------- | |
1634 -- find_member - find array member with given n-tuple. | |
1635 -- | |
1636 -- This routine finds an array member, which has given n-tuple. If the | |
1637 -- array is short, the linear search is used. Otherwise the routine | |
1638 -- autimatically creates the search tree (i.e. the array index) to find | |
1639 -- members for logarithmic time. */ | |
1640 | |
1641 static int compare_member_tuples(void *info, const void *key1, | |
1642 const void *key2) | |
1643 { /* this is an auxiliary routine used to compare keys, which are | |
1644 n-tuples assigned to array members */ | |
1645 return compare_tuples((MPL *)info, (TUPLE *)key1, (TUPLE *)key2); | |
1646 } | |
1647 | |
1648 MEMBER *find_member | |
1649 ( MPL *mpl, | |
1650 ARRAY *array, /* not changed */ | |
1651 TUPLE *tuple /* not changed */ | |
1652 ) | |
1653 { MEMBER *memb; | |
1654 xassert(array != NULL); | |
1655 /* the n-tuple must have the same dimension as the array */ | |
1656 xassert(tuple_dimen(mpl, tuple) == array->dim); | |
1657 /* if the array is large enough, create the search tree and index | |
1658 all existing members of the array */ | |
1659 if (array->size > 30 && array->tree == NULL) | |
1660 { array->tree = avl_create_tree(compare_member_tuples, mpl); | |
1661 for (memb = array->head; memb != NULL; memb = memb->next) | |
1662 avl_set_node_link(avl_insert_node(array->tree, memb->tuple), | |
1663 (void *)memb); | |
1664 } | |
1665 /* find a member, which has the given tuple */ | |
1666 if (array->tree == NULL) | |
1667 { /* the search tree doesn't exist; use the linear search */ | |
1668 for (memb = array->head; memb != NULL; memb = memb->next) | |
1669 if (compare_tuples(mpl, memb->tuple, tuple) == 0) break; | |
1670 } | |
1671 else | |
1672 { /* the search tree exists; use the binary search */ | |
1673 AVLNODE *node; | |
1674 node = avl_find_node(array->tree, tuple); | |
1675 memb = (MEMBER *)(node == NULL ? NULL : avl_get_node_link(node)); | |
1676 } | |
1677 return memb; | |
1678 } | |
1679 | |
1680 /*---------------------------------------------------------------------- | |
1681 -- add_member - add new member to array. | |
1682 -- | |
1683 -- This routine creates a new member with given n-tuple and adds it to | |
1684 -- specified array. | |
1685 -- | |
1686 -- For the sake of efficiency this routine doesn't check whether the | |
1687 -- array already contains a member with the given n-tuple or not. Thus, | |
1688 -- if necessary, the calling program should use the routine find_member | |
1689 -- in order to be sure that the array contains no member with the same | |
1690 -- n-tuple, because members with duplicate n-tuples are not allowed. | |
1691 -- | |
1692 -- This routine assigns no generic value to the new member, because the | |
1693 -- calling program must do that. */ | |
1694 | |
1695 MEMBER *add_member | |
1696 ( MPL *mpl, | |
1697 ARRAY *array, /* modified */ | |
1698 TUPLE *tuple /* destroyed */ | |
1699 ) | |
1700 { MEMBER *memb; | |
1701 xassert(array != NULL); | |
1702 /* the n-tuple must have the same dimension as the array */ | |
1703 xassert(tuple_dimen(mpl, tuple) == array->dim); | |
1704 /* create new member */ | |
1705 memb = dmp_get_atom(mpl->members, sizeof(MEMBER)); | |
1706 memb->tuple = tuple; | |
1707 memb->next = NULL; | |
1708 memset(&memb->value, '?', sizeof(VALUE)); | |
1709 /* and append it to the member list */ | |
1710 array->size++; | |
1711 if (array->head == NULL) | |
1712 array->head = memb; | |
1713 else | |
1714 array->tail->next = memb; | |
1715 array->tail = memb; | |
1716 /* if the search tree exists, index the new member */ | |
1717 if (array->tree != NULL) | |
1718 avl_set_node_link(avl_insert_node(array->tree, memb->tuple), | |
1719 (void *)memb); | |
1720 return memb; | |
1721 } | |
1722 | |
1723 /*---------------------------------------------------------------------- | |
1724 -- delete_array - delete array. | |
1725 -- | |
1726 -- This routine deletes specified array. | |
1727 -- | |
1728 -- Generic values assigned to the array members are not deleted by this | |
1729 -- routine. The calling program itself must delete all assigned generic | |
1730 -- values before deleting the array. */ | |
1731 | |
1732 void delete_array | |
1733 ( MPL *mpl, | |
1734 ARRAY *array /* destroyed */ | |
1735 ) | |
1736 { MEMBER *memb; | |
1737 xassert(array != NULL); | |
1738 /* delete all existing array members */ | |
1739 while (array->head != NULL) | |
1740 { memb = array->head; | |
1741 array->head = memb->next; | |
1742 delete_tuple(mpl, memb->tuple); | |
1743 dmp_free_atom(mpl->members, memb, sizeof(MEMBER)); | |
1744 } | |
1745 /* if the search tree exists, also delete it */ | |
1746 if (array->tree != NULL) avl_delete_tree(array->tree); | |
1747 /* remove the array from the global array list */ | |
1748 if (array->prev == NULL) | |
1749 mpl->a_list = array->next; | |
1750 else | |
1751 array->prev->next = array->next; | |
1752 if (array->next == NULL) | |
1753 ; | |
1754 else | |
1755 array->next->prev = array->prev; | |
1756 /* delete the array descriptor */ | |
1757 dmp_free_atom(mpl->arrays, array, sizeof(ARRAY)); | |
1758 return; | |
1759 } | |
1760 | |
1761 /**********************************************************************/ | |
1762 /* * * DOMAINS AND DUMMY INDICES * * */ | |
1763 /**********************************************************************/ | |
1764 | |
1765 /*---------------------------------------------------------------------- | |
1766 -- assign_dummy_index - assign new value to dummy index. | |
1767 -- | |
1768 -- This routine assigns new value to specified dummy index and, that is | |
1769 -- important, invalidates all temporary resultant values, which depends | |
1770 -- on that dummy index. */ | |
1771 | |
1772 void assign_dummy_index | |
1773 ( MPL *mpl, | |
1774 DOMAIN_SLOT *slot, /* modified */ | |
1775 SYMBOL *value /* not changed */ | |
1776 ) | |
1777 { CODE *leaf, *code; | |
1778 xassert(slot != NULL); | |
1779 xassert(value != NULL); | |
1780 /* delete the current value assigned to the dummy index */ | |
1781 if (slot->value != NULL) | |
1782 { /* if the current value and the new one are identical, actual | |
1783 assignment is not needed */ | |
1784 if (compare_symbols(mpl, slot->value, value) == 0) goto done; | |
1785 /* delete a symbol, which is the current value */ | |
1786 delete_symbol(mpl, slot->value), slot->value = NULL; | |
1787 } | |
1788 /* now walk through all the pseudo-codes with op = O_INDEX, which | |
1789 refer to the dummy index to be changed (these pseudo-codes are | |
1790 leaves in the forest of *all* expressions in the database) */ | |
1791 for (leaf = slot->list; leaf != NULL; leaf = leaf->arg.index. | |
1792 next) | |
1793 { xassert(leaf->op == O_INDEX); | |
1794 /* invalidate all resultant values, which depend on the dummy | |
1795 index, walking from the current leaf toward the root of the | |
1796 corresponding expression tree */ | |
1797 for (code = leaf; code != NULL; code = code->up) | |
1798 { if (code->valid) | |
1799 { /* invalidate and delete resultant value */ | |
1800 code->valid = 0; | |
1801 delete_value(mpl, code->type, &code->value); | |
1802 } | |
1803 } | |
1804 } | |
1805 /* assign new value to the dummy index */ | |
1806 slot->value = copy_symbol(mpl, value); | |
1807 done: return; | |
1808 } | |
1809 | |
1810 /*---------------------------------------------------------------------- | |
1811 -- update_dummy_indices - update current values of dummy indices. | |
1812 -- | |
1813 -- This routine assigns components of "backup" n-tuple to dummy indices | |
1814 -- of specified domain block. If no "backup" n-tuple is defined for the | |
1815 -- domain block, values of the dummy indices remain untouched. */ | |
1816 | |
1817 void update_dummy_indices | |
1818 ( MPL *mpl, | |
1819 DOMAIN_BLOCK *block /* not changed */ | |
1820 ) | |
1821 { DOMAIN_SLOT *slot; | |
1822 TUPLE *temp; | |
1823 if (block->backup != NULL) | |
1824 { for (slot = block->list, temp = block->backup; slot != NULL; | |
1825 slot = slot->next, temp = temp->next) | |
1826 { xassert(temp != NULL); | |
1827 xassert(temp->sym != NULL); | |
1828 assign_dummy_index(mpl, slot, temp->sym); | |
1829 } | |
1830 } | |
1831 return; | |
1832 } | |
1833 | |
1834 /*---------------------------------------------------------------------- | |
1835 -- enter_domain_block - enter domain block. | |
1836 -- | |
1837 -- Let specified domain block have the form: | |
1838 -- | |
1839 -- { ..., (j1, j2, ..., jn) in J, ... } | |
1840 -- | |
1841 -- where j1, j2, ..., jn are dummy indices, J is a basic set. | |
1842 -- | |
1843 -- This routine does the following: | |
1844 -- | |
1845 -- 1. Checks if the given n-tuple is a member of the basic set J. Note | |
1846 -- that J being *out of the scope* of the domain block cannot depend | |
1847 -- on the dummy indices in the same and inner domain blocks, so it | |
1848 -- can be computed before the dummy indices are assigned new values. | |
1849 -- If this check fails, the routine returns with non-zero code. | |
1850 -- | |
1851 -- 2. Saves current values of the dummy indices j1, j2, ..., jn. | |
1852 -- | |
1853 -- 3. Assigns new values, which are components of the given n-tuple, to | |
1854 -- the dummy indices j1, j2, ..., jn. If dimension of the n-tuple is | |
1855 -- larger than n, its extra components n+1, n+2, ... are not used. | |
1856 -- | |
1857 -- 4. Calls the formal routine func which either enters the next domain | |
1858 -- block or evaluates some code within the domain scope. | |
1859 -- | |
1860 -- 5. Restores former values of the dummy indices j1, j2, ..., jn. | |
1861 -- | |
1862 -- Since current values assigned to the dummy indices on entry to this | |
1863 -- routine are restored on exit, the formal routine func is allowed to | |
1864 -- call this routine recursively. */ | |
1865 | |
1866 int enter_domain_block | |
1867 ( MPL *mpl, | |
1868 DOMAIN_BLOCK *block, /* not changed */ | |
1869 TUPLE *tuple, /* not changed */ | |
1870 void *info, void (*func)(MPL *mpl, void *info) | |
1871 ) | |
1872 { TUPLE *backup; | |
1873 int ret = 0; | |
1874 /* check if the given n-tuple is a member of the basic set */ | |
1875 xassert(block->code != NULL); | |
1876 if (!is_member(mpl, block->code, tuple)) | |
1877 { ret = 1; | |
1878 goto done; | |
1879 } | |
1880 /* save reference to "backup" n-tuple, which was used to assign | |
1881 current values of the dummy indices (it is sufficient to save | |
1882 reference, not value, because that n-tuple is defined in some | |
1883 outer level of recursion and therefore cannot be changed on | |
1884 this and deeper recursive calls) */ | |
1885 backup = block->backup; | |
1886 /* set up new "backup" n-tuple, which defines new values of the | |
1887 dummy indices */ | |
1888 block->backup = tuple; | |
1889 /* assign new values to the dummy indices */ | |
1890 update_dummy_indices(mpl, block); | |
1891 /* call the formal routine that does the rest part of the job */ | |
1892 func(mpl, info); | |
1893 /* restore reference to the former "backup" n-tuple */ | |
1894 block->backup = backup; | |
1895 /* restore former values of the dummy indices; note that if the | |
1896 domain block just escaped has no other active instances which | |
1897 may exist due to recursion (it is indicated by a null pointer | |
1898 to the former n-tuple), former values of the dummy indices are | |
1899 undefined; therefore in this case the routine keeps currently | |
1900 assigned values of the dummy indices that involves keeping all | |
1901 dependent temporary results and thereby, if this domain block | |
1902 is not used recursively, allows improving efficiency */ | |
1903 update_dummy_indices(mpl, block); | |
1904 done: return ret; | |
1905 } | |
1906 | |
1907 /*---------------------------------------------------------------------- | |
1908 -- eval_within_domain - perform evaluation within domain scope. | |
1909 -- | |
1910 -- This routine assigns new values (symbols) to all dummy indices of | |
1911 -- specified domain and calls the formal routine func, which is used to | |
1912 -- evaluate some code in the domain scope. Each free dummy index in the | |
1913 -- domain is assigned a value specified in the corresponding component | |
1914 -- of given n-tuple. Non-free dummy indices are assigned values, which | |
1915 -- are computed by this routine. | |
1916 -- | |
1917 -- Number of components in the given n-tuple must be the same as number | |
1918 -- of free indices in the domain. | |
1919 -- | |
1920 -- If the given n-tuple is not a member of the domain set, the routine | |
1921 -- func is not called, and non-zero code is returned. | |
1922 -- | |
1923 -- For the sake of convenience it is allowed to specify domain as NULL | |
1924 -- (then n-tuple also must be 0-tuple, i.e. empty), in which case this | |
1925 -- routine just calls the routine func and returns zero. | |
1926 -- | |
1927 -- This routine allows recursive calls from the routine func providing | |
1928 -- correct values of dummy indices for each instance. | |
1929 -- | |
1930 -- NOTE: The n-tuple passed to this routine must not be changed by any | |
1931 -- other routines called from the formal routine func until this | |
1932 -- routine has returned. */ | |
1933 | |
1934 struct eval_domain_info | |
1935 { /* working info used by the routine eval_within_domain */ | |
1936 DOMAIN *domain; | |
1937 /* domain, which has to be entered */ | |
1938 DOMAIN_BLOCK *block; | |
1939 /* domain block, which is currently processed */ | |
1940 TUPLE *tuple; | |
1941 /* tail of original n-tuple, whose components have to be assigned | |
1942 to free dummy indices in the current domain block */ | |
1943 void *info; | |
1944 /* transit pointer passed to the formal routine func */ | |
1945 void (*func)(MPL *mpl, void *info); | |
1946 /* routine, which has to be executed in the domain scope */ | |
1947 int failure; | |
1948 /* this flag indicates that given n-tuple is not a member of the | |
1949 domain set */ | |
1950 }; | |
1951 | |
1952 static void eval_domain_func(MPL *mpl, void *_my_info) | |
1953 { /* this routine recursively enters into the domain scope and then | |
1954 calls the routine func */ | |
1955 struct eval_domain_info *my_info = _my_info; | |
1956 if (my_info->block != NULL) | |
1957 { /* the current domain block to be entered exists */ | |
1958 DOMAIN_BLOCK *block; | |
1959 DOMAIN_SLOT *slot; | |
1960 TUPLE *tuple = NULL, *temp = NULL; | |
1961 /* save pointer to the current domain block */ | |
1962 block = my_info->block; | |
1963 /* and get ready to enter the next block (if it exists) */ | |
1964 my_info->block = block->next; | |
1965 /* construct temporary n-tuple, whose components correspond to | |
1966 dummy indices (slots) of the current domain; components of | |
1967 the temporary n-tuple that correspond to free dummy indices | |
1968 are assigned references (not values!) to symbols specified | |
1969 in the corresponding components of the given n-tuple, while | |
1970 other components that correspond to non-free dummy indices | |
1971 are assigned symbolic values computed here */ | |
1972 for (slot = block->list; slot != NULL; slot = slot->next) | |
1973 { /* create component that corresponds to the current slot */ | |
1974 if (tuple == NULL) | |
1975 tuple = temp = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); | |
1976 else | |
1977 temp = (temp->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE))); | |
1978 if (slot->code == NULL) | |
1979 { /* dummy index is free; take reference to symbol, which | |
1980 is specified in the corresponding component of given | |
1981 n-tuple */ | |
1982 xassert(my_info->tuple != NULL); | |
1983 temp->sym = my_info->tuple->sym; | |
1984 xassert(temp->sym != NULL); | |
1985 my_info->tuple = my_info->tuple->next; | |
1986 } | |
1987 else | |
1988 { /* dummy index is non-free; compute symbolic value to be | |
1989 temporarily assigned to the dummy index */ | |
1990 temp->sym = eval_symbolic(mpl, slot->code); | |
1991 } | |
1992 } | |
1993 temp->next = NULL; | |
1994 /* enter the current domain block */ | |
1995 if (enter_domain_block(mpl, block, tuple, my_info, | |
1996 eval_domain_func)) my_info->failure = 1; | |
1997 /* delete temporary n-tuple as well as symbols that correspond | |
1998 to non-free dummy indices (they were computed here) */ | |
1999 for (slot = block->list; slot != NULL; slot = slot->next) | |
2000 { xassert(tuple != NULL); | |
2001 temp = tuple; | |
2002 tuple = tuple->next; | |
2003 if (slot->code != NULL) | |
2004 { /* dummy index is non-free; delete symbolic value */ | |
2005 delete_symbol(mpl, temp->sym); | |
2006 } | |
2007 /* delete component that corresponds to the current slot */ | |
2008 dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE)); | |
2009 } | |
2010 } | |
2011 else | |
2012 { /* there are no more domain blocks, i.e. we have reached the | |
2013 domain scope */ | |
2014 xassert(my_info->tuple == NULL); | |
2015 /* check optional predicate specified for the domain */ | |
2016 if (my_info->domain->code != NULL && !eval_logical(mpl, | |
2017 my_info->domain->code)) | |
2018 { /* the predicate is false */ | |
2019 my_info->failure = 2; | |
2020 } | |
2021 else | |
2022 { /* the predicate is true; do the job */ | |
2023 my_info->func(mpl, my_info->info); | |
2024 } | |
2025 } | |
2026 return; | |
2027 } | |
2028 | |
2029 int eval_within_domain | |
2030 ( MPL *mpl, | |
2031 DOMAIN *domain, /* not changed */ | |
2032 TUPLE *tuple, /* not changed */ | |
2033 void *info, void (*func)(MPL *mpl, void *info) | |
2034 ) | |
2035 { /* this routine performs evaluation within domain scope */ | |
2036 struct eval_domain_info _my_info, *my_info = &_my_info; | |
2037 if (domain == NULL) | |
2038 { xassert(tuple == NULL); | |
2039 func(mpl, info); | |
2040 my_info->failure = 0; | |
2041 } | |
2042 else | |
2043 { xassert(tuple != NULL); | |
2044 my_info->domain = domain; | |
2045 my_info->block = domain->list; | |
2046 my_info->tuple = tuple; | |
2047 my_info->info = info; | |
2048 my_info->func = func; | |
2049 my_info->failure = 0; | |
2050 /* enter the very first domain block */ | |
2051 eval_domain_func(mpl, my_info); | |
2052 } | |
2053 return my_info->failure; | |
2054 } | |
2055 | |
2056 /*---------------------------------------------------------------------- | |
2057 -- loop_within_domain - perform iterations within domain scope. | |
2058 -- | |
2059 -- This routine iteratively assigns new values (symbols) to the dummy | |
2060 -- indices of specified domain by enumerating all n-tuples, which are | |
2061 -- members of the domain set, and for every n-tuple it calls the formal | |
2062 -- routine func to evaluate some code within the domain scope. | |
2063 -- | |
2064 -- If the routine func returns non-zero, enumeration within the domain | |
2065 -- is prematurely terminated. | |
2066 -- | |
2067 -- For the sake of convenience it is allowed to specify domain as NULL, | |
2068 -- in which case this routine just calls the routine func only once and | |
2069 -- returns zero. | |
2070 -- | |
2071 -- This routine allows recursive calls from the routine func providing | |
2072 -- correct values of dummy indices for each instance. */ | |
2073 | |
2074 struct loop_domain_info | |
2075 { /* working info used by the routine loop_within_domain */ | |
2076 DOMAIN *domain; | |
2077 /* domain, which has to be entered */ | |
2078 DOMAIN_BLOCK *block; | |
2079 /* domain block, which is currently processed */ | |
2080 int looping; | |
2081 /* clearing this flag leads to terminating enumeration */ | |
2082 void *info; | |
2083 /* transit pointer passed to the formal routine func */ | |
2084 int (*func)(MPL *mpl, void *info); | |
2085 /* routine, which needs to be executed in the domain scope */ | |
2086 }; | |
2087 | |
2088 static void loop_domain_func(MPL *mpl, void *_my_info) | |
2089 { /* this routine enumerates all n-tuples in the basic set of the | |
2090 current domain block, enters recursively into the domain scope | |
2091 for every n-tuple, and then calls the routine func */ | |
2092 struct loop_domain_info *my_info = _my_info; | |
2093 if (my_info->block != NULL) | |
2094 { /* the current domain block to be entered exists */ | |
2095 DOMAIN_BLOCK *block; | |
2096 DOMAIN_SLOT *slot; | |
2097 TUPLE *bound; | |
2098 /* save pointer to the current domain block */ | |
2099 block = my_info->block; | |
2100 /* and get ready to enter the next block (if it exists) */ | |
2101 my_info->block = block->next; | |
2102 /* compute symbolic values, at which non-free dummy indices of | |
2103 the current domain block are bound; since that values don't | |
2104 depend on free dummy indices of the current block, they can | |
2105 be computed once out of the enumeration loop */ | |
2106 bound = create_tuple(mpl); | |
2107 for (slot = block->list; slot != NULL; slot = slot->next) | |
2108 { if (slot->code != NULL) | |
2109 bound = expand_tuple(mpl, bound, eval_symbolic(mpl, | |
2110 slot->code)); | |
2111 } | |
2112 /* start enumeration */ | |
2113 xassert(block->code != NULL); | |
2114 if (block->code->op == O_DOTS) | |
2115 { /* the basic set is "arithmetic", in which case it doesn't | |
2116 need to be computed explicitly */ | |
2117 TUPLE *tuple; | |
2118 int n, j; | |
2119 double t0, tf, dt; | |
2120 /* compute "parameters" of the basic set */ | |
2121 t0 = eval_numeric(mpl, block->code->arg.arg.x); | |
2122 tf = eval_numeric(mpl, block->code->arg.arg.y); | |
2123 if (block->code->arg.arg.z == NULL) | |
2124 dt = 1.0; | |
2125 else | |
2126 dt = eval_numeric(mpl, block->code->arg.arg.z); | |
2127 /* determine cardinality of the basic set */ | |
2128 n = arelset_size(mpl, t0, tf, dt); | |
2129 /* create dummy 1-tuple for members of the basic set */ | |
2130 tuple = expand_tuple(mpl, create_tuple(mpl), | |
2131 create_symbol_num(mpl, 0.0)); | |
2132 /* in case of "arithmetic" set there is exactly one dummy | |
2133 index, which cannot be non-free */ | |
2134 xassert(bound == NULL); | |
2135 /* walk through 1-tuples of the basic set */ | |
2136 for (j = 1; j <= n && my_info->looping; j++) | |
2137 { /* construct dummy 1-tuple for the current member */ | |
2138 tuple->sym->num = arelset_member(mpl, t0, tf, dt, j); | |
2139 /* enter the current domain block */ | |
2140 enter_domain_block(mpl, block, tuple, my_info, | |
2141 loop_domain_func); | |
2142 } | |
2143 /* delete dummy 1-tuple */ | |
2144 delete_tuple(mpl, tuple); | |
2145 } | |
2146 else | |
2147 { /* the basic set is of general kind, in which case it needs | |
2148 to be explicitly computed */ | |
2149 ELEMSET *set; | |
2150 MEMBER *memb; | |
2151 TUPLE *temp1, *temp2; | |
2152 /* compute the basic set */ | |
2153 set = eval_elemset(mpl, block->code); | |
2154 /* walk through all n-tuples of the basic set */ | |
2155 for (memb = set->head; memb != NULL && my_info->looping; | |
2156 memb = memb->next) | |
2157 { /* all components of the current n-tuple that correspond | |
2158 to non-free dummy indices must be feasible; otherwise | |
2159 the n-tuple is not in the basic set */ | |
2160 temp1 = memb->tuple; | |
2161 temp2 = bound; | |
2162 for (slot = block->list; slot != NULL; slot = slot->next) | |
2163 { xassert(temp1 != NULL); | |
2164 if (slot->code != NULL) | |
2165 { /* non-free dummy index */ | |
2166 xassert(temp2 != NULL); | |
2167 if (compare_symbols(mpl, temp1->sym, temp2->sym) | |
2168 != 0) | |
2169 { /* the n-tuple is not in the basic set */ | |
2170 goto skip; | |
2171 } | |
2172 temp2 = temp2->next; | |
2173 } | |
2174 temp1 = temp1->next; | |
2175 } | |
2176 xassert(temp1 == NULL); | |
2177 xassert(temp2 == NULL); | |
2178 /* enter the current domain block */ | |
2179 enter_domain_block(mpl, block, memb->tuple, my_info, | |
2180 loop_domain_func); | |
2181 skip: ; | |
2182 } | |
2183 /* delete the basic set */ | |
2184 delete_elemset(mpl, set); | |
2185 } | |
2186 /* delete symbolic values binding non-free dummy indices */ | |
2187 delete_tuple(mpl, bound); | |
2188 /* restore pointer to the current domain block */ | |
2189 my_info->block = block; | |
2190 } | |
2191 else | |
2192 { /* there are no more domain blocks, i.e. we have reached the | |
2193 domain scope */ | |
2194 /* check optional predicate specified for the domain */ | |
2195 if (my_info->domain->code != NULL && !eval_logical(mpl, | |
2196 my_info->domain->code)) | |
2197 { /* the predicate is false */ | |
2198 /* nop */; | |
2199 } | |
2200 else | |
2201 { /* the predicate is true; do the job */ | |
2202 my_info->looping = !my_info->func(mpl, my_info->info); | |
2203 } | |
2204 } | |
2205 return; | |
2206 } | |
2207 | |
2208 void loop_within_domain | |
2209 ( MPL *mpl, | |
2210 DOMAIN *domain, /* not changed */ | |
2211 void *info, int (*func)(MPL *mpl, void *info) | |
2212 ) | |
2213 { /* this routine performs iterations within domain scope */ | |
2214 struct loop_domain_info _my_info, *my_info = &_my_info; | |
2215 if (domain == NULL) | |
2216 func(mpl, info); | |
2217 else | |
2218 { my_info->domain = domain; | |
2219 my_info->block = domain->list; | |
2220 my_info->looping = 1; | |
2221 my_info->info = info; | |
2222 my_info->func = func; | |
2223 /* enter the very first domain block */ | |
2224 loop_domain_func(mpl, my_info); | |
2225 } | |
2226 return; | |
2227 } | |
2228 | |
2229 /*---------------------------------------------------------------------- | |
2230 -- out_of_domain - raise domain exception. | |
2231 -- | |
2232 -- This routine is called when a reference is made to a member of some | |
2233 -- model object, but its n-tuple is out of the object domain. */ | |
2234 | |
2235 void out_of_domain | |
2236 ( MPL *mpl, | |
2237 char *name, /* not changed */ | |
2238 TUPLE *tuple /* not changed */ | |
2239 ) | |
2240 { xassert(name != NULL); | |
2241 xassert(tuple != NULL); | |
2242 error(mpl, "%s%s out of domain", name, format_tuple(mpl, '[', | |
2243 tuple)); | |
2244 /* no return */ | |
2245 } | |
2246 | |
2247 /*---------------------------------------------------------------------- | |
2248 -- get_domain_tuple - obtain current n-tuple from domain. | |
2249 -- | |
2250 -- This routine constructs n-tuple, whose components are current values | |
2251 -- assigned to *free* dummy indices of specified domain. | |
2252 -- | |
2253 -- For the sake of convenience it is allowed to specify domain as NULL, | |
2254 -- in which case this routine returns 0-tuple. | |
2255 -- | |
2256 -- NOTE: This routine must not be called out of domain scope. */ | |
2257 | |
2258 TUPLE *get_domain_tuple | |
2259 ( MPL *mpl, | |
2260 DOMAIN *domain /* not changed */ | |
2261 ) | |
2262 { DOMAIN_BLOCK *block; | |
2263 DOMAIN_SLOT *slot; | |
2264 TUPLE *tuple; | |
2265 tuple = create_tuple(mpl); | |
2266 if (domain != NULL) | |
2267 { for (block = domain->list; block != NULL; block = block->next) | |
2268 { for (slot = block->list; slot != NULL; slot = slot->next) | |
2269 { if (slot->code == NULL) | |
2270 { xassert(slot->value != NULL); | |
2271 tuple = expand_tuple(mpl, tuple, copy_symbol(mpl, | |
2272 slot->value)); | |
2273 } | |
2274 } | |
2275 } | |
2276 } | |
2277 return tuple; | |
2278 } | |
2279 | |
2280 /*---------------------------------------------------------------------- | |
2281 -- clean_domain - clean domain. | |
2282 -- | |
2283 -- This routine cleans specified domain that assumes deleting all stuff | |
2284 -- dynamically allocated during the generation phase. */ | |
2285 | |
2286 void clean_domain(MPL *mpl, DOMAIN *domain) | |
2287 { DOMAIN_BLOCK *block; | |
2288 DOMAIN_SLOT *slot; | |
2289 /* if no domain is specified, do nothing */ | |
2290 if (domain == NULL) goto done; | |
2291 /* clean all domain blocks */ | |
2292 for (block = domain->list; block != NULL; block = block->next) | |
2293 { /* clean all domain slots */ | |
2294 for (slot = block->list; slot != NULL; slot = slot->next) | |
2295 { /* clean pseudo-code for computing bound value */ | |
2296 clean_code(mpl, slot->code); | |
2297 /* delete symbolic value assigned to dummy index */ | |
2298 if (slot->value != NULL) | |
2299 delete_symbol(mpl, slot->value), slot->value = NULL; | |
2300 } | |
2301 /* clean pseudo-code for computing basic set */ | |
2302 clean_code(mpl, block->code); | |
2303 } | |
2304 /* clean pseudo-code for computing domain predicate */ | |
2305 clean_code(mpl, domain->code); | |
2306 done: return; | |
2307 } | |
2308 | |
2309 /**********************************************************************/ | |
2310 /* * * MODEL SETS * * */ | |
2311 /**********************************************************************/ | |
2312 | |
2313 /*---------------------------------------------------------------------- | |
2314 -- check_elem_set - check elemental set assigned to set member. | |
2315 -- | |
2316 -- This routine checks if given elemental set being assigned to member | |
2317 -- of specified model set satisfies to all restrictions. | |
2318 -- | |
2319 -- NOTE: This routine must not be called out of domain scope. */ | |
2320 | |
2321 void check_elem_set | |
2322 ( MPL *mpl, | |
2323 SET *set, /* not changed */ | |
2324 TUPLE *tuple, /* not changed */ | |
2325 ELEMSET *refer /* not changed */ | |
2326 ) | |
2327 { WITHIN *within; | |
2328 MEMBER *memb; | |
2329 int eqno; | |
2330 /* elemental set must be within all specified supersets */ | |
2331 for (within = set->within, eqno = 1; within != NULL; within = | |
2332 within->next, eqno++) | |
2333 { xassert(within->code != NULL); | |
2334 for (memb = refer->head; memb != NULL; memb = memb->next) | |
2335 { if (!is_member(mpl, within->code, memb->tuple)) | |
2336 { char buf[255+1]; | |
2337 strcpy(buf, format_tuple(mpl, '(', memb->tuple)); | |
2338 xassert(strlen(buf) < sizeof(buf)); | |
2339 error(mpl, "%s%s contains %s which not within specified " | |
2340 "set; see (%d)", set->name, format_tuple(mpl, '[', | |
2341 tuple), buf, eqno); | |
2342 } | |
2343 } | |
2344 } | |
2345 return; | |
2346 } | |
2347 | |
2348 /*---------------------------------------------------------------------- | |
2349 -- take_member_set - obtain elemental set assigned to set member. | |
2350 -- | |
2351 -- This routine obtains a reference to elemental set assigned to given | |
2352 -- member of specified model set and returns it on exit. | |
2353 -- | |
2354 -- NOTE: This routine must not be called out of domain scope. */ | |
2355 | |
2356 ELEMSET *take_member_set /* returns reference, not value */ | |
2357 ( MPL *mpl, | |
2358 SET *set, /* not changed */ | |
2359 TUPLE *tuple /* not changed */ | |
2360 ) | |
2361 { MEMBER *memb; | |
2362 ELEMSET *refer; | |
2363 /* find member in the set array */ | |
2364 memb = find_member(mpl, set->array, tuple); | |
2365 if (memb != NULL) | |
2366 { /* member exists, so just take the reference */ | |
2367 refer = memb->value.set; | |
2368 } | |
2369 else if (set->assign != NULL) | |
2370 { /* compute value using assignment expression */ | |
2371 refer = eval_elemset(mpl, set->assign); | |
2372 add: /* check that the elemental set satisfies to all restrictions, | |
2373 assign it to new member, and add the member to the array */ | |
2374 check_elem_set(mpl, set, tuple, refer); | |
2375 memb = add_member(mpl, set->array, copy_tuple(mpl, tuple)); | |
2376 memb->value.set = refer; | |
2377 } | |
2378 else if (set->option != NULL) | |
2379 { /* compute default elemental set */ | |
2380 refer = eval_elemset(mpl, set->option); | |
2381 goto add; | |
2382 } | |
2383 else | |
2384 { /* no value (elemental set) is provided */ | |
2385 error(mpl, "no value for %s%s", set->name, format_tuple(mpl, | |
2386 '[', tuple)); | |
2387 } | |
2388 return refer; | |
2389 } | |
2390 | |
2391 /*---------------------------------------------------------------------- | |
2392 -- eval_member_set - evaluate elemental set assigned to set member. | |
2393 -- | |
2394 -- This routine evaluates a reference to elemental set assigned to given | |
2395 -- member of specified model set and returns it on exit. */ | |
2396 | |
2397 struct eval_set_info | |
2398 { /* working info used by the routine eval_member_set */ | |
2399 SET *set; | |
2400 /* model set */ | |
2401 TUPLE *tuple; | |
2402 /* n-tuple, which defines set member */ | |
2403 MEMBER *memb; | |
2404 /* normally this pointer is NULL; the routine uses this pointer | |
2405 to check data provided in the data section, in which case it | |
2406 points to a member currently checked; this check is performed | |
2407 automatically only once when a reference to any member occurs | |
2408 for the first time */ | |
2409 ELEMSET *refer; | |
2410 /* evaluated reference to elemental set */ | |
2411 }; | |
2412 | |
2413 static void eval_set_func(MPL *mpl, void *_info) | |
2414 { /* this is auxiliary routine to work within domain scope */ | |
2415 struct eval_set_info *info = _info; | |
2416 if (info->memb != NULL) | |
2417 { /* checking call; check elemental set being assigned */ | |
2418 check_elem_set(mpl, info->set, info->memb->tuple, | |
2419 info->memb->value.set); | |
2420 } | |
2421 else | |
2422 { /* normal call; evaluate member, which has given n-tuple */ | |
2423 info->refer = take_member_set(mpl, info->set, info->tuple); | |
2424 } | |
2425 return; | |
2426 } | |
2427 | |
2428 #if 1 /* 12/XII-2008 */ | |
2429 static void saturate_set(MPL *mpl, SET *set) | |
2430 { GADGET *gadget = set->gadget; | |
2431 ELEMSET *data; | |
2432 MEMBER *elem, *memb; | |
2433 TUPLE *tuple, *work[20]; | |
2434 int i; | |
2435 xprintf("Generating %s...\n", set->name); | |
2436 eval_whole_set(mpl, gadget->set); | |
2437 /* gadget set must have exactly one member */ | |
2438 xassert(gadget->set->array != NULL); | |
2439 xassert(gadget->set->array->head != NULL); | |
2440 xassert(gadget->set->array->head == gadget->set->array->tail); | |
2441 data = gadget->set->array->head->value.set; | |
2442 xassert(data->type == A_NONE); | |
2443 xassert(data->dim == gadget->set->dimen); | |
2444 /* walk thru all elements of the plain set */ | |
2445 for (elem = data->head; elem != NULL; elem = elem->next) | |
2446 { /* create a copy of n-tuple */ | |
2447 tuple = copy_tuple(mpl, elem->tuple); | |
2448 /* rearrange component of the n-tuple */ | |
2449 for (i = 0; i < gadget->set->dimen; i++) | |
2450 work[i] = NULL; | |
2451 for (i = 0; tuple != NULL; tuple = tuple->next) | |
2452 work[gadget->ind[i++]-1] = tuple; | |
2453 xassert(i == gadget->set->dimen); | |
2454 for (i = 0; i < gadget->set->dimen; i++) | |
2455 { xassert(work[i] != NULL); | |
2456 work[i]->next = work[i+1]; | |
2457 } | |
2458 /* construct subscript list from first set->dim components */ | |
2459 if (set->dim == 0) | |
2460 tuple = NULL; | |
2461 else | |
2462 tuple = work[0], work[set->dim-1]->next = NULL; | |
2463 /* find corresponding member of the set to be initialized */ | |
2464 memb = find_member(mpl, set->array, tuple); | |
2465 if (memb == NULL) | |
2466 { /* not found; add new member to the set and assign it empty | |
2467 elemental set */ | |
2468 memb = add_member(mpl, set->array, tuple); | |
2469 memb->value.set = create_elemset(mpl, set->dimen); | |
2470 } | |
2471 else | |
2472 { /* found; free subscript list */ | |
2473 delete_tuple(mpl, tuple); | |
2474 } | |
2475 /* construct new n-tuple from rest set->dimen components */ | |
2476 tuple = work[set->dim]; | |
2477 xassert(set->dim + set->dimen == gadget->set->dimen); | |
2478 work[gadget->set->dimen-1]->next = NULL; | |
2479 /* and add it to the elemental set assigned to the member | |
2480 (no check for duplicates is needed) */ | |
2481 add_tuple(mpl, memb->value.set, tuple); | |
2482 } | |
2483 /* the set has been saturated with data */ | |
2484 set->data = 1; | |
2485 return; | |
2486 } | |
2487 #endif | |
2488 | |
2489 ELEMSET *eval_member_set /* returns reference, not value */ | |
2490 ( MPL *mpl, | |
2491 SET *set, /* not changed */ | |
2492 TUPLE *tuple /* not changed */ | |
2493 ) | |
2494 { /* this routine evaluates set member */ | |
2495 struct eval_set_info _info, *info = &_info; | |
2496 xassert(set->dim == tuple_dimen(mpl, tuple)); | |
2497 info->set = set; | |
2498 info->tuple = tuple; | |
2499 #if 1 /* 12/XII-2008 */ | |
2500 if (set->gadget != NULL && set->data == 0) | |
2501 { /* initialize the set with data from a plain set */ | |
2502 saturate_set(mpl, set); | |
2503 } | |
2504 #endif | |
2505 if (set->data == 1) | |
2506 { /* check data, which are provided in the data section, but not | |
2507 checked yet */ | |
2508 /* save pointer to the last array member; note that during the | |
2509 check new members may be added beyond the last member due to | |
2510 references to the same parameter from default expression as | |
2511 well as from expressions that define restricting supersets; | |
2512 however, values assigned to the new members will be checked | |
2513 by other routine, so we don't need to check them here */ | |
2514 MEMBER *tail = set->array->tail; | |
2515 /* change the data status to prevent infinite recursive loop | |
2516 due to references to the same set during the check */ | |
2517 set->data = 2; | |
2518 /* check elemental sets assigned to array members in the data | |
2519 section until the marked member has been reached */ | |
2520 for (info->memb = set->array->head; info->memb != NULL; | |
2521 info->memb = info->memb->next) | |
2522 { if (eval_within_domain(mpl, set->domain, info->memb->tuple, | |
2523 info, eval_set_func)) | |
2524 out_of_domain(mpl, set->name, info->memb->tuple); | |
2525 if (info->memb == tail) break; | |
2526 } | |
2527 /* the check has been finished */ | |
2528 } | |
2529 /* evaluate member, which has given n-tuple */ | |
2530 info->memb = NULL; | |
2531 if (eval_within_domain(mpl, info->set->domain, info->tuple, info, | |
2532 eval_set_func)) | |
2533 out_of_domain(mpl, set->name, info->tuple); | |
2534 /* bring evaluated reference to the calling program */ | |
2535 return info->refer; | |
2536 } | |
2537 | |
2538 /*---------------------------------------------------------------------- | |
2539 -- eval_whole_set - evaluate model set over entire domain. | |
2540 -- | |
2541 -- This routine evaluates all members of specified model set over entire | |
2542 -- domain. */ | |
2543 | |
2544 static int whole_set_func(MPL *mpl, void *info) | |
2545 { /* this is auxiliary routine to work within domain scope */ | |
2546 SET *set = (SET *)info; | |
2547 TUPLE *tuple = get_domain_tuple(mpl, set->domain); | |
2548 eval_member_set(mpl, set, tuple); | |
2549 delete_tuple(mpl, tuple); | |
2550 return 0; | |
2551 } | |
2552 | |
2553 void eval_whole_set(MPL *mpl, SET *set) | |
2554 { loop_within_domain(mpl, set->domain, set, whole_set_func); | |
2555 return; | |
2556 } | |
2557 | |
2558 /*---------------------------------------------------------------------- | |
2559 -- clean set - clean model set. | |
2560 -- | |
2561 -- This routine cleans specified model set that assumes deleting all | |
2562 -- stuff dynamically allocated during the generation phase. */ | |
2563 | |
2564 void clean_set(MPL *mpl, SET *set) | |
2565 { WITHIN *within; | |
2566 MEMBER *memb; | |
2567 /* clean subscript domain */ | |
2568 clean_domain(mpl, set->domain); | |
2569 /* clean pseudo-code for computing supersets */ | |
2570 for (within = set->within; within != NULL; within = within->next) | |
2571 clean_code(mpl, within->code); | |
2572 /* clean pseudo-code for computing assigned value */ | |
2573 clean_code(mpl, set->assign); | |
2574 /* clean pseudo-code for computing default value */ | |
2575 clean_code(mpl, set->option); | |
2576 /* reset data status flag */ | |
2577 set->data = 0; | |
2578 /* delete content array */ | |
2579 for (memb = set->array->head; memb != NULL; memb = memb->next) | |
2580 delete_value(mpl, set->array->type, &memb->value); | |
2581 delete_array(mpl, set->array), set->array = NULL; | |
2582 return; | |
2583 } | |
2584 | |
2585 /**********************************************************************/ | |
2586 /* * * MODEL PARAMETERS * * */ | |
2587 /**********************************************************************/ | |
2588 | |
2589 /*---------------------------------------------------------------------- | |
2590 -- check_value_num - check numeric value assigned to parameter member. | |
2591 -- | |
2592 -- This routine checks if numeric value being assigned to some member | |
2593 -- of specified numeric model parameter satisfies to all restrictions. | |
2594 -- | |
2595 -- NOTE: This routine must not be called out of domain scope. */ | |
2596 | |
2597 void check_value_num | |
2598 ( MPL *mpl, | |
2599 PARAMETER *par, /* not changed */ | |
2600 TUPLE *tuple, /* not changed */ | |
2601 double value | |
2602 ) | |
2603 { CONDITION *cond; | |
2604 WITHIN *in; | |
2605 int eqno; | |
2606 /* the value must satisfy to the parameter type */ | |
2607 switch (par->type) | |
2608 { case A_NUMERIC: | |
2609 break; | |
2610 case A_INTEGER: | |
2611 if (value != floor(value)) | |
2612 error(mpl, "%s%s = %.*g not integer", par->name, | |
2613 format_tuple(mpl, '[', tuple), DBL_DIG, value); | |
2614 break; | |
2615 case A_BINARY: | |
2616 if (!(value == 0.0 || value == 1.0)) | |
2617 error(mpl, "%s%s = %.*g not binary", par->name, | |
2618 format_tuple(mpl, '[', tuple), DBL_DIG, value); | |
2619 break; | |
2620 default: | |
2621 xassert(par != par); | |
2622 } | |
2623 /* the value must satisfy to all specified conditions */ | |
2624 for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next, | |
2625 eqno++) | |
2626 { double bound; | |
2627 char *rho; | |
2628 xassert(cond->code != NULL); | |
2629 bound = eval_numeric(mpl, cond->code); | |
2630 switch (cond->rho) | |
2631 { case O_LT: | |
2632 if (!(value < bound)) | |
2633 { rho = "<"; | |
2634 err: error(mpl, "%s%s = %.*g not %s %.*g; see (%d)", | |
2635 par->name, format_tuple(mpl, '[', tuple), DBL_DIG, | |
2636 value, rho, DBL_DIG, bound, eqno); | |
2637 } | |
2638 break; | |
2639 case O_LE: | |
2640 if (!(value <= bound)) { rho = "<="; goto err; } | |
2641 break; | |
2642 case O_EQ: | |
2643 if (!(value == bound)) { rho = "="; goto err; } | |
2644 break; | |
2645 case O_GE: | |
2646 if (!(value >= bound)) { rho = ">="; goto err; } | |
2647 break; | |
2648 case O_GT: | |
2649 if (!(value > bound)) { rho = ">"; goto err; } | |
2650 break; | |
2651 case O_NE: | |
2652 if (!(value != bound)) { rho = "<>"; goto err; } | |
2653 break; | |
2654 default: | |
2655 xassert(cond != cond); | |
2656 } | |
2657 } | |
2658 /* the value must be in all specified supersets */ | |
2659 for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++) | |
2660 { TUPLE *dummy; | |
2661 xassert(in->code != NULL); | |
2662 xassert(in->code->dim == 1); | |
2663 dummy = expand_tuple(mpl, create_tuple(mpl), | |
2664 create_symbol_num(mpl, value)); | |
2665 if (!is_member(mpl, in->code, dummy)) | |
2666 error(mpl, "%s%s = %.*g not in specified set; see (%d)", | |
2667 par->name, format_tuple(mpl, '[', tuple), DBL_DIG, | |
2668 value, eqno); | |
2669 delete_tuple(mpl, dummy); | |
2670 } | |
2671 return; | |
2672 } | |
2673 | |
2674 /*---------------------------------------------------------------------- | |
2675 -- take_member_num - obtain num. value assigned to parameter member. | |
2676 -- | |
2677 -- This routine obtains a numeric value assigned to member of specified | |
2678 -- numeric model parameter and returns it on exit. | |
2679 -- | |
2680 -- NOTE: This routine must not be called out of domain scope. */ | |
2681 | |
2682 double take_member_num | |
2683 ( MPL *mpl, | |
2684 PARAMETER *par, /* not changed */ | |
2685 TUPLE *tuple /* not changed */ | |
2686 ) | |
2687 { MEMBER *memb; | |
2688 double value; | |
2689 /* find member in the parameter array */ | |
2690 memb = find_member(mpl, par->array, tuple); | |
2691 if (memb != NULL) | |
2692 { /* member exists, so just take its value */ | |
2693 value = memb->value.num; | |
2694 } | |
2695 else if (par->assign != NULL) | |
2696 { /* compute value using assignment expression */ | |
2697 value = eval_numeric(mpl, par->assign); | |
2698 add: /* check that the value satisfies to all restrictions, assign | |
2699 it to new member, and add the member to the array */ | |
2700 check_value_num(mpl, par, tuple, value); | |
2701 memb = add_member(mpl, par->array, copy_tuple(mpl, tuple)); | |
2702 memb->value.num = value; | |
2703 } | |
2704 else if (par->option != NULL) | |
2705 { /* compute default value */ | |
2706 value = eval_numeric(mpl, par->option); | |
2707 goto add; | |
2708 } | |
2709 else if (par->defval != NULL) | |
2710 { /* take default value provided in the data section */ | |
2711 if (par->defval->str != NULL) | |
2712 error(mpl, "cannot convert %s to floating-point number", | |
2713 format_symbol(mpl, par->defval)); | |
2714 value = par->defval->num; | |
2715 goto add; | |
2716 } | |
2717 else | |
2718 { /* no value is provided */ | |
2719 error(mpl, "no value for %s%s", par->name, format_tuple(mpl, | |
2720 '[', tuple)); | |
2721 } | |
2722 return value; | |
2723 } | |
2724 | |
2725 /*---------------------------------------------------------------------- | |
2726 -- eval_member_num - evaluate num. value assigned to parameter member. | |
2727 -- | |
2728 -- This routine evaluates a numeric value assigned to given member of | |
2729 -- specified numeric model parameter and returns it on exit. */ | |
2730 | |
2731 struct eval_num_info | |
2732 { /* working info used by the routine eval_member_num */ | |
2733 PARAMETER *par; | |
2734 /* model parameter */ | |
2735 TUPLE *tuple; | |
2736 /* n-tuple, which defines parameter member */ | |
2737 MEMBER *memb; | |
2738 /* normally this pointer is NULL; the routine uses this pointer | |
2739 to check data provided in the data section, in which case it | |
2740 points to a member currently checked; this check is performed | |
2741 automatically only once when a reference to any member occurs | |
2742 for the first time */ | |
2743 double value; | |
2744 /* evaluated numeric value */ | |
2745 }; | |
2746 | |
2747 static void eval_num_func(MPL *mpl, void *_info) | |
2748 { /* this is auxiliary routine to work within domain scope */ | |
2749 struct eval_num_info *info = _info; | |
2750 if (info->memb != NULL) | |
2751 { /* checking call; check numeric value being assigned */ | |
2752 check_value_num(mpl, info->par, info->memb->tuple, | |
2753 info->memb->value.num); | |
2754 } | |
2755 else | |
2756 { /* normal call; evaluate member, which has given n-tuple */ | |
2757 info->value = take_member_num(mpl, info->par, info->tuple); | |
2758 } | |
2759 return; | |
2760 } | |
2761 | |
2762 double eval_member_num | |
2763 ( MPL *mpl, | |
2764 PARAMETER *par, /* not changed */ | |
2765 TUPLE *tuple /* not changed */ | |
2766 ) | |
2767 { /* this routine evaluates numeric parameter member */ | |
2768 struct eval_num_info _info, *info = &_info; | |
2769 xassert(par->type == A_NUMERIC || par->type == A_INTEGER || | |
2770 par->type == A_BINARY); | |
2771 xassert(par->dim == tuple_dimen(mpl, tuple)); | |
2772 info->par = par; | |
2773 info->tuple = tuple; | |
2774 if (par->data == 1) | |
2775 { /* check data, which are provided in the data section, but not | |
2776 checked yet */ | |
2777 /* save pointer to the last array member; note that during the | |
2778 check new members may be added beyond the last member due to | |
2779 references to the same parameter from default expression as | |
2780 well as from expressions that define restricting conditions; | |
2781 however, values assigned to the new members will be checked | |
2782 by other routine, so we don't need to check them here */ | |
2783 MEMBER *tail = par->array->tail; | |
2784 /* change the data status to prevent infinite recursive loop | |
2785 due to references to the same parameter during the check */ | |
2786 par->data = 2; | |
2787 /* check values assigned to array members in the data section | |
2788 until the marked member has been reached */ | |
2789 for (info->memb = par->array->head; info->memb != NULL; | |
2790 info->memb = info->memb->next) | |
2791 { if (eval_within_domain(mpl, par->domain, info->memb->tuple, | |
2792 info, eval_num_func)) | |
2793 out_of_domain(mpl, par->name, info->memb->tuple); | |
2794 if (info->memb == tail) break; | |
2795 } | |
2796 /* the check has been finished */ | |
2797 } | |
2798 /* evaluate member, which has given n-tuple */ | |
2799 info->memb = NULL; | |
2800 if (eval_within_domain(mpl, info->par->domain, info->tuple, info, | |
2801 eval_num_func)) | |
2802 out_of_domain(mpl, par->name, info->tuple); | |
2803 /* bring evaluated value to the calling program */ | |
2804 return info->value; | |
2805 } | |
2806 | |
2807 /*---------------------------------------------------------------------- | |
2808 -- check_value_sym - check symbolic value assigned to parameter member. | |
2809 -- | |
2810 -- This routine checks if symbolic value being assigned to some member | |
2811 -- of specified symbolic model parameter satisfies to all restrictions. | |
2812 -- | |
2813 -- NOTE: This routine must not be called out of domain scope. */ | |
2814 | |
2815 void check_value_sym | |
2816 ( MPL *mpl, | |
2817 PARAMETER *par, /* not changed */ | |
2818 TUPLE *tuple, /* not changed */ | |
2819 SYMBOL *value /* not changed */ | |
2820 ) | |
2821 { CONDITION *cond; | |
2822 WITHIN *in; | |
2823 int eqno; | |
2824 /* the value must satisfy to all specified conditions */ | |
2825 for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next, | |
2826 eqno++) | |
2827 { SYMBOL *bound; | |
2828 char buf[255+1]; | |
2829 xassert(cond->code != NULL); | |
2830 bound = eval_symbolic(mpl, cond->code); | |
2831 switch (cond->rho) | |
2832 { | |
2833 #if 1 /* 13/VIII-2008 */ | |
2834 case O_LT: | |
2835 if (!(compare_symbols(mpl, value, bound) < 0)) | |
2836 { strcpy(buf, format_symbol(mpl, bound)); | |
2837 xassert(strlen(buf) < sizeof(buf)); | |
2838 error(mpl, "%s%s = %s not < %s", | |
2839 par->name, format_tuple(mpl, '[', tuple), | |
2840 format_symbol(mpl, value), buf, eqno); | |
2841 } | |
2842 break; | |
2843 case O_LE: | |
2844 if (!(compare_symbols(mpl, value, bound) <= 0)) | |
2845 { strcpy(buf, format_symbol(mpl, bound)); | |
2846 xassert(strlen(buf) < sizeof(buf)); | |
2847 error(mpl, "%s%s = %s not <= %s", | |
2848 par->name, format_tuple(mpl, '[', tuple), | |
2849 format_symbol(mpl, value), buf, eqno); | |
2850 } | |
2851 break; | |
2852 #endif | |
2853 case O_EQ: | |
2854 if (!(compare_symbols(mpl, value, bound) == 0)) | |
2855 { strcpy(buf, format_symbol(mpl, bound)); | |
2856 xassert(strlen(buf) < sizeof(buf)); | |
2857 error(mpl, "%s%s = %s not = %s", | |
2858 par->name, format_tuple(mpl, '[', tuple), | |
2859 format_symbol(mpl, value), buf, eqno); | |
2860 } | |
2861 break; | |
2862 #if 1 /* 13/VIII-2008 */ | |
2863 case O_GE: | |
2864 if (!(compare_symbols(mpl, value, bound) >= 0)) | |
2865 { strcpy(buf, format_symbol(mpl, bound)); | |
2866 xassert(strlen(buf) < sizeof(buf)); | |
2867 error(mpl, "%s%s = %s not >= %s", | |
2868 par->name, format_tuple(mpl, '[', tuple), | |
2869 format_symbol(mpl, value), buf, eqno); | |
2870 } | |
2871 break; | |
2872 case O_GT: | |
2873 if (!(compare_symbols(mpl, value, bound) > 0)) | |
2874 { strcpy(buf, format_symbol(mpl, bound)); | |
2875 xassert(strlen(buf) < sizeof(buf)); | |
2876 error(mpl, "%s%s = %s not > %s", | |
2877 par->name, format_tuple(mpl, '[', tuple), | |
2878 format_symbol(mpl, value), buf, eqno); | |
2879 } | |
2880 break; | |
2881 #endif | |
2882 case O_NE: | |
2883 if (!(compare_symbols(mpl, value, bound) != 0)) | |
2884 { strcpy(buf, format_symbol(mpl, bound)); | |
2885 xassert(strlen(buf) < sizeof(buf)); | |
2886 error(mpl, "%s%s = %s not <> %s", | |
2887 par->name, format_tuple(mpl, '[', tuple), | |
2888 format_symbol(mpl, value), buf, eqno); | |
2889 } | |
2890 break; | |
2891 default: | |
2892 xassert(cond != cond); | |
2893 } | |
2894 delete_symbol(mpl, bound); | |
2895 } | |
2896 /* the value must be in all specified supersets */ | |
2897 for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++) | |
2898 { TUPLE *dummy; | |
2899 xassert(in->code != NULL); | |
2900 xassert(in->code->dim == 1); | |
2901 dummy = expand_tuple(mpl, create_tuple(mpl), copy_symbol(mpl, | |
2902 value)); | |
2903 if (!is_member(mpl, in->code, dummy)) | |
2904 error(mpl, "%s%s = %s not in specified set; see (%d)", | |
2905 par->name, format_tuple(mpl, '[', tuple), | |
2906 format_symbol(mpl, value), eqno); | |
2907 delete_tuple(mpl, dummy); | |
2908 } | |
2909 return; | |
2910 } | |
2911 | |
2912 /*---------------------------------------------------------------------- | |
2913 -- take_member_sym - obtain symb. value assigned to parameter member. | |
2914 -- | |
2915 -- This routine obtains a symbolic value assigned to member of specified | |
2916 -- symbolic model parameter and returns it on exit. | |
2917 -- | |
2918 -- NOTE: This routine must not be called out of domain scope. */ | |
2919 | |
2920 SYMBOL *take_member_sym /* returns value, not reference */ | |
2921 ( MPL *mpl, | |
2922 PARAMETER *par, /* not changed */ | |
2923 TUPLE *tuple /* not changed */ | |
2924 ) | |
2925 { MEMBER *memb; | |
2926 SYMBOL *value; | |
2927 /* find member in the parameter array */ | |
2928 memb = find_member(mpl, par->array, tuple); | |
2929 if (memb != NULL) | |
2930 { /* member exists, so just take its value */ | |
2931 value = copy_symbol(mpl, memb->value.sym); | |
2932 } | |
2933 else if (par->assign != NULL) | |
2934 { /* compute value using assignment expression */ | |
2935 value = eval_symbolic(mpl, par->assign); | |
2936 add: /* check that the value satisfies to all restrictions, assign | |
2937 it to new member, and add the member to the array */ | |
2938 check_value_sym(mpl, par, tuple, value); | |
2939 memb = add_member(mpl, par->array, copy_tuple(mpl, tuple)); | |
2940 memb->value.sym = copy_symbol(mpl, value); | |
2941 } | |
2942 else if (par->option != NULL) | |
2943 { /* compute default value */ | |
2944 value = eval_symbolic(mpl, par->option); | |
2945 goto add; | |
2946 } | |
2947 else if (par->defval != NULL) | |
2948 { /* take default value provided in the data section */ | |
2949 value = copy_symbol(mpl, par->defval); | |
2950 goto add; | |
2951 } | |
2952 else | |
2953 { /* no value is provided */ | |
2954 error(mpl, "no value for %s%s", par->name, format_tuple(mpl, | |
2955 '[', tuple)); | |
2956 } | |
2957 return value; | |
2958 } | |
2959 | |
2960 /*---------------------------------------------------------------------- | |
2961 -- eval_member_sym - evaluate symb. value assigned to parameter member. | |
2962 -- | |
2963 -- This routine evaluates a symbolic value assigned to given member of | |
2964 -- specified symbolic model parameter and returns it on exit. */ | |
2965 | |
2966 struct eval_sym_info | |
2967 { /* working info used by the routine eval_member_sym */ | |
2968 PARAMETER *par; | |
2969 /* model parameter */ | |
2970 TUPLE *tuple; | |
2971 /* n-tuple, which defines parameter member */ | |
2972 MEMBER *memb; | |
2973 /* normally this pointer is NULL; the routine uses this pointer | |
2974 to check data provided in the data section, in which case it | |
2975 points to a member currently checked; this check is performed | |
2976 automatically only once when a reference to any member occurs | |
2977 for the first time */ | |
2978 SYMBOL *value; | |
2979 /* evaluated symbolic value */ | |
2980 }; | |
2981 | |
2982 static void eval_sym_func(MPL *mpl, void *_info) | |
2983 { /* this is auxiliary routine to work within domain scope */ | |
2984 struct eval_sym_info *info = _info; | |
2985 if (info->memb != NULL) | |
2986 { /* checking call; check symbolic value being assigned */ | |
2987 check_value_sym(mpl, info->par, info->memb->tuple, | |
2988 info->memb->value.sym); | |
2989 } | |
2990 else | |
2991 { /* normal call; evaluate member, which has given n-tuple */ | |
2992 info->value = take_member_sym(mpl, info->par, info->tuple); | |
2993 } | |
2994 return; | |
2995 } | |
2996 | |
2997 SYMBOL *eval_member_sym /* returns value, not reference */ | |
2998 ( MPL *mpl, | |
2999 PARAMETER *par, /* not changed */ | |
3000 TUPLE *tuple /* not changed */ | |
3001 ) | |
3002 { /* this routine evaluates symbolic parameter member */ | |
3003 struct eval_sym_info _info, *info = &_info; | |
3004 xassert(par->type == A_SYMBOLIC); | |
3005 xassert(par->dim == tuple_dimen(mpl, tuple)); | |
3006 info->par = par; | |
3007 info->tuple = tuple; | |
3008 if (par->data == 1) | |
3009 { /* check data, which are provided in the data section, but not | |
3010 checked yet */ | |
3011 /* save pointer to the last array member; note that during the | |
3012 check new members may be added beyond the last member due to | |
3013 references to the same parameter from default expression as | |
3014 well as from expressions that define restricting conditions; | |
3015 however, values assigned to the new members will be checked | |
3016 by other routine, so we don't need to check them here */ | |
3017 MEMBER *tail = par->array->tail; | |
3018 /* change the data status to prevent infinite recursive loop | |
3019 due to references to the same parameter during the check */ | |
3020 par->data = 2; | |
3021 /* check values assigned to array members in the data section | |
3022 until the marked member has been reached */ | |
3023 for (info->memb = par->array->head; info->memb != NULL; | |
3024 info->memb = info->memb->next) | |
3025 { if (eval_within_domain(mpl, par->domain, info->memb->tuple, | |
3026 info, eval_sym_func)) | |
3027 out_of_domain(mpl, par->name, info->memb->tuple); | |
3028 if (info->memb == tail) break; | |
3029 } | |
3030 /* the check has been finished */ | |
3031 } | |
3032 /* evaluate member, which has given n-tuple */ | |
3033 info->memb = NULL; | |
3034 if (eval_within_domain(mpl, info->par->domain, info->tuple, info, | |
3035 eval_sym_func)) | |
3036 out_of_domain(mpl, par->name, info->tuple); | |
3037 /* bring evaluated value to the calling program */ | |
3038 return info->value; | |
3039 } | |
3040 | |
3041 /*---------------------------------------------------------------------- | |
3042 -- eval_whole_par - evaluate model parameter over entire domain. | |
3043 -- | |
3044 -- This routine evaluates all members of specified model parameter over | |
3045 -- entire domain. */ | |
3046 | |
3047 static int whole_par_func(MPL *mpl, void *info) | |
3048 { /* this is auxiliary routine to work within domain scope */ | |
3049 PARAMETER *par = (PARAMETER *)info; | |
3050 TUPLE *tuple = get_domain_tuple(mpl, par->domain); | |
3051 switch (par->type) | |
3052 { case A_NUMERIC: | |
3053 case A_INTEGER: | |
3054 case A_BINARY: | |
3055 eval_member_num(mpl, par, tuple); | |
3056 break; | |
3057 case A_SYMBOLIC: | |
3058 delete_symbol(mpl, eval_member_sym(mpl, par, tuple)); | |
3059 break; | |
3060 default: | |
3061 xassert(par != par); | |
3062 } | |
3063 delete_tuple(mpl, tuple); | |
3064 return 0; | |
3065 } | |
3066 | |
3067 void eval_whole_par(MPL *mpl, PARAMETER *par) | |
3068 { loop_within_domain(mpl, par->domain, par, whole_par_func); | |
3069 return; | |
3070 } | |
3071 | |
3072 /*---------------------------------------------------------------------- | |
3073 -- clean_parameter - clean model parameter. | |
3074 -- | |
3075 -- This routine cleans specified model parameter that assumes deleting | |
3076 -- all stuff dynamically allocated during the generation phase. */ | |
3077 | |
3078 void clean_parameter(MPL *mpl, PARAMETER *par) | |
3079 { CONDITION *cond; | |
3080 WITHIN *in; | |
3081 MEMBER *memb; | |
3082 /* clean subscript domain */ | |
3083 clean_domain(mpl, par->domain); | |
3084 /* clean pseudo-code for computing restricting conditions */ | |
3085 for (cond = par->cond; cond != NULL; cond = cond->next) | |
3086 clean_code(mpl, cond->code); | |
3087 /* clean pseudo-code for computing restricting supersets */ | |
3088 for (in = par->in; in != NULL; in = in->next) | |
3089 clean_code(mpl, in->code); | |
3090 /* clean pseudo-code for computing assigned value */ | |
3091 clean_code(mpl, par->assign); | |
3092 /* clean pseudo-code for computing default value */ | |
3093 clean_code(mpl, par->option); | |
3094 /* reset data status flag */ | |
3095 par->data = 0; | |
3096 /* delete default symbolic value */ | |
3097 if (par->defval != NULL) | |
3098 delete_symbol(mpl, par->defval), par->defval = NULL; | |
3099 /* delete content array */ | |
3100 for (memb = par->array->head; memb != NULL; memb = memb->next) | |
3101 delete_value(mpl, par->array->type, &memb->value); | |
3102 delete_array(mpl, par->array), par->array = NULL; | |
3103 return; | |
3104 } | |
3105 | |
3106 /**********************************************************************/ | |
3107 /* * * MODEL VARIABLES * * */ | |
3108 /**********************************************************************/ | |
3109 | |
3110 /*---------------------------------------------------------------------- | |
3111 -- take_member_var - obtain reference to elemental variable. | |
3112 -- | |
3113 -- This routine obtains a reference to elemental variable assigned to | |
3114 -- given member of specified model variable and returns it on exit. If | |
3115 -- necessary, new elemental variable is created. | |
3116 -- | |
3117 -- NOTE: This routine must not be called out of domain scope. */ | |
3118 | |
3119 ELEMVAR *take_member_var /* returns reference */ | |
3120 ( MPL *mpl, | |
3121 VARIABLE *var, /* not changed */ | |
3122 TUPLE *tuple /* not changed */ | |
3123 ) | |
3124 { MEMBER *memb; | |
3125 ELEMVAR *refer; | |
3126 /* find member in the variable array */ | |
3127 memb = find_member(mpl, var->array, tuple); | |
3128 if (memb != NULL) | |
3129 { /* member exists, so just take the reference */ | |
3130 refer = memb->value.var; | |
3131 } | |
3132 else | |
3133 { /* member is referenced for the first time and therefore does | |
3134 not exist; create new elemental variable, assign it to new | |
3135 member, and add the member to the variable array */ | |
3136 memb = add_member(mpl, var->array, copy_tuple(mpl, tuple)); | |
3137 refer = (memb->value.var = | |
3138 dmp_get_atom(mpl->elemvars, sizeof(ELEMVAR))); | |
3139 refer->j = 0; | |
3140 refer->var = var; | |
3141 refer->memb = memb; | |
3142 /* compute lower bound */ | |
3143 if (var->lbnd == NULL) | |
3144 refer->lbnd = 0.0; | |
3145 else | |
3146 refer->lbnd = eval_numeric(mpl, var->lbnd); | |
3147 /* compute upper bound */ | |
3148 if (var->ubnd == NULL) | |
3149 refer->ubnd = 0.0; | |
3150 else if (var->ubnd == var->lbnd) | |
3151 refer->ubnd = refer->lbnd; | |
3152 else | |
3153 refer->ubnd = eval_numeric(mpl, var->ubnd); | |
3154 /* nullify working quantity */ | |
3155 refer->temp = 0.0; | |
3156 #if 1 /* 15/V-2010 */ | |
3157 /* solution has not been obtained by the solver yet */ | |
3158 refer->stat = 0; | |
3159 refer->prim = refer->dual = 0.0; | |
3160 #endif | |
3161 } | |
3162 return refer; | |
3163 } | |
3164 | |
3165 /*---------------------------------------------------------------------- | |
3166 -- eval_member_var - evaluate reference to elemental variable. | |
3167 -- | |
3168 -- This routine evaluates a reference to elemental variable assigned to | |
3169 -- member of specified model variable and returns it on exit. */ | |
3170 | |
3171 struct eval_var_info | |
3172 { /* working info used by the routine eval_member_var */ | |
3173 VARIABLE *var; | |
3174 /* model variable */ | |
3175 TUPLE *tuple; | |
3176 /* n-tuple, which defines variable member */ | |
3177 ELEMVAR *refer; | |
3178 /* evaluated reference to elemental variable */ | |
3179 }; | |
3180 | |
3181 static void eval_var_func(MPL *mpl, void *_info) | |
3182 { /* this is auxiliary routine to work within domain scope */ | |
3183 struct eval_var_info *info = _info; | |
3184 info->refer = take_member_var(mpl, info->var, info->tuple); | |
3185 return; | |
3186 } | |
3187 | |
3188 ELEMVAR *eval_member_var /* returns reference */ | |
3189 ( MPL *mpl, | |
3190 VARIABLE *var, /* not changed */ | |
3191 TUPLE *tuple /* not changed */ | |
3192 ) | |
3193 { /* this routine evaluates variable member */ | |
3194 struct eval_var_info _info, *info = &_info; | |
3195 xassert(var->dim == tuple_dimen(mpl, tuple)); | |
3196 info->var = var; | |
3197 info->tuple = tuple; | |
3198 /* evaluate member, which has given n-tuple */ | |
3199 if (eval_within_domain(mpl, info->var->domain, info->tuple, info, | |
3200 eval_var_func)) | |
3201 out_of_domain(mpl, var->name, info->tuple); | |
3202 /* bring evaluated reference to the calling program */ | |
3203 return info->refer; | |
3204 } | |
3205 | |
3206 /*---------------------------------------------------------------------- | |
3207 -- eval_whole_var - evaluate model variable over entire domain. | |
3208 -- | |
3209 -- This routine evaluates all members of specified model variable over | |
3210 -- entire domain. */ | |
3211 | |
3212 static int whole_var_func(MPL *mpl, void *info) | |
3213 { /* this is auxiliary routine to work within domain scope */ | |
3214 VARIABLE *var = (VARIABLE *)info; | |
3215 TUPLE *tuple = get_domain_tuple(mpl, var->domain); | |
3216 eval_member_var(mpl, var, tuple); | |
3217 delete_tuple(mpl, tuple); | |
3218 return 0; | |
3219 } | |
3220 | |
3221 void eval_whole_var(MPL *mpl, VARIABLE *var) | |
3222 { loop_within_domain(mpl, var->domain, var, whole_var_func); | |
3223 return; | |
3224 } | |
3225 | |
3226 /*---------------------------------------------------------------------- | |
3227 -- clean_variable - clean model variable. | |
3228 -- | |
3229 -- This routine cleans specified model variable that assumes deleting | |
3230 -- all stuff dynamically allocated during the generation phase. */ | |
3231 | |
3232 void clean_variable(MPL *mpl, VARIABLE *var) | |
3233 { MEMBER *memb; | |
3234 /* clean subscript domain */ | |
3235 clean_domain(mpl, var->domain); | |
3236 /* clean code for computing lower bound */ | |
3237 clean_code(mpl, var->lbnd); | |
3238 /* clean code for computing upper bound */ | |
3239 if (var->ubnd != var->lbnd) clean_code(mpl, var->ubnd); | |
3240 /* delete content array */ | |
3241 for (memb = var->array->head; memb != NULL; memb = memb->next) | |
3242 dmp_free_atom(mpl->elemvars, memb->value.var, sizeof(ELEMVAR)); | |
3243 delete_array(mpl, var->array), var->array = NULL; | |
3244 return; | |
3245 } | |
3246 | |
3247 /**********************************************************************/ | |
3248 /* * * MODEL CONSTRAINTS AND OBJECTIVES * * */ | |
3249 /**********************************************************************/ | |
3250 | |
3251 /*---------------------------------------------------------------------- | |
3252 -- take_member_con - obtain reference to elemental constraint. | |
3253 -- | |
3254 -- This routine obtains a reference to elemental constraint assigned | |
3255 -- to given member of specified model constraint and returns it on exit. | |
3256 -- If necessary, new elemental constraint is created. | |
3257 -- | |
3258 -- NOTE: This routine must not be called out of domain scope. */ | |
3259 | |
3260 ELEMCON *take_member_con /* returns reference */ | |
3261 ( MPL *mpl, | |
3262 CONSTRAINT *con, /* not changed */ | |
3263 TUPLE *tuple /* not changed */ | |
3264 ) | |
3265 { MEMBER *memb; | |
3266 ELEMCON *refer; | |
3267 /* find member in the constraint array */ | |
3268 memb = find_member(mpl, con->array, tuple); | |
3269 if (memb != NULL) | |
3270 { /* member exists, so just take the reference */ | |
3271 refer = memb->value.con; | |
3272 } | |
3273 else | |
3274 { /* member is referenced for the first time and therefore does | |
3275 not exist; create new elemental constraint, assign it to new | |
3276 member, and add the member to the constraint array */ | |
3277 memb = add_member(mpl, con->array, copy_tuple(mpl, tuple)); | |
3278 refer = (memb->value.con = | |
3279 dmp_get_atom(mpl->elemcons, sizeof(ELEMCON))); | |
3280 refer->i = 0; | |
3281 refer->con = con; | |
3282 refer->memb = memb; | |
3283 /* compute linear form */ | |
3284 xassert(con->code != NULL); | |
3285 refer->form = eval_formula(mpl, con->code); | |
3286 /* compute lower and upper bounds */ | |
3287 if (con->lbnd == NULL && con->ubnd == NULL) | |
3288 { /* objective has no bounds */ | |
3289 double temp; | |
3290 xassert(con->type == A_MINIMIZE || con->type == A_MAXIMIZE); | |
3291 /* carry the constant term to the right-hand side */ | |
3292 refer->form = remove_constant(mpl, refer->form, &temp); | |
3293 refer->lbnd = refer->ubnd = - temp; | |
3294 } | |
3295 else if (con->lbnd != NULL && con->ubnd == NULL) | |
3296 { /* constraint a * x + b >= c * y + d is transformed to the | |
3297 standard form a * x - c * y >= d - b */ | |
3298 double temp; | |
3299 xassert(con->type == A_CONSTRAINT); | |
3300 refer->form = linear_comb(mpl, | |
3301 +1.0, refer->form, | |
3302 -1.0, eval_formula(mpl, con->lbnd)); | |
3303 refer->form = remove_constant(mpl, refer->form, &temp); | |
3304 refer->lbnd = - temp; | |
3305 refer->ubnd = 0.0; | |
3306 } | |
3307 else if (con->lbnd == NULL && con->ubnd != NULL) | |
3308 { /* constraint a * x + b <= c * y + d is transformed to the | |
3309 standard form a * x - c * y <= d - b */ | |
3310 double temp; | |
3311 xassert(con->type == A_CONSTRAINT); | |
3312 refer->form = linear_comb(mpl, | |
3313 +1.0, refer->form, | |
3314 -1.0, eval_formula(mpl, con->ubnd)); | |
3315 refer->form = remove_constant(mpl, refer->form, &temp); | |
3316 refer->lbnd = 0.0; | |
3317 refer->ubnd = - temp; | |
3318 } | |
3319 else if (con->lbnd == con->ubnd) | |
3320 { /* constraint a * x + b = c * y + d is transformed to the | |
3321 standard form a * x - c * y = d - b */ | |
3322 double temp; | |
3323 xassert(con->type == A_CONSTRAINT); | |
3324 refer->form = linear_comb(mpl, | |
3325 +1.0, refer->form, | |
3326 -1.0, eval_formula(mpl, con->lbnd)); | |
3327 refer->form = remove_constant(mpl, refer->form, &temp); | |
3328 refer->lbnd = refer->ubnd = - temp; | |
3329 } | |
3330 else | |
3331 { /* ranged constraint c <= a * x + b <= d is transformed to | |
3332 the standard form c - b <= a * x <= d - b */ | |
3333 double temp, temp1, temp2; | |
3334 xassert(con->type == A_CONSTRAINT); | |
3335 refer->form = remove_constant(mpl, refer->form, &temp); | |
3336 xassert(remove_constant(mpl, eval_formula(mpl, con->lbnd), | |
3337 &temp1) == NULL); | |
3338 xassert(remove_constant(mpl, eval_formula(mpl, con->ubnd), | |
3339 &temp2) == NULL); | |
3340 refer->lbnd = fp_sub(mpl, temp1, temp); | |
3341 refer->ubnd = fp_sub(mpl, temp2, temp); | |
3342 } | |
3343 #if 1 /* 15/V-2010 */ | |
3344 /* solution has not been obtained by the solver yet */ | |
3345 refer->stat = 0; | |
3346 refer->prim = refer->dual = 0.0; | |
3347 #endif | |
3348 } | |
3349 return refer; | |
3350 } | |
3351 | |
3352 /*---------------------------------------------------------------------- | |
3353 -- eval_member_con - evaluate reference to elemental constraint. | |
3354 -- | |
3355 -- This routine evaluates a reference to elemental constraint assigned | |
3356 -- to member of specified model constraint and returns it on exit. */ | |
3357 | |
3358 struct eval_con_info | |
3359 { /* working info used by the routine eval_member_con */ | |
3360 CONSTRAINT *con; | |
3361 /* model constraint */ | |
3362 TUPLE *tuple; | |
3363 /* n-tuple, which defines constraint member */ | |
3364 ELEMCON *refer; | |
3365 /* evaluated reference to elemental constraint */ | |
3366 }; | |
3367 | |
3368 static void eval_con_func(MPL *mpl, void *_info) | |
3369 { /* this is auxiliary routine to work within domain scope */ | |
3370 struct eval_con_info *info = _info; | |
3371 info->refer = take_member_con(mpl, info->con, info->tuple); | |
3372 return; | |
3373 } | |
3374 | |
3375 ELEMCON *eval_member_con /* returns reference */ | |
3376 ( MPL *mpl, | |
3377 CONSTRAINT *con, /* not changed */ | |
3378 TUPLE *tuple /* not changed */ | |
3379 ) | |
3380 { /* this routine evaluates constraint member */ | |
3381 struct eval_con_info _info, *info = &_info; | |
3382 xassert(con->dim == tuple_dimen(mpl, tuple)); | |
3383 info->con = con; | |
3384 info->tuple = tuple; | |
3385 /* evaluate member, which has given n-tuple */ | |
3386 if (eval_within_domain(mpl, info->con->domain, info->tuple, info, | |
3387 eval_con_func)) | |
3388 out_of_domain(mpl, con->name, info->tuple); | |
3389 /* bring evaluated reference to the calling program */ | |
3390 return info->refer; | |
3391 } | |
3392 | |
3393 /*---------------------------------------------------------------------- | |
3394 -- eval_whole_con - evaluate model constraint over entire domain. | |
3395 -- | |
3396 -- This routine evaluates all members of specified model constraint over | |
3397 -- entire domain. */ | |
3398 | |
3399 static int whole_con_func(MPL *mpl, void *info) | |
3400 { /* this is auxiliary routine to work within domain scope */ | |
3401 CONSTRAINT *con = (CONSTRAINT *)info; | |
3402 TUPLE *tuple = get_domain_tuple(mpl, con->domain); | |
3403 eval_member_con(mpl, con, tuple); | |
3404 delete_tuple(mpl, tuple); | |
3405 return 0; | |
3406 } | |
3407 | |
3408 void eval_whole_con(MPL *mpl, CONSTRAINT *con) | |
3409 { loop_within_domain(mpl, con->domain, con, whole_con_func); | |
3410 return; | |
3411 } | |
3412 | |
3413 /*---------------------------------------------------------------------- | |
3414 -- clean_constraint - clean model constraint. | |
3415 -- | |
3416 -- This routine cleans specified model constraint that assumes deleting | |
3417 -- all stuff dynamically allocated during the generation phase. */ | |
3418 | |
3419 void clean_constraint(MPL *mpl, CONSTRAINT *con) | |
3420 { MEMBER *memb; | |
3421 /* clean subscript domain */ | |
3422 clean_domain(mpl, con->domain); | |
3423 /* clean code for computing main linear form */ | |
3424 clean_code(mpl, con->code); | |
3425 /* clean code for computing lower bound */ | |
3426 clean_code(mpl, con->lbnd); | |
3427 /* clean code for computing upper bound */ | |
3428 if (con->ubnd != con->lbnd) clean_code(mpl, con->ubnd); | |
3429 /* delete content array */ | |
3430 for (memb = con->array->head; memb != NULL; memb = memb->next) | |
3431 { delete_formula(mpl, memb->value.con->form); | |
3432 dmp_free_atom(mpl->elemcons, memb->value.con, sizeof(ELEMCON)); | |
3433 } | |
3434 delete_array(mpl, con->array), con->array = NULL; | |
3435 return; | |
3436 } | |
3437 | |
3438 /**********************************************************************/ | |
3439 /* * * PSEUDO-CODE * * */ | |
3440 /**********************************************************************/ | |
3441 | |
3442 /*---------------------------------------------------------------------- | |
3443 -- eval_numeric - evaluate pseudo-code to determine numeric value. | |
3444 -- | |
3445 -- This routine evaluates specified pseudo-code to determine resultant | |
3446 -- numeric value, which is returned on exit. */ | |
3447 | |
3448 struct iter_num_info | |
3449 { /* working info used by the routine iter_num_func */ | |
3450 CODE *code; | |
3451 /* pseudo-code for iterated operation to be performed */ | |
3452 double value; | |
3453 /* resultant value */ | |
3454 }; | |
3455 | |
3456 static int iter_num_func(MPL *mpl, void *_info) | |
3457 { /* this is auxiliary routine used to perform iterated operation | |
3458 on numeric "integrand" within domain scope */ | |
3459 struct iter_num_info *info = _info; | |
3460 double temp; | |
3461 temp = eval_numeric(mpl, info->code->arg.loop.x); | |
3462 switch (info->code->op) | |
3463 { case O_SUM: | |
3464 /* summation over domain */ | |
3465 info->value = fp_add(mpl, info->value, temp); | |
3466 break; | |
3467 case O_PROD: | |
3468 /* multiplication over domain */ | |
3469 info->value = fp_mul(mpl, info->value, temp); | |
3470 break; | |
3471 case O_MINIMUM: | |
3472 /* minimum over domain */ | |
3473 if (info->value > temp) info->value = temp; | |
3474 break; | |
3475 case O_MAXIMUM: | |
3476 /* maximum over domain */ | |
3477 if (info->value < temp) info->value = temp; | |
3478 break; | |
3479 default: | |
3480 xassert(info != info); | |
3481 } | |
3482 return 0; | |
3483 } | |
3484 | |
3485 double eval_numeric(MPL *mpl, CODE *code) | |
3486 { double value; | |
3487 xassert(code != NULL); | |
3488 xassert(code->type == A_NUMERIC); | |
3489 xassert(code->dim == 0); | |
3490 /* if the operation has a side effect, invalidate and delete the | |
3491 resultant value */ | |
3492 if (code->vflag && code->valid) | |
3493 { code->valid = 0; | |
3494 delete_value(mpl, code->type, &code->value); | |
3495 } | |
3496 /* if resultant value is valid, no evaluation is needed */ | |
3497 if (code->valid) | |
3498 { value = code->value.num; | |
3499 goto done; | |
3500 } | |
3501 /* evaluate pseudo-code recursively */ | |
3502 switch (code->op) | |
3503 { case O_NUMBER: | |
3504 /* take floating-point number */ | |
3505 value = code->arg.num; | |
3506 break; | |
3507 case O_MEMNUM: | |
3508 /* take member of numeric parameter */ | |
3509 { TUPLE *tuple; | |
3510 ARG_LIST *e; | |
3511 tuple = create_tuple(mpl); | |
3512 for (e = code->arg.par.list; e != NULL; e = e->next) | |
3513 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
3514 e->x)); | |
3515 value = eval_member_num(mpl, code->arg.par.par, tuple); | |
3516 delete_tuple(mpl, tuple); | |
3517 } | |
3518 break; | |
3519 case O_MEMVAR: | |
3520 /* take computed value of elemental variable */ | |
3521 { TUPLE *tuple; | |
3522 ARG_LIST *e; | |
3523 #if 1 /* 15/V-2010 */ | |
3524 ELEMVAR *var; | |
3525 #endif | |
3526 tuple = create_tuple(mpl); | |
3527 for (e = code->arg.var.list; e != NULL; e = e->next) | |
3528 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
3529 e->x)); | |
3530 #if 0 /* 15/V-2010 */ | |
3531 value = eval_member_var(mpl, code->arg.var.var, tuple) | |
3532 ->value; | |
3533 #else | |
3534 var = eval_member_var(mpl, code->arg.var.var, tuple); | |
3535 switch (code->arg.var.suff) | |
3536 { case DOT_LB: | |
3537 if (var->var->lbnd == NULL) | |
3538 value = -DBL_MAX; | |
3539 else | |
3540 value = var->lbnd; | |
3541 break; | |
3542 case DOT_UB: | |
3543 if (var->var->ubnd == NULL) | |
3544 value = +DBL_MAX; | |
3545 else | |
3546 value = var->ubnd; | |
3547 break; | |
3548 case DOT_STATUS: | |
3549 value = var->stat; | |
3550 break; | |
3551 case DOT_VAL: | |
3552 value = var->prim; | |
3553 break; | |
3554 case DOT_DUAL: | |
3555 value = var->dual; | |
3556 break; | |
3557 default: | |
3558 xassert(code != code); | |
3559 } | |
3560 #endif | |
3561 delete_tuple(mpl, tuple); | |
3562 } | |
3563 break; | |
3564 #if 1 /* 15/V-2010 */ | |
3565 case O_MEMCON: | |
3566 /* take computed value of elemental constraint */ | |
3567 { TUPLE *tuple; | |
3568 ARG_LIST *e; | |
3569 ELEMCON *con; | |
3570 tuple = create_tuple(mpl); | |
3571 for (e = code->arg.con.list; e != NULL; e = e->next) | |
3572 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
3573 e->x)); | |
3574 con = eval_member_con(mpl, code->arg.con.con, tuple); | |
3575 switch (code->arg.con.suff) | |
3576 { case DOT_LB: | |
3577 if (con->con->lbnd == NULL) | |
3578 value = -DBL_MAX; | |
3579 else | |
3580 value = con->lbnd; | |
3581 break; | |
3582 case DOT_UB: | |
3583 if (con->con->ubnd == NULL) | |
3584 value = +DBL_MAX; | |
3585 else | |
3586 value = con->ubnd; | |
3587 break; | |
3588 case DOT_STATUS: | |
3589 value = con->stat; | |
3590 break; | |
3591 case DOT_VAL: | |
3592 value = con->prim; | |
3593 break; | |
3594 case DOT_DUAL: | |
3595 value = con->dual; | |
3596 break; | |
3597 default: | |
3598 xassert(code != code); | |
3599 } | |
3600 delete_tuple(mpl, tuple); | |
3601 } | |
3602 break; | |
3603 #endif | |
3604 case O_IRAND224: | |
3605 /* pseudo-random in [0, 2^24-1] */ | |
3606 value = fp_irand224(mpl); | |
3607 break; | |
3608 case O_UNIFORM01: | |
3609 /* pseudo-random in [0, 1) */ | |
3610 value = fp_uniform01(mpl); | |
3611 break; | |
3612 case O_NORMAL01: | |
3613 /* gaussian random, mu = 0, sigma = 1 */ | |
3614 value = fp_normal01(mpl); | |
3615 break; | |
3616 case O_GMTIME: | |
3617 /* current calendar time */ | |
3618 value = fn_gmtime(mpl); | |
3619 break; | |
3620 case O_CVTNUM: | |
3621 /* conversion to numeric */ | |
3622 { SYMBOL *sym; | |
3623 sym = eval_symbolic(mpl, code->arg.arg.x); | |
3624 #if 0 /* 23/XI-2008 */ | |
3625 if (sym->str != NULL) | |
3626 error(mpl, "cannot convert %s to floating-point numbe" | |
3627 "r", format_symbol(mpl, sym)); | |
3628 value = sym->num; | |
3629 #else | |
3630 if (sym->str == NULL) | |
3631 value = sym->num; | |
3632 else | |
3633 { if (str2num(sym->str, &value)) | |
3634 error(mpl, "cannot convert %s to floating-point nu" | |
3635 "mber", format_symbol(mpl, sym)); | |
3636 } | |
3637 #endif | |
3638 delete_symbol(mpl, sym); | |
3639 } | |
3640 break; | |
3641 case O_PLUS: | |
3642 /* unary plus */ | |
3643 value = + eval_numeric(mpl, code->arg.arg.x); | |
3644 break; | |
3645 case O_MINUS: | |
3646 /* unary minus */ | |
3647 value = - eval_numeric(mpl, code->arg.arg.x); | |
3648 break; | |
3649 case O_ABS: | |
3650 /* absolute value */ | |
3651 value = fabs(eval_numeric(mpl, code->arg.arg.x)); | |
3652 break; | |
3653 case O_CEIL: | |
3654 /* round upward ("ceiling of x") */ | |
3655 value = ceil(eval_numeric(mpl, code->arg.arg.x)); | |
3656 break; | |
3657 case O_FLOOR: | |
3658 /* round downward ("floor of x") */ | |
3659 value = floor(eval_numeric(mpl, code->arg.arg.x)); | |
3660 break; | |
3661 case O_EXP: | |
3662 /* base-e exponential */ | |
3663 value = fp_exp(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3664 break; | |
3665 case O_LOG: | |
3666 /* natural logarithm */ | |
3667 value = fp_log(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3668 break; | |
3669 case O_LOG10: | |
3670 /* common (decimal) logarithm */ | |
3671 value = fp_log10(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3672 break; | |
3673 case O_SQRT: | |
3674 /* square root */ | |
3675 value = fp_sqrt(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3676 break; | |
3677 case O_SIN: | |
3678 /* trigonometric sine */ | |
3679 value = fp_sin(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3680 break; | |
3681 case O_COS: | |
3682 /* trigonometric cosine */ | |
3683 value = fp_cos(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3684 break; | |
3685 case O_ATAN: | |
3686 /* trigonometric arctangent (one argument) */ | |
3687 value = fp_atan(mpl, eval_numeric(mpl, code->arg.arg.x)); | |
3688 break; | |
3689 case O_ATAN2: | |
3690 /* trigonometric arctangent (two arguments) */ | |
3691 value = fp_atan2(mpl, | |
3692 eval_numeric(mpl, code->arg.arg.x), | |
3693 eval_numeric(mpl, code->arg.arg.y)); | |
3694 break; | |
3695 case O_ROUND: | |
3696 /* round to nearest integer */ | |
3697 value = fp_round(mpl, | |
3698 eval_numeric(mpl, code->arg.arg.x), 0.0); | |
3699 break; | |
3700 case O_ROUND2: | |
3701 /* round to n fractional digits */ | |
3702 value = fp_round(mpl, | |
3703 eval_numeric(mpl, code->arg.arg.x), | |
3704 eval_numeric(mpl, code->arg.arg.y)); | |
3705 break; | |
3706 case O_TRUNC: | |
3707 /* truncate to nearest integer */ | |
3708 value = fp_trunc(mpl, | |
3709 eval_numeric(mpl, code->arg.arg.x), 0.0); | |
3710 break; | |
3711 case O_TRUNC2: | |
3712 /* truncate to n fractional digits */ | |
3713 value = fp_trunc(mpl, | |
3714 eval_numeric(mpl, code->arg.arg.x), | |
3715 eval_numeric(mpl, code->arg.arg.y)); | |
3716 break; | |
3717 case O_ADD: | |
3718 /* addition */ | |
3719 value = fp_add(mpl, | |
3720 eval_numeric(mpl, code->arg.arg.x), | |
3721 eval_numeric(mpl, code->arg.arg.y)); | |
3722 break; | |
3723 case O_SUB: | |
3724 /* subtraction */ | |
3725 value = fp_sub(mpl, | |
3726 eval_numeric(mpl, code->arg.arg.x), | |
3727 eval_numeric(mpl, code->arg.arg.y)); | |
3728 break; | |
3729 case O_LESS: | |
3730 /* non-negative subtraction */ | |
3731 value = fp_less(mpl, | |
3732 eval_numeric(mpl, code->arg.arg.x), | |
3733 eval_numeric(mpl, code->arg.arg.y)); | |
3734 break; | |
3735 case O_MUL: | |
3736 /* multiplication */ | |
3737 value = fp_mul(mpl, | |
3738 eval_numeric(mpl, code->arg.arg.x), | |
3739 eval_numeric(mpl, code->arg.arg.y)); | |
3740 break; | |
3741 case O_DIV: | |
3742 /* division */ | |
3743 value = fp_div(mpl, | |
3744 eval_numeric(mpl, code->arg.arg.x), | |
3745 eval_numeric(mpl, code->arg.arg.y)); | |
3746 break; | |
3747 case O_IDIV: | |
3748 /* quotient of exact division */ | |
3749 value = fp_idiv(mpl, | |
3750 eval_numeric(mpl, code->arg.arg.x), | |
3751 eval_numeric(mpl, code->arg.arg.y)); | |
3752 break; | |
3753 case O_MOD: | |
3754 /* remainder of exact division */ | |
3755 value = fp_mod(mpl, | |
3756 eval_numeric(mpl, code->arg.arg.x), | |
3757 eval_numeric(mpl, code->arg.arg.y)); | |
3758 break; | |
3759 case O_POWER: | |
3760 /* exponentiation (raise to power) */ | |
3761 value = fp_power(mpl, | |
3762 eval_numeric(mpl, code->arg.arg.x), | |
3763 eval_numeric(mpl, code->arg.arg.y)); | |
3764 break; | |
3765 case O_UNIFORM: | |
3766 /* pseudo-random in [a, b) */ | |
3767 value = fp_uniform(mpl, | |
3768 eval_numeric(mpl, code->arg.arg.x), | |
3769 eval_numeric(mpl, code->arg.arg.y)); | |
3770 break; | |
3771 case O_NORMAL: | |
3772 /* gaussian random, given mu and sigma */ | |
3773 value = fp_normal(mpl, | |
3774 eval_numeric(mpl, code->arg.arg.x), | |
3775 eval_numeric(mpl, code->arg.arg.y)); | |
3776 break; | |
3777 case O_CARD: | |
3778 { ELEMSET *set; | |
3779 set = eval_elemset(mpl, code->arg.arg.x); | |
3780 value = set->size; | |
3781 delete_array(mpl, set); | |
3782 } | |
3783 break; | |
3784 case O_LENGTH: | |
3785 { SYMBOL *sym; | |
3786 char str[MAX_LENGTH+1]; | |
3787 sym = eval_symbolic(mpl, code->arg.arg.x); | |
3788 if (sym->str == NULL) | |
3789 sprintf(str, "%.*g", DBL_DIG, sym->num); | |
3790 else | |
3791 fetch_string(mpl, sym->str, str); | |
3792 delete_symbol(mpl, sym); | |
3793 value = strlen(str); | |
3794 } | |
3795 break; | |
3796 case O_STR2TIME: | |
3797 { SYMBOL *sym; | |
3798 char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1]; | |
3799 sym = eval_symbolic(mpl, code->arg.arg.x); | |
3800 if (sym->str == NULL) | |
3801 sprintf(str, "%.*g", DBL_DIG, sym->num); | |
3802 else | |
3803 fetch_string(mpl, sym->str, str); | |
3804 delete_symbol(mpl, sym); | |
3805 sym = eval_symbolic(mpl, code->arg.arg.y); | |
3806 if (sym->str == NULL) | |
3807 sprintf(fmt, "%.*g", DBL_DIG, sym->num); | |
3808 else | |
3809 fetch_string(mpl, sym->str, fmt); | |
3810 delete_symbol(mpl, sym); | |
3811 value = fn_str2time(mpl, str, fmt); | |
3812 } | |
3813 break; | |
3814 case O_FORK: | |
3815 /* if-then-else */ | |
3816 if (eval_logical(mpl, code->arg.arg.x)) | |
3817 value = eval_numeric(mpl, code->arg.arg.y); | |
3818 else if (code->arg.arg.z == NULL) | |
3819 value = 0.0; | |
3820 else | |
3821 value = eval_numeric(mpl, code->arg.arg.z); | |
3822 break; | |
3823 case O_MIN: | |
3824 /* minimal value (n-ary) */ | |
3825 { ARG_LIST *e; | |
3826 double temp; | |
3827 value = +DBL_MAX; | |
3828 for (e = code->arg.list; e != NULL; e = e->next) | |
3829 { temp = eval_numeric(mpl, e->x); | |
3830 if (value > temp) value = temp; | |
3831 } | |
3832 } | |
3833 break; | |
3834 case O_MAX: | |
3835 /* maximal value (n-ary) */ | |
3836 { ARG_LIST *e; | |
3837 double temp; | |
3838 value = -DBL_MAX; | |
3839 for (e = code->arg.list; e != NULL; e = e->next) | |
3840 { temp = eval_numeric(mpl, e->x); | |
3841 if (value < temp) value = temp; | |
3842 } | |
3843 } | |
3844 break; | |
3845 case O_SUM: | |
3846 /* summation over domain */ | |
3847 { struct iter_num_info _info, *info = &_info; | |
3848 info->code = code; | |
3849 info->value = 0.0; | |
3850 loop_within_domain(mpl, code->arg.loop.domain, info, | |
3851 iter_num_func); | |
3852 value = info->value; | |
3853 } | |
3854 break; | |
3855 case O_PROD: | |
3856 /* multiplication over domain */ | |
3857 { struct iter_num_info _info, *info = &_info; | |
3858 info->code = code; | |
3859 info->value = 1.0; | |
3860 loop_within_domain(mpl, code->arg.loop.domain, info, | |
3861 iter_num_func); | |
3862 value = info->value; | |
3863 } | |
3864 break; | |
3865 case O_MINIMUM: | |
3866 /* minimum over domain */ | |
3867 { struct iter_num_info _info, *info = &_info; | |
3868 info->code = code; | |
3869 info->value = +DBL_MAX; | |
3870 loop_within_domain(mpl, code->arg.loop.domain, info, | |
3871 iter_num_func); | |
3872 if (info->value == +DBL_MAX) | |
3873 error(mpl, "min{} over empty set; result undefined"); | |
3874 value = info->value; | |
3875 } | |
3876 break; | |
3877 case O_MAXIMUM: | |
3878 /* maximum over domain */ | |
3879 { struct iter_num_info _info, *info = &_info; | |
3880 info->code = code; | |
3881 info->value = -DBL_MAX; | |
3882 loop_within_domain(mpl, code->arg.loop.domain, info, | |
3883 iter_num_func); | |
3884 if (info->value == -DBL_MAX) | |
3885 error(mpl, "max{} over empty set; result undefined"); | |
3886 value = info->value; | |
3887 } | |
3888 break; | |
3889 default: | |
3890 xassert(code != code); | |
3891 } | |
3892 /* save resultant value */ | |
3893 xassert(!code->valid); | |
3894 code->valid = 1; | |
3895 code->value.num = value; | |
3896 done: return value; | |
3897 } | |
3898 | |
3899 /*---------------------------------------------------------------------- | |
3900 -- eval_symbolic - evaluate pseudo-code to determine symbolic value. | |
3901 -- | |
3902 -- This routine evaluates specified pseudo-code to determine resultant | |
3903 -- symbolic value, which is returned on exit. */ | |
3904 | |
3905 SYMBOL *eval_symbolic(MPL *mpl, CODE *code) | |
3906 { SYMBOL *value; | |
3907 xassert(code != NULL); | |
3908 xassert(code->type == A_SYMBOLIC); | |
3909 xassert(code->dim == 0); | |
3910 /* if the operation has a side effect, invalidate and delete the | |
3911 resultant value */ | |
3912 if (code->vflag && code->valid) | |
3913 { code->valid = 0; | |
3914 delete_value(mpl, code->type, &code->value); | |
3915 } | |
3916 /* if resultant value is valid, no evaluation is needed */ | |
3917 if (code->valid) | |
3918 { value = copy_symbol(mpl, code->value.sym); | |
3919 goto done; | |
3920 } | |
3921 /* evaluate pseudo-code recursively */ | |
3922 switch (code->op) | |
3923 { case O_STRING: | |
3924 /* take character string */ | |
3925 value = create_symbol_str(mpl, create_string(mpl, | |
3926 code->arg.str)); | |
3927 break; | |
3928 case O_INDEX: | |
3929 /* take dummy index */ | |
3930 xassert(code->arg.index.slot->value != NULL); | |
3931 value = copy_symbol(mpl, code->arg.index.slot->value); | |
3932 break; | |
3933 case O_MEMSYM: | |
3934 /* take member of symbolic parameter */ | |
3935 { TUPLE *tuple; | |
3936 ARG_LIST *e; | |
3937 tuple = create_tuple(mpl); | |
3938 for (e = code->arg.par.list; e != NULL; e = e->next) | |
3939 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
3940 e->x)); | |
3941 value = eval_member_sym(mpl, code->arg.par.par, tuple); | |
3942 delete_tuple(mpl, tuple); | |
3943 } | |
3944 break; | |
3945 case O_CVTSYM: | |
3946 /* conversion to symbolic */ | |
3947 value = create_symbol_num(mpl, eval_numeric(mpl, | |
3948 code->arg.arg.x)); | |
3949 break; | |
3950 case O_CONCAT: | |
3951 /* concatenation */ | |
3952 value = concat_symbols(mpl, | |
3953 eval_symbolic(mpl, code->arg.arg.x), | |
3954 eval_symbolic(mpl, code->arg.arg.y)); | |
3955 break; | |
3956 case O_FORK: | |
3957 /* if-then-else */ | |
3958 if (eval_logical(mpl, code->arg.arg.x)) | |
3959 value = eval_symbolic(mpl, code->arg.arg.y); | |
3960 else if (code->arg.arg.z == NULL) | |
3961 value = create_symbol_num(mpl, 0.0); | |
3962 else | |
3963 value = eval_symbolic(mpl, code->arg.arg.z); | |
3964 break; | |
3965 case O_SUBSTR: | |
3966 case O_SUBSTR3: | |
3967 { double pos, len; | |
3968 char str[MAX_LENGTH+1]; | |
3969 value = eval_symbolic(mpl, code->arg.arg.x); | |
3970 if (value->str == NULL) | |
3971 sprintf(str, "%.*g", DBL_DIG, value->num); | |
3972 else | |
3973 fetch_string(mpl, value->str, str); | |
3974 delete_symbol(mpl, value); | |
3975 if (code->op == O_SUBSTR) | |
3976 { pos = eval_numeric(mpl, code->arg.arg.y); | |
3977 if (pos != floor(pos)) | |
3978 error(mpl, "substr('...', %.*g); non-integer secon" | |
3979 "d argument", DBL_DIG, pos); | |
3980 if (pos < 1 || pos > strlen(str) + 1) | |
3981 error(mpl, "substr('...', %.*g); substring out of " | |
3982 "range", DBL_DIG, pos); | |
3983 } | |
3984 else | |
3985 { pos = eval_numeric(mpl, code->arg.arg.y); | |
3986 len = eval_numeric(mpl, code->arg.arg.z); | |
3987 if (pos != floor(pos) || len != floor(len)) | |
3988 error(mpl, "substr('...', %.*g, %.*g); non-integer" | |
3989 " second and/or third argument", DBL_DIG, pos, | |
3990 DBL_DIG, len); | |
3991 if (pos < 1 || len < 0 || pos + len > strlen(str) + 1) | |
3992 error(mpl, "substr('...', %.*g, %.*g); substring o" | |
3993 "ut of range", DBL_DIG, pos, DBL_DIG, len); | |
3994 str[(int)pos + (int)len - 1] = '\0'; | |
3995 } | |
3996 value = create_symbol_str(mpl, create_string(mpl, str + | |
3997 (int)pos - 1)); | |
3998 } | |
3999 break; | |
4000 case O_TIME2STR: | |
4001 { double num; | |
4002 SYMBOL *sym; | |
4003 char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1]; | |
4004 num = eval_numeric(mpl, code->arg.arg.x); | |
4005 sym = eval_symbolic(mpl, code->arg.arg.y); | |
4006 if (sym->str == NULL) | |
4007 sprintf(fmt, "%.*g", DBL_DIG, sym->num); | |
4008 else | |
4009 fetch_string(mpl, sym->str, fmt); | |
4010 delete_symbol(mpl, sym); | |
4011 fn_time2str(mpl, str, num, fmt); | |
4012 value = create_symbol_str(mpl, create_string(mpl, str)); | |
4013 } | |
4014 break; | |
4015 default: | |
4016 xassert(code != code); | |
4017 } | |
4018 /* save resultant value */ | |
4019 xassert(!code->valid); | |
4020 code->valid = 1; | |
4021 code->value.sym = copy_symbol(mpl, value); | |
4022 done: return value; | |
4023 } | |
4024 | |
4025 /*---------------------------------------------------------------------- | |
4026 -- eval_logical - evaluate pseudo-code to determine logical value. | |
4027 -- | |
4028 -- This routine evaluates specified pseudo-code to determine resultant | |
4029 -- logical value, which is returned on exit. */ | |
4030 | |
4031 struct iter_log_info | |
4032 { /* working info used by the routine iter_log_func */ | |
4033 CODE *code; | |
4034 /* pseudo-code for iterated operation to be performed */ | |
4035 int value; | |
4036 /* resultant value */ | |
4037 }; | |
4038 | |
4039 static int iter_log_func(MPL *mpl, void *_info) | |
4040 { /* this is auxiliary routine used to perform iterated operation | |
4041 on logical "integrand" within domain scope */ | |
4042 struct iter_log_info *info = _info; | |
4043 int ret = 0; | |
4044 switch (info->code->op) | |
4045 { case O_FORALL: | |
4046 /* conjunction over domain */ | |
4047 info->value &= eval_logical(mpl, info->code->arg.loop.x); | |
4048 if (!info->value) ret = 1; | |
4049 break; | |
4050 case O_EXISTS: | |
4051 /* disjunction over domain */ | |
4052 info->value |= eval_logical(mpl, info->code->arg.loop.x); | |
4053 if (info->value) ret = 1; | |
4054 break; | |
4055 default: | |
4056 xassert(info != info); | |
4057 } | |
4058 return ret; | |
4059 } | |
4060 | |
4061 int eval_logical(MPL *mpl, CODE *code) | |
4062 { int value; | |
4063 xassert(code->type == A_LOGICAL); | |
4064 xassert(code->dim == 0); | |
4065 /* if the operation has a side effect, invalidate and delete the | |
4066 resultant value */ | |
4067 if (code->vflag && code->valid) | |
4068 { code->valid = 0; | |
4069 delete_value(mpl, code->type, &code->value); | |
4070 } | |
4071 /* if resultant value is valid, no evaluation is needed */ | |
4072 if (code->valid) | |
4073 { value = code->value.bit; | |
4074 goto done; | |
4075 } | |
4076 /* evaluate pseudo-code recursively */ | |
4077 switch (code->op) | |
4078 { case O_CVTLOG: | |
4079 /* conversion to logical */ | |
4080 value = (eval_numeric(mpl, code->arg.arg.x) != 0.0); | |
4081 break; | |
4082 case O_NOT: | |
4083 /* negation (logical "not") */ | |
4084 value = !eval_logical(mpl, code->arg.arg.x); | |
4085 break; | |
4086 case O_LT: | |
4087 /* comparison on 'less than' */ | |
4088 #if 0 /* 02/VIII-2008 */ | |
4089 value = (eval_numeric(mpl, code->arg.arg.x) < | |
4090 eval_numeric(mpl, code->arg.arg.y)); | |
4091 #else | |
4092 xassert(code->arg.arg.x != NULL); | |
4093 if (code->arg.arg.x->type == A_NUMERIC) | |
4094 value = (eval_numeric(mpl, code->arg.arg.x) < | |
4095 eval_numeric(mpl, code->arg.arg.y)); | |
4096 else | |
4097 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4098 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4099 value = (compare_symbols(mpl, sym1, sym2) < 0); | |
4100 delete_symbol(mpl, sym1); | |
4101 delete_symbol(mpl, sym2); | |
4102 } | |
4103 #endif | |
4104 break; | |
4105 case O_LE: | |
4106 /* comparison on 'not greater than' */ | |
4107 #if 0 /* 02/VIII-2008 */ | |
4108 value = (eval_numeric(mpl, code->arg.arg.x) <= | |
4109 eval_numeric(mpl, code->arg.arg.y)); | |
4110 #else | |
4111 xassert(code->arg.arg.x != NULL); | |
4112 if (code->arg.arg.x->type == A_NUMERIC) | |
4113 value = (eval_numeric(mpl, code->arg.arg.x) <= | |
4114 eval_numeric(mpl, code->arg.arg.y)); | |
4115 else | |
4116 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4117 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4118 value = (compare_symbols(mpl, sym1, sym2) <= 0); | |
4119 delete_symbol(mpl, sym1); | |
4120 delete_symbol(mpl, sym2); | |
4121 } | |
4122 #endif | |
4123 break; | |
4124 case O_EQ: | |
4125 /* comparison on 'equal to' */ | |
4126 xassert(code->arg.arg.x != NULL); | |
4127 if (code->arg.arg.x->type == A_NUMERIC) | |
4128 value = (eval_numeric(mpl, code->arg.arg.x) == | |
4129 eval_numeric(mpl, code->arg.arg.y)); | |
4130 else | |
4131 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4132 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4133 value = (compare_symbols(mpl, sym1, sym2) == 0); | |
4134 delete_symbol(mpl, sym1); | |
4135 delete_symbol(mpl, sym2); | |
4136 } | |
4137 break; | |
4138 case O_GE: | |
4139 /* comparison on 'not less than' */ | |
4140 #if 0 /* 02/VIII-2008 */ | |
4141 value = (eval_numeric(mpl, code->arg.arg.x) >= | |
4142 eval_numeric(mpl, code->arg.arg.y)); | |
4143 #else | |
4144 xassert(code->arg.arg.x != NULL); | |
4145 if (code->arg.arg.x->type == A_NUMERIC) | |
4146 value = (eval_numeric(mpl, code->arg.arg.x) >= | |
4147 eval_numeric(mpl, code->arg.arg.y)); | |
4148 else | |
4149 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4150 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4151 value = (compare_symbols(mpl, sym1, sym2) >= 0); | |
4152 delete_symbol(mpl, sym1); | |
4153 delete_symbol(mpl, sym2); | |
4154 } | |
4155 #endif | |
4156 break; | |
4157 case O_GT: | |
4158 /* comparison on 'greater than' */ | |
4159 #if 0 /* 02/VIII-2008 */ | |
4160 value = (eval_numeric(mpl, code->arg.arg.x) > | |
4161 eval_numeric(mpl, code->arg.arg.y)); | |
4162 #else | |
4163 xassert(code->arg.arg.x != NULL); | |
4164 if (code->arg.arg.x->type == A_NUMERIC) | |
4165 value = (eval_numeric(mpl, code->arg.arg.x) > | |
4166 eval_numeric(mpl, code->arg.arg.y)); | |
4167 else | |
4168 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4169 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4170 value = (compare_symbols(mpl, sym1, sym2) > 0); | |
4171 delete_symbol(mpl, sym1); | |
4172 delete_symbol(mpl, sym2); | |
4173 } | |
4174 #endif | |
4175 break; | |
4176 case O_NE: | |
4177 /* comparison on 'not equal to' */ | |
4178 xassert(code->arg.arg.x != NULL); | |
4179 if (code->arg.arg.x->type == A_NUMERIC) | |
4180 value = (eval_numeric(mpl, code->arg.arg.x) != | |
4181 eval_numeric(mpl, code->arg.arg.y)); | |
4182 else | |
4183 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); | |
4184 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); | |
4185 value = (compare_symbols(mpl, sym1, sym2) != 0); | |
4186 delete_symbol(mpl, sym1); | |
4187 delete_symbol(mpl, sym2); | |
4188 } | |
4189 break; | |
4190 case O_AND: | |
4191 /* conjunction (logical "and") */ | |
4192 value = eval_logical(mpl, code->arg.arg.x) && | |
4193 eval_logical(mpl, code->arg.arg.y); | |
4194 break; | |
4195 case O_OR: | |
4196 /* disjunction (logical "or") */ | |
4197 value = eval_logical(mpl, code->arg.arg.x) || | |
4198 eval_logical(mpl, code->arg.arg.y); | |
4199 break; | |
4200 case O_IN: | |
4201 /* test on 'x in Y' */ | |
4202 { TUPLE *tuple; | |
4203 tuple = eval_tuple(mpl, code->arg.arg.x); | |
4204 value = is_member(mpl, code->arg.arg.y, tuple); | |
4205 delete_tuple(mpl, tuple); | |
4206 } | |
4207 break; | |
4208 case O_NOTIN: | |
4209 /* test on 'x not in Y' */ | |
4210 { TUPLE *tuple; | |
4211 tuple = eval_tuple(mpl, code->arg.arg.x); | |
4212 value = !is_member(mpl, code->arg.arg.y, tuple); | |
4213 delete_tuple(mpl, tuple); | |
4214 } | |
4215 break; | |
4216 case O_WITHIN: | |
4217 /* test on 'X within Y' */ | |
4218 { ELEMSET *set; | |
4219 MEMBER *memb; | |
4220 set = eval_elemset(mpl, code->arg.arg.x); | |
4221 value = 1; | |
4222 for (memb = set->head; memb != NULL; memb = memb->next) | |
4223 { if (!is_member(mpl, code->arg.arg.y, memb->tuple)) | |
4224 { value = 0; | |
4225 break; | |
4226 } | |
4227 } | |
4228 delete_elemset(mpl, set); | |
4229 } | |
4230 break; | |
4231 case O_NOTWITHIN: | |
4232 /* test on 'X not within Y' */ | |
4233 { ELEMSET *set; | |
4234 MEMBER *memb; | |
4235 set = eval_elemset(mpl, code->arg.arg.x); | |
4236 value = 1; | |
4237 for (memb = set->head; memb != NULL; memb = memb->next) | |
4238 { if (is_member(mpl, code->arg.arg.y, memb->tuple)) | |
4239 { value = 0; | |
4240 break; | |
4241 } | |
4242 } | |
4243 delete_elemset(mpl, set); | |
4244 } | |
4245 break; | |
4246 case O_FORALL: | |
4247 /* conjunction (A-quantification) */ | |
4248 { struct iter_log_info _info, *info = &_info; | |
4249 info->code = code; | |
4250 info->value = 1; | |
4251 loop_within_domain(mpl, code->arg.loop.domain, info, | |
4252 iter_log_func); | |
4253 value = info->value; | |
4254 } | |
4255 break; | |
4256 case O_EXISTS: | |
4257 /* disjunction (E-quantification) */ | |
4258 { struct iter_log_info _info, *info = &_info; | |
4259 info->code = code; | |
4260 info->value = 0; | |
4261 loop_within_domain(mpl, code->arg.loop.domain, info, | |
4262 iter_log_func); | |
4263 value = info->value; | |
4264 } | |
4265 break; | |
4266 default: | |
4267 xassert(code != code); | |
4268 } | |
4269 /* save resultant value */ | |
4270 xassert(!code->valid); | |
4271 code->valid = 1; | |
4272 code->value.bit = value; | |
4273 done: return value; | |
4274 } | |
4275 | |
4276 /*---------------------------------------------------------------------- | |
4277 -- eval_tuple - evaluate pseudo-code to construct n-tuple. | |
4278 -- | |
4279 -- This routine evaluates specified pseudo-code to construct resultant | |
4280 -- n-tuple, which is returned on exit. */ | |
4281 | |
4282 TUPLE *eval_tuple(MPL *mpl, CODE *code) | |
4283 { TUPLE *value; | |
4284 xassert(code != NULL); | |
4285 xassert(code->type == A_TUPLE); | |
4286 xassert(code->dim > 0); | |
4287 /* if the operation has a side effect, invalidate and delete the | |
4288 resultant value */ | |
4289 if (code->vflag && code->valid) | |
4290 { code->valid = 0; | |
4291 delete_value(mpl, code->type, &code->value); | |
4292 } | |
4293 /* if resultant value is valid, no evaluation is needed */ | |
4294 if (code->valid) | |
4295 { value = copy_tuple(mpl, code->value.tuple); | |
4296 goto done; | |
4297 } | |
4298 /* evaluate pseudo-code recursively */ | |
4299 switch (code->op) | |
4300 { case O_TUPLE: | |
4301 /* make n-tuple */ | |
4302 { ARG_LIST *e; | |
4303 value = create_tuple(mpl); | |
4304 for (e = code->arg.list; e != NULL; e = e->next) | |
4305 value = expand_tuple(mpl, value, eval_symbolic(mpl, | |
4306 e->x)); | |
4307 } | |
4308 break; | |
4309 case O_CVTTUP: | |
4310 /* convert to 1-tuple */ | |
4311 value = expand_tuple(mpl, create_tuple(mpl), | |
4312 eval_symbolic(mpl, code->arg.arg.x)); | |
4313 break; | |
4314 default: | |
4315 xassert(code != code); | |
4316 } | |
4317 /* save resultant value */ | |
4318 xassert(!code->valid); | |
4319 code->valid = 1; | |
4320 code->value.tuple = copy_tuple(mpl, value); | |
4321 done: return value; | |
4322 } | |
4323 | |
4324 /*---------------------------------------------------------------------- | |
4325 -- eval_elemset - evaluate pseudo-code to construct elemental set. | |
4326 -- | |
4327 -- This routine evaluates specified pseudo-code to construct resultant | |
4328 -- elemental set, which is returned on exit. */ | |
4329 | |
4330 struct iter_set_info | |
4331 { /* working info used by the routine iter_set_func */ | |
4332 CODE *code; | |
4333 /* pseudo-code for iterated operation to be performed */ | |
4334 ELEMSET *value; | |
4335 /* resultant value */ | |
4336 }; | |
4337 | |
4338 static int iter_set_func(MPL *mpl, void *_info) | |
4339 { /* this is auxiliary routine used to perform iterated operation | |
4340 on n-tuple "integrand" within domain scope */ | |
4341 struct iter_set_info *info = _info; | |
4342 TUPLE *tuple; | |
4343 switch (info->code->op) | |
4344 { case O_SETOF: | |
4345 /* compute next n-tuple and add it to the set; in this case | |
4346 duplicate n-tuples are silently ignored */ | |
4347 tuple = eval_tuple(mpl, info->code->arg.loop.x); | |
4348 if (find_tuple(mpl, info->value, tuple) == NULL) | |
4349 add_tuple(mpl, info->value, tuple); | |
4350 else | |
4351 delete_tuple(mpl, tuple); | |
4352 break; | |
4353 case O_BUILD: | |
4354 /* construct next n-tuple using current values assigned to | |
4355 *free* dummy indices as its components and add it to the | |
4356 set; in this case duplicate n-tuples cannot appear */ | |
4357 add_tuple(mpl, info->value, get_domain_tuple(mpl, | |
4358 info->code->arg.loop.domain)); | |
4359 break; | |
4360 default: | |
4361 xassert(info != info); | |
4362 } | |
4363 return 0; | |
4364 } | |
4365 | |
4366 ELEMSET *eval_elemset(MPL *mpl, CODE *code) | |
4367 { ELEMSET *value; | |
4368 xassert(code != NULL); | |
4369 xassert(code->type == A_ELEMSET); | |
4370 xassert(code->dim > 0); | |
4371 /* if the operation has a side effect, invalidate and delete the | |
4372 resultant value */ | |
4373 if (code->vflag && code->valid) | |
4374 { code->valid = 0; | |
4375 delete_value(mpl, code->type, &code->value); | |
4376 } | |
4377 /* if resultant value is valid, no evaluation is needed */ | |
4378 if (code->valid) | |
4379 { value = copy_elemset(mpl, code->value.set); | |
4380 goto done; | |
4381 } | |
4382 /* evaluate pseudo-code recursively */ | |
4383 switch (code->op) | |
4384 { case O_MEMSET: | |
4385 /* take member of set */ | |
4386 { TUPLE *tuple; | |
4387 ARG_LIST *e; | |
4388 tuple = create_tuple(mpl); | |
4389 for (e = code->arg.set.list; e != NULL; e = e->next) | |
4390 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
4391 e->x)); | |
4392 value = copy_elemset(mpl, | |
4393 eval_member_set(mpl, code->arg.set.set, tuple)); | |
4394 delete_tuple(mpl, tuple); | |
4395 } | |
4396 break; | |
4397 case O_MAKE: | |
4398 /* make elemental set of n-tuples */ | |
4399 { ARG_LIST *e; | |
4400 value = create_elemset(mpl, code->dim); | |
4401 for (e = code->arg.list; e != NULL; e = e->next) | |
4402 check_then_add(mpl, value, eval_tuple(mpl, e->x)); | |
4403 } | |
4404 break; | |
4405 case O_UNION: | |
4406 /* union of two elemental sets */ | |
4407 value = set_union(mpl, | |
4408 eval_elemset(mpl, code->arg.arg.x), | |
4409 eval_elemset(mpl, code->arg.arg.y)); | |
4410 break; | |
4411 case O_DIFF: | |
4412 /* difference between two elemental sets */ | |
4413 value = set_diff(mpl, | |
4414 eval_elemset(mpl, code->arg.arg.x), | |
4415 eval_elemset(mpl, code->arg.arg.y)); | |
4416 break; | |
4417 case O_SYMDIFF: | |
4418 /* symmetric difference between two elemental sets */ | |
4419 value = set_symdiff(mpl, | |
4420 eval_elemset(mpl, code->arg.arg.x), | |
4421 eval_elemset(mpl, code->arg.arg.y)); | |
4422 break; | |
4423 case O_INTER: | |
4424 /* intersection of two elemental sets */ | |
4425 value = set_inter(mpl, | |
4426 eval_elemset(mpl, code->arg.arg.x), | |
4427 eval_elemset(mpl, code->arg.arg.y)); | |
4428 break; | |
4429 case O_CROSS: | |
4430 /* cross (Cartesian) product of two elemental sets */ | |
4431 value = set_cross(mpl, | |
4432 eval_elemset(mpl, code->arg.arg.x), | |
4433 eval_elemset(mpl, code->arg.arg.y)); | |
4434 break; | |
4435 case O_DOTS: | |
4436 /* build "arithmetic" elemental set */ | |
4437 value = create_arelset(mpl, | |
4438 eval_numeric(mpl, code->arg.arg.x), | |
4439 eval_numeric(mpl, code->arg.arg.y), | |
4440 code->arg.arg.z == NULL ? 1.0 : eval_numeric(mpl, | |
4441 code->arg.arg.z)); | |
4442 break; | |
4443 case O_FORK: | |
4444 /* if-then-else */ | |
4445 if (eval_logical(mpl, code->arg.arg.x)) | |
4446 value = eval_elemset(mpl, code->arg.arg.y); | |
4447 else | |
4448 value = eval_elemset(mpl, code->arg.arg.z); | |
4449 break; | |
4450 case O_SETOF: | |
4451 /* compute elemental set */ | |
4452 { struct iter_set_info _info, *info = &_info; | |
4453 info->code = code; | |
4454 info->value = create_elemset(mpl, code->dim); | |
4455 loop_within_domain(mpl, code->arg.loop.domain, info, | |
4456 iter_set_func); | |
4457 value = info->value; | |
4458 } | |
4459 break; | |
4460 case O_BUILD: | |
4461 /* build elemental set identical to domain set */ | |
4462 { struct iter_set_info _info, *info = &_info; | |
4463 info->code = code; | |
4464 info->value = create_elemset(mpl, code->dim); | |
4465 loop_within_domain(mpl, code->arg.loop.domain, info, | |
4466 iter_set_func); | |
4467 value = info->value; | |
4468 } | |
4469 break; | |
4470 default: | |
4471 xassert(code != code); | |
4472 } | |
4473 /* save resultant value */ | |
4474 xassert(!code->valid); | |
4475 code->valid = 1; | |
4476 code->value.set = copy_elemset(mpl, value); | |
4477 done: return value; | |
4478 } | |
4479 | |
4480 /*---------------------------------------------------------------------- | |
4481 -- is_member - check if n-tuple is in set specified by pseudo-code. | |
4482 -- | |
4483 -- This routine checks if given n-tuple is a member of elemental set | |
4484 -- specified in the form of pseudo-code (i.e. by expression). | |
4485 -- | |
4486 -- The n-tuple may have more components that dimension of the elemental | |
4487 -- set, in which case the extra components are ignored. */ | |
4488 | |
4489 static void null_func(MPL *mpl, void *info) | |
4490 { /* this is dummy routine used to enter the domain scope */ | |
4491 xassert(mpl == mpl); | |
4492 xassert(info == NULL); | |
4493 return; | |
4494 } | |
4495 | |
4496 int is_member(MPL *mpl, CODE *code, TUPLE *tuple) | |
4497 { int value; | |
4498 xassert(code != NULL); | |
4499 xassert(code->type == A_ELEMSET); | |
4500 xassert(code->dim > 0); | |
4501 xassert(tuple != NULL); | |
4502 switch (code->op) | |
4503 { case O_MEMSET: | |
4504 /* check if given n-tuple is member of elemental set, which | |
4505 is assigned to member of model set */ | |
4506 { ARG_LIST *e; | |
4507 TUPLE *temp; | |
4508 ELEMSET *set; | |
4509 /* evaluate reference to elemental set */ | |
4510 temp = create_tuple(mpl); | |
4511 for (e = code->arg.set.list; e != NULL; e = e->next) | |
4512 temp = expand_tuple(mpl, temp, eval_symbolic(mpl, | |
4513 e->x)); | |
4514 set = eval_member_set(mpl, code->arg.set.set, temp); | |
4515 delete_tuple(mpl, temp); | |
4516 /* check if the n-tuple is contained in the set array */ | |
4517 temp = build_subtuple(mpl, tuple, set->dim); | |
4518 value = (find_tuple(mpl, set, temp) != NULL); | |
4519 delete_tuple(mpl, temp); | |
4520 } | |
4521 break; | |
4522 case O_MAKE: | |
4523 /* check if given n-tuple is member of literal set */ | |
4524 { ARG_LIST *e; | |
4525 TUPLE *temp, *that; | |
4526 value = 0; | |
4527 temp = build_subtuple(mpl, tuple, code->dim); | |
4528 for (e = code->arg.list; e != NULL; e = e->next) | |
4529 { that = eval_tuple(mpl, e->x); | |
4530 value = (compare_tuples(mpl, temp, that) == 0); | |
4531 delete_tuple(mpl, that); | |
4532 if (value) break; | |
4533 } | |
4534 delete_tuple(mpl, temp); | |
4535 } | |
4536 break; | |
4537 case O_UNION: | |
4538 value = is_member(mpl, code->arg.arg.x, tuple) || | |
4539 is_member(mpl, code->arg.arg.y, tuple); | |
4540 break; | |
4541 case O_DIFF: | |
4542 value = is_member(mpl, code->arg.arg.x, tuple) && | |
4543 !is_member(mpl, code->arg.arg.y, tuple); | |
4544 break; | |
4545 case O_SYMDIFF: | |
4546 { int in1 = is_member(mpl, code->arg.arg.x, tuple); | |
4547 int in2 = is_member(mpl, code->arg.arg.y, tuple); | |
4548 value = (in1 && !in2) || (!in1 && in2); | |
4549 } | |
4550 break; | |
4551 case O_INTER: | |
4552 value = is_member(mpl, code->arg.arg.x, tuple) && | |
4553 is_member(mpl, code->arg.arg.y, tuple); | |
4554 break; | |
4555 case O_CROSS: | |
4556 { int j; | |
4557 value = is_member(mpl, code->arg.arg.x, tuple); | |
4558 if (value) | |
4559 { for (j = 1; j <= code->arg.arg.x->dim; j++) | |
4560 { xassert(tuple != NULL); | |
4561 tuple = tuple->next; | |
4562 } | |
4563 value = is_member(mpl, code->arg.arg.y, tuple); | |
4564 } | |
4565 } | |
4566 break; | |
4567 case O_DOTS: | |
4568 /* check if given 1-tuple is member of "arithmetic" set */ | |
4569 { int j; | |
4570 double x, t0, tf, dt; | |
4571 xassert(code->dim == 1); | |
4572 /* compute "parameters" of the "arithmetic" set */ | |
4573 t0 = eval_numeric(mpl, code->arg.arg.x); | |
4574 tf = eval_numeric(mpl, code->arg.arg.y); | |
4575 if (code->arg.arg.z == NULL) | |
4576 dt = 1.0; | |
4577 else | |
4578 dt = eval_numeric(mpl, code->arg.arg.z); | |
4579 /* make sure the parameters are correct */ | |
4580 arelset_size(mpl, t0, tf, dt); | |
4581 /* if component of 1-tuple is symbolic, not numeric, the | |
4582 1-tuple cannot be member of "arithmetic" set */ | |
4583 xassert(tuple->sym != NULL); | |
4584 if (tuple->sym->str != NULL) | |
4585 { value = 0; | |
4586 break; | |
4587 } | |
4588 /* determine numeric value of the component */ | |
4589 x = tuple->sym->num; | |
4590 /* if the component value is out of the set range, the | |
4591 1-tuple is not in the set */ | |
4592 if (dt > 0.0 && !(t0 <= x && x <= tf) || | |
4593 dt < 0.0 && !(tf <= x && x <= t0)) | |
4594 { value = 0; | |
4595 break; | |
4596 } | |
4597 /* estimate ordinal number of the 1-tuple in the set */ | |
4598 j = (int)(((x - t0) / dt) + 0.5) + 1; | |
4599 /* perform the main check */ | |
4600 value = (arelset_member(mpl, t0, tf, dt, j) == x); | |
4601 } | |
4602 break; | |
4603 case O_FORK: | |
4604 /* check if given n-tuple is member of conditional set */ | |
4605 if (eval_logical(mpl, code->arg.arg.x)) | |
4606 value = is_member(mpl, code->arg.arg.y, tuple); | |
4607 else | |
4608 value = is_member(mpl, code->arg.arg.z, tuple); | |
4609 break; | |
4610 case O_SETOF: | |
4611 /* check if given n-tuple is member of computed set */ | |
4612 /* it is not clear how to efficiently perform the check not | |
4613 computing the entire elemental set :+( */ | |
4614 error(mpl, "implementation restriction; in/within setof{} n" | |
4615 "ot allowed"); | |
4616 break; | |
4617 case O_BUILD: | |
4618 /* check if given n-tuple is member of domain set */ | |
4619 { TUPLE *temp; | |
4620 temp = build_subtuple(mpl, tuple, code->dim); | |
4621 /* try to enter the domain scope; if it is successful, | |
4622 the n-tuple is in the domain set */ | |
4623 value = (eval_within_domain(mpl, code->arg.loop.domain, | |
4624 temp, NULL, null_func) == 0); | |
4625 delete_tuple(mpl, temp); | |
4626 } | |
4627 break; | |
4628 default: | |
4629 xassert(code != code); | |
4630 } | |
4631 return value; | |
4632 } | |
4633 | |
4634 /*---------------------------------------------------------------------- | |
4635 -- eval_formula - evaluate pseudo-code to construct linear form. | |
4636 -- | |
4637 -- This routine evaluates specified pseudo-code to construct resultant | |
4638 -- linear form, which is returned on exit. */ | |
4639 | |
4640 struct iter_form_info | |
4641 { /* working info used by the routine iter_form_func */ | |
4642 CODE *code; | |
4643 /* pseudo-code for iterated operation to be performed */ | |
4644 FORMULA *value; | |
4645 /* resultant value */ | |
4646 FORMULA *tail; | |
4647 /* pointer to the last term */ | |
4648 }; | |
4649 | |
4650 static int iter_form_func(MPL *mpl, void *_info) | |
4651 { /* this is auxiliary routine used to perform iterated operation | |
4652 on linear form "integrand" within domain scope */ | |
4653 struct iter_form_info *info = _info; | |
4654 switch (info->code->op) | |
4655 { case O_SUM: | |
4656 /* summation over domain */ | |
4657 #if 0 | |
4658 info->value = | |
4659 linear_comb(mpl, | |
4660 +1.0, info->value, | |
4661 +1.0, eval_formula(mpl, info->code->arg.loop.x)); | |
4662 #else | |
4663 /* the routine linear_comb needs to look through all terms | |
4664 of both linear forms to reduce identical terms, so using | |
4665 it here is not a good idea (for example, evaluation of | |
4666 sum{i in 1..n} x[i] required quadratic time); the better | |
4667 idea is to gather all terms of the integrand in one list | |
4668 and reduce identical terms only once after all terms of | |
4669 the resultant linear form have been evaluated */ | |
4670 { FORMULA *form, *term; | |
4671 form = eval_formula(mpl, info->code->arg.loop.x); | |
4672 if (info->value == NULL) | |
4673 { xassert(info->tail == NULL); | |
4674 info->value = form; | |
4675 } | |
4676 else | |
4677 { xassert(info->tail != NULL); | |
4678 info->tail->next = form; | |
4679 } | |
4680 for (term = form; term != NULL; term = term->next) | |
4681 info->tail = term; | |
4682 } | |
4683 #endif | |
4684 break; | |
4685 default: | |
4686 xassert(info != info); | |
4687 } | |
4688 return 0; | |
4689 } | |
4690 | |
4691 FORMULA *eval_formula(MPL *mpl, CODE *code) | |
4692 { FORMULA *value; | |
4693 xassert(code != NULL); | |
4694 xassert(code->type == A_FORMULA); | |
4695 xassert(code->dim == 0); | |
4696 /* if the operation has a side effect, invalidate and delete the | |
4697 resultant value */ | |
4698 if (code->vflag && code->valid) | |
4699 { code->valid = 0; | |
4700 delete_value(mpl, code->type, &code->value); | |
4701 } | |
4702 /* if resultant value is valid, no evaluation is needed */ | |
4703 if (code->valid) | |
4704 { value = copy_formula(mpl, code->value.form); | |
4705 goto done; | |
4706 } | |
4707 /* evaluate pseudo-code recursively */ | |
4708 switch (code->op) | |
4709 { case O_MEMVAR: | |
4710 /* take member of variable */ | |
4711 { TUPLE *tuple; | |
4712 ARG_LIST *e; | |
4713 tuple = create_tuple(mpl); | |
4714 for (e = code->arg.var.list; e != NULL; e = e->next) | |
4715 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, | |
4716 e->x)); | |
4717 #if 1 /* 15/V-2010 */ | |
4718 xassert(code->arg.var.suff == DOT_NONE); | |
4719 #endif | |
4720 value = single_variable(mpl, | |
4721 eval_member_var(mpl, code->arg.var.var, tuple)); | |
4722 delete_tuple(mpl, tuple); | |
4723 } | |
4724 break; | |
4725 case O_CVTLFM: | |
4726 /* convert to linear form */ | |
4727 value = constant_term(mpl, eval_numeric(mpl, | |
4728 code->arg.arg.x)); | |
4729 break; | |
4730 case O_PLUS: | |
4731 /* unary plus */ | |
4732 value = linear_comb(mpl, | |
4733 0.0, constant_term(mpl, 0.0), | |
4734 +1.0, eval_formula(mpl, code->arg.arg.x)); | |
4735 break; | |
4736 case O_MINUS: | |
4737 /* unary minus */ | |
4738 value = linear_comb(mpl, | |
4739 0.0, constant_term(mpl, 0.0), | |
4740 -1.0, eval_formula(mpl, code->arg.arg.x)); | |
4741 break; | |
4742 case O_ADD: | |
4743 /* addition */ | |
4744 value = linear_comb(mpl, | |
4745 +1.0, eval_formula(mpl, code->arg.arg.x), | |
4746 +1.0, eval_formula(mpl, code->arg.arg.y)); | |
4747 break; | |
4748 case O_SUB: | |
4749 /* subtraction */ | |
4750 value = linear_comb(mpl, | |
4751 +1.0, eval_formula(mpl, code->arg.arg.x), | |
4752 -1.0, eval_formula(mpl, code->arg.arg.y)); | |
4753 break; | |
4754 case O_MUL: | |
4755 /* multiplication */ | |
4756 xassert(code->arg.arg.x != NULL); | |
4757 xassert(code->arg.arg.y != NULL); | |
4758 if (code->arg.arg.x->type == A_NUMERIC) | |
4759 { xassert(code->arg.arg.y->type == A_FORMULA); | |
4760 value = linear_comb(mpl, | |
4761 eval_numeric(mpl, code->arg.arg.x), | |
4762 eval_formula(mpl, code->arg.arg.y), | |
4763 0.0, constant_term(mpl, 0.0)); | |
4764 } | |
4765 else | |
4766 { xassert(code->arg.arg.x->type == A_FORMULA); | |
4767 xassert(code->arg.arg.y->type == A_NUMERIC); | |
4768 value = linear_comb(mpl, | |
4769 eval_numeric(mpl, code->arg.arg.y), | |
4770 eval_formula(mpl, code->arg.arg.x), | |
4771 0.0, constant_term(mpl, 0.0)); | |
4772 } | |
4773 break; | |
4774 case O_DIV: | |
4775 /* division */ | |
4776 value = linear_comb(mpl, | |
4777 fp_div(mpl, 1.0, eval_numeric(mpl, code->arg.arg.y)), | |
4778 eval_formula(mpl, code->arg.arg.x), | |
4779 0.0, constant_term(mpl, 0.0)); | |
4780 break; | |
4781 case O_FORK: | |
4782 /* if-then-else */ | |
4783 if (eval_logical(mpl, code->arg.arg.x)) | |
4784 value = eval_formula(mpl, code->arg.arg.y); | |
4785 else if (code->arg.arg.z == NULL) | |
4786 value = constant_term(mpl, 0.0); | |
4787 else | |
4788 value = eval_formula(mpl, code->arg.arg.z); | |
4789 break; | |
4790 case O_SUM: | |
4791 /* summation over domain */ | |
4792 { struct iter_form_info _info, *info = &_info; | |
4793 info->code = code; | |
4794 info->value = constant_term(mpl, 0.0); | |
4795 info->tail = NULL; | |
4796 loop_within_domain(mpl, code->arg.loop.domain, info, | |
4797 iter_form_func); | |
4798 value = reduce_terms(mpl, info->value); | |
4799 } | |
4800 break; | |
4801 default: | |
4802 xassert(code != code); | |
4803 } | |
4804 /* save resultant value */ | |
4805 xassert(!code->valid); | |
4806 code->valid = 1; | |
4807 code->value.form = copy_formula(mpl, value); | |
4808 done: return value; | |
4809 } | |
4810 | |
4811 /*---------------------------------------------------------------------- | |
4812 -- clean_code - clean pseudo-code. | |
4813 -- | |
4814 -- This routine recursively cleans specified pseudo-code that assumes | |
4815 -- deleting all temporary resultant values. */ | |
4816 | |
4817 void clean_code(MPL *mpl, CODE *code) | |
4818 { ARG_LIST *e; | |
4819 /* if no pseudo-code is specified, do nothing */ | |
4820 if (code == NULL) goto done; | |
4821 /* if resultant value is valid (exists), delete it */ | |
4822 if (code->valid) | |
4823 { code->valid = 0; | |
4824 delete_value(mpl, code->type, &code->value); | |
4825 } | |
4826 /* recursively clean pseudo-code for operands */ | |
4827 switch (code->op) | |
4828 { case O_NUMBER: | |
4829 case O_STRING: | |
4830 case O_INDEX: | |
4831 break; | |
4832 case O_MEMNUM: | |
4833 case O_MEMSYM: | |
4834 for (e = code->arg.par.list; e != NULL; e = e->next) | |
4835 clean_code(mpl, e->x); | |
4836 break; | |
4837 case O_MEMSET: | |
4838 for (e = code->arg.set.list; e != NULL; e = e->next) | |
4839 clean_code(mpl, e->x); | |
4840 break; | |
4841 case O_MEMVAR: | |
4842 for (e = code->arg.var.list; e != NULL; e = e->next) | |
4843 clean_code(mpl, e->x); | |
4844 break; | |
4845 #if 1 /* 15/V-2010 */ | |
4846 case O_MEMCON: | |
4847 for (e = code->arg.con.list; e != NULL; e = e->next) | |
4848 clean_code(mpl, e->x); | |
4849 break; | |
4850 #endif | |
4851 case O_TUPLE: | |
4852 case O_MAKE: | |
4853 for (e = code->arg.list; e != NULL; e = e->next) | |
4854 clean_code(mpl, e->x); | |
4855 break; | |
4856 case O_SLICE: | |
4857 xassert(code != code); | |
4858 case O_IRAND224: | |
4859 case O_UNIFORM01: | |
4860 case O_NORMAL01: | |
4861 case O_GMTIME: | |
4862 break; | |
4863 case O_CVTNUM: | |
4864 case O_CVTSYM: | |
4865 case O_CVTLOG: | |
4866 case O_CVTTUP: | |
4867 case O_CVTLFM: | |
4868 case O_PLUS: | |
4869 case O_MINUS: | |
4870 case O_NOT: | |
4871 case O_ABS: | |
4872 case O_CEIL: | |
4873 case O_FLOOR: | |
4874 case O_EXP: | |
4875 case O_LOG: | |
4876 case O_LOG10: | |
4877 case O_SQRT: | |
4878 case O_SIN: | |
4879 case O_COS: | |
4880 case O_ATAN: | |
4881 case O_ROUND: | |
4882 case O_TRUNC: | |
4883 case O_CARD: | |
4884 case O_LENGTH: | |
4885 /* unary operation */ | |
4886 clean_code(mpl, code->arg.arg.x); | |
4887 break; | |
4888 case O_ADD: | |
4889 case O_SUB: | |
4890 case O_LESS: | |
4891 case O_MUL: | |
4892 case O_DIV: | |
4893 case O_IDIV: | |
4894 case O_MOD: | |
4895 case O_POWER: | |
4896 case O_ATAN2: | |
4897 case O_ROUND2: | |
4898 case O_TRUNC2: | |
4899 case O_UNIFORM: | |
4900 case O_NORMAL: | |
4901 case O_CONCAT: | |
4902 case O_LT: | |
4903 case O_LE: | |
4904 case O_EQ: | |
4905 case O_GE: | |
4906 case O_GT: | |
4907 case O_NE: | |
4908 case O_AND: | |
4909 case O_OR: | |
4910 case O_UNION: | |
4911 case O_DIFF: | |
4912 case O_SYMDIFF: | |
4913 case O_INTER: | |
4914 case O_CROSS: | |
4915 case O_IN: | |
4916 case O_NOTIN: | |
4917 case O_WITHIN: | |
4918 case O_NOTWITHIN: | |
4919 case O_SUBSTR: | |
4920 case O_STR2TIME: | |
4921 case O_TIME2STR: | |
4922 /* binary operation */ | |
4923 clean_code(mpl, code->arg.arg.x); | |
4924 clean_code(mpl, code->arg.arg.y); | |
4925 break; | |
4926 case O_DOTS: | |
4927 case O_FORK: | |
4928 case O_SUBSTR3: | |
4929 /* ternary operation */ | |
4930 clean_code(mpl, code->arg.arg.x); | |
4931 clean_code(mpl, code->arg.arg.y); | |
4932 clean_code(mpl, code->arg.arg.z); | |
4933 break; | |
4934 case O_MIN: | |
4935 case O_MAX: | |
4936 /* n-ary operation */ | |
4937 for (e = code->arg.list; e != NULL; e = e->next) | |
4938 clean_code(mpl, e->x); | |
4939 break; | |
4940 case O_SUM: | |
4941 case O_PROD: | |
4942 case O_MINIMUM: | |
4943 case O_MAXIMUM: | |
4944 case O_FORALL: | |
4945 case O_EXISTS: | |
4946 case O_SETOF: | |
4947 case O_BUILD: | |
4948 /* iterated operation */ | |
4949 clean_domain(mpl, code->arg.loop.domain); | |
4950 clean_code(mpl, code->arg.loop.x); | |
4951 break; | |
4952 default: | |
4953 xassert(code->op != code->op); | |
4954 } | |
4955 done: return; | |
4956 } | |
4957 | |
4958 #if 1 /* 11/II-2008 */ | |
4959 /**********************************************************************/ | |
4960 /* * * DATA TABLES * * */ | |
4961 /**********************************************************************/ | |
4962 | |
4963 int mpl_tab_num_args(TABDCA *dca) | |
4964 { /* returns the number of arguments */ | |
4965 return dca->na; | |
4966 } | |
4967 | |
4968 const char *mpl_tab_get_arg(TABDCA *dca, int k) | |
4969 { /* returns pointer to k-th argument */ | |
4970 xassert(1 <= k && k <= dca->na); | |
4971 return dca->arg[k]; | |
4972 } | |
4973 | |
4974 int mpl_tab_num_flds(TABDCA *dca) | |
4975 { /* returns the number of fields */ | |
4976 return dca->nf; | |
4977 } | |
4978 | |
4979 const char *mpl_tab_get_name(TABDCA *dca, int k) | |
4980 { /* returns pointer to name of k-th field */ | |
4981 xassert(1 <= k && k <= dca->nf); | |
4982 return dca->name[k]; | |
4983 } | |
4984 | |
4985 int mpl_tab_get_type(TABDCA *dca, int k) | |
4986 { /* returns type of k-th field */ | |
4987 xassert(1 <= k && k <= dca->nf); | |
4988 return dca->type[k]; | |
4989 } | |
4990 | |
4991 double mpl_tab_get_num(TABDCA *dca, int k) | |
4992 { /* returns numeric value of k-th field */ | |
4993 xassert(1 <= k && k <= dca->nf); | |
4994 xassert(dca->type[k] == 'N'); | |
4995 return dca->num[k]; | |
4996 } | |
4997 | |
4998 const char *mpl_tab_get_str(TABDCA *dca, int k) | |
4999 { /* returns pointer to string value of k-th field */ | |
5000 xassert(1 <= k && k <= dca->nf); | |
5001 xassert(dca->type[k] == 'S'); | |
5002 xassert(dca->str[k] != NULL); | |
5003 return dca->str[k]; | |
5004 } | |
5005 | |
5006 void mpl_tab_set_num(TABDCA *dca, int k, double num) | |
5007 { /* assign numeric value to k-th field */ | |
5008 xassert(1 <= k && k <= dca->nf); | |
5009 xassert(dca->type[k] == '?'); | |
5010 dca->type[k] = 'N'; | |
5011 dca->num[k] = num; | |
5012 return; | |
5013 } | |
5014 | |
5015 void mpl_tab_set_str(TABDCA *dca, int k, const char *str) | |
5016 { /* assign string value to k-th field */ | |
5017 xassert(1 <= k && k <= dca->nf); | |
5018 xassert(dca->type[k] == '?'); | |
5019 xassert(strlen(str) <= MAX_LENGTH); | |
5020 xassert(dca->str[k] != NULL); | |
5021 dca->type[k] = 'S'; | |
5022 strcpy(dca->str[k], str); | |
5023 return; | |
5024 } | |
5025 | |
5026 static int write_func(MPL *mpl, void *info) | |
5027 { /* this is auxiliary routine to work within domain scope */ | |
5028 TABLE *tab = info; | |
5029 TABDCA *dca = mpl->dca; | |
5030 TABOUT *out; | |
5031 SYMBOL *sym; | |
5032 int k; | |
5033 char buf[MAX_LENGTH+1]; | |
5034 /* evaluate field values */ | |
5035 k = 0; | |
5036 for (out = tab->u.out.list; out != NULL; out = out->next) | |
5037 { k++; | |
5038 switch (out->code->type) | |
5039 { case A_NUMERIC: | |
5040 dca->type[k] = 'N'; | |
5041 dca->num[k] = eval_numeric(mpl, out->code); | |
5042 dca->str[k][0] = '\0'; | |
5043 break; | |
5044 case A_SYMBOLIC: | |
5045 sym = eval_symbolic(mpl, out->code); | |
5046 if (sym->str == NULL) | |
5047 { dca->type[k] = 'N'; | |
5048 dca->num[k] = sym->num; | |
5049 dca->str[k][0] = '\0'; | |
5050 } | |
5051 else | |
5052 { dca->type[k] = 'S'; | |
5053 dca->num[k] = 0.0; | |
5054 fetch_string(mpl, sym->str, buf); | |
5055 strcpy(dca->str[k], buf); | |
5056 } | |
5057 delete_symbol(mpl, sym); | |
5058 break; | |
5059 default: | |
5060 xassert(out != out); | |
5061 } | |
5062 } | |
5063 /* write record to output table */ | |
5064 mpl_tab_drv_write(mpl); | |
5065 return 0; | |
5066 } | |
5067 | |
5068 void execute_table(MPL *mpl, TABLE *tab) | |
5069 { /* execute table statement */ | |
5070 TABARG *arg; | |
5071 TABFLD *fld; | |
5072 TABIN *in; | |
5073 TABOUT *out; | |
5074 TABDCA *dca; | |
5075 SET *set; | |
5076 int k; | |
5077 char buf[MAX_LENGTH+1]; | |
5078 /* allocate table driver communication area */ | |
5079 xassert(mpl->dca == NULL); | |
5080 mpl->dca = dca = xmalloc(sizeof(TABDCA)); | |
5081 dca->id = 0; | |
5082 dca->link = NULL; | |
5083 dca->na = 0; | |
5084 dca->arg = NULL; | |
5085 dca->nf = 0; | |
5086 dca->name = NULL; | |
5087 dca->type = NULL; | |
5088 dca->num = NULL; | |
5089 dca->str = NULL; | |
5090 /* allocate arguments */ | |
5091 xassert(dca->na == 0); | |
5092 for (arg = tab->arg; arg != NULL; arg = arg->next) | |
5093 dca->na++; | |
5094 dca->arg = xcalloc(1+dca->na, sizeof(char *)); | |
5095 #if 1 /* 28/IX-2008 */ | |
5096 for (k = 1; k <= dca->na; k++) dca->arg[k] = NULL; | |
5097 #endif | |
5098 /* evaluate argument values */ | |
5099 k = 0; | |
5100 for (arg = tab->arg; arg != NULL; arg = arg->next) | |
5101 { SYMBOL *sym; | |
5102 k++; | |
5103 xassert(arg->code->type == A_SYMBOLIC); | |
5104 sym = eval_symbolic(mpl, arg->code); | |
5105 if (sym->str == NULL) | |
5106 sprintf(buf, "%.*g", DBL_DIG, sym->num); | |
5107 else | |
5108 fetch_string(mpl, sym->str, buf); | |
5109 delete_symbol(mpl, sym); | |
5110 dca->arg[k] = xmalloc(strlen(buf)+1); | |
5111 strcpy(dca->arg[k], buf); | |
5112 } | |
5113 /* perform table input/output */ | |
5114 switch (tab->type) | |
5115 { case A_INPUT: goto read_table; | |
5116 case A_OUTPUT: goto write_table; | |
5117 default: xassert(tab != tab); | |
5118 } | |
5119 read_table: | |
5120 /* read data from input table */ | |
5121 /* add the only member to the control set and assign it empty | |
5122 elemental set */ | |
5123 set = tab->u.in.set; | |
5124 if (set != NULL) | |
5125 { if (set->data) | |
5126 error(mpl, "%s already provided with data", set->name); | |
5127 xassert(set->array->head == NULL); | |
5128 add_member(mpl, set->array, NULL)->value.set = | |
5129 create_elemset(mpl, set->dimen); | |
5130 set->data = 1; | |
5131 } | |
5132 /* check parameters specified in the input list */ | |
5133 for (in = tab->u.in.list; in != NULL; in = in->next) | |
5134 { if (in->par->data) | |
5135 error(mpl, "%s already provided with data", in->par->name); | |
5136 in->par->data = 1; | |
5137 } | |
5138 /* allocate and initialize fields */ | |
5139 xassert(dca->nf == 0); | |
5140 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) | |
5141 dca->nf++; | |
5142 for (in = tab->u.in.list; in != NULL; in = in->next) | |
5143 dca->nf++; | |
5144 dca->name = xcalloc(1+dca->nf, sizeof(char *)); | |
5145 dca->type = xcalloc(1+dca->nf, sizeof(int)); | |
5146 dca->num = xcalloc(1+dca->nf, sizeof(double)); | |
5147 dca->str = xcalloc(1+dca->nf, sizeof(char *)); | |
5148 k = 0; | |
5149 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) | |
5150 { k++; | |
5151 dca->name[k] = fld->name; | |
5152 dca->type[k] = '?'; | |
5153 dca->num[k] = 0.0; | |
5154 dca->str[k] = xmalloc(MAX_LENGTH+1); | |
5155 dca->str[k][0] = '\0'; | |
5156 } | |
5157 for (in = tab->u.in.list; in != NULL; in = in->next) | |
5158 { k++; | |
5159 dca->name[k] = in->name; | |
5160 dca->type[k] = '?'; | |
5161 dca->num[k] = 0.0; | |
5162 dca->str[k] = xmalloc(MAX_LENGTH+1); | |
5163 dca->str[k][0] = '\0'; | |
5164 } | |
5165 /* open input table */ | |
5166 mpl_tab_drv_open(mpl, 'R'); | |
5167 /* read and process records */ | |
5168 for (;;) | |
5169 { TUPLE *tup; | |
5170 /* reset field types */ | |
5171 for (k = 1; k <= dca->nf; k++) | |
5172 dca->type[k] = '?'; | |
5173 /* read next record */ | |
5174 if (mpl_tab_drv_read(mpl)) break; | |
5175 /* all fields must be set by the driver */ | |
5176 for (k = 1; k <= dca->nf; k++) | |
5177 { if (dca->type[k] == '?') | |
5178 error(mpl, "field %s missing in input table", | |
5179 dca->name[k]); | |
5180 } | |
5181 /* construct n-tuple */ | |
5182 tup = create_tuple(mpl); | |
5183 k = 0; | |
5184 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) | |
5185 { k++; | |
5186 xassert(k <= dca->nf); | |
5187 switch (dca->type[k]) | |
5188 { case 'N': | |
5189 tup = expand_tuple(mpl, tup, create_symbol_num(mpl, | |
5190 dca->num[k])); | |
5191 break; | |
5192 case 'S': | |
5193 xassert(strlen(dca->str[k]) <= MAX_LENGTH); | |
5194 tup = expand_tuple(mpl, tup, create_symbol_str(mpl, | |
5195 create_string(mpl, dca->str[k]))); | |
5196 break; | |
5197 default: | |
5198 xassert(dca != dca); | |
5199 } | |
5200 } | |
5201 /* add n-tuple just read to the control set */ | |
5202 if (tab->u.in.set != NULL) | |
5203 check_then_add(mpl, tab->u.in.set->array->head->value.set, | |
5204 copy_tuple(mpl, tup)); | |
5205 /* assign values to the parameters in the input list */ | |
5206 for (in = tab->u.in.list; in != NULL; in = in->next) | |
5207 { MEMBER *memb; | |
5208 k++; | |
5209 xassert(k <= dca->nf); | |
5210 /* there must be no member with the same n-tuple */ | |
5211 if (find_member(mpl, in->par->array, tup) != NULL) | |
5212 error(mpl, "%s%s already defined", in->par->name, | |
5213 format_tuple(mpl, '[', tup)); | |
5214 /* create new parameter member with given n-tuple */ | |
5215 memb = add_member(mpl, in->par->array, copy_tuple(mpl, tup)) | |
5216 ; | |
5217 /* assign value to the parameter member */ | |
5218 switch (in->par->type) | |
5219 { case A_NUMERIC: | |
5220 case A_INTEGER: | |
5221 case A_BINARY: | |
5222 if (dca->type[k] != 'N') | |
5223 error(mpl, "%s requires numeric data", | |
5224 in->par->name); | |
5225 memb->value.num = dca->num[k]; | |
5226 break; | |
5227 case A_SYMBOLIC: | |
5228 switch (dca->type[k]) | |
5229 { case 'N': | |
5230 memb->value.sym = create_symbol_num(mpl, | |
5231 dca->num[k]); | |
5232 break; | |
5233 case 'S': | |
5234 xassert(strlen(dca->str[k]) <= MAX_LENGTH); | |
5235 memb->value.sym = create_symbol_str(mpl, | |
5236 create_string(mpl,dca->str[k])); | |
5237 break; | |
5238 default: | |
5239 xassert(dca != dca); | |
5240 } | |
5241 break; | |
5242 default: | |
5243 xassert(in != in); | |
5244 } | |
5245 } | |
5246 /* n-tuple is no more needed */ | |
5247 delete_tuple(mpl, tup); | |
5248 } | |
5249 /* close input table */ | |
5250 mpl_tab_drv_close(mpl); | |
5251 goto done; | |
5252 write_table: | |
5253 /* write data to output table */ | |
5254 /* allocate and initialize fields */ | |
5255 xassert(dca->nf == 0); | |
5256 for (out = tab->u.out.list; out != NULL; out = out->next) | |
5257 dca->nf++; | |
5258 dca->name = xcalloc(1+dca->nf, sizeof(char *)); | |
5259 dca->type = xcalloc(1+dca->nf, sizeof(int)); | |
5260 dca->num = xcalloc(1+dca->nf, sizeof(double)); | |
5261 dca->str = xcalloc(1+dca->nf, sizeof(char *)); | |
5262 k = 0; | |
5263 for (out = tab->u.out.list; out != NULL; out = out->next) | |
5264 { k++; | |
5265 dca->name[k] = out->name; | |
5266 dca->type[k] = '?'; | |
5267 dca->num[k] = 0.0; | |
5268 dca->str[k] = xmalloc(MAX_LENGTH+1); | |
5269 dca->str[k][0] = '\0'; | |
5270 } | |
5271 /* open output table */ | |
5272 mpl_tab_drv_open(mpl, 'W'); | |
5273 /* evaluate fields and write records */ | |
5274 loop_within_domain(mpl, tab->u.out.domain, tab, write_func); | |
5275 /* close output table */ | |
5276 mpl_tab_drv_close(mpl); | |
5277 done: /* free table driver communication area */ | |
5278 free_dca(mpl); | |
5279 return; | |
5280 } | |
5281 | |
5282 void free_dca(MPL *mpl) | |
5283 { /* free table driver communucation area */ | |
5284 TABDCA *dca = mpl->dca; | |
5285 int k; | |
5286 if (dca != NULL) | |
5287 { if (dca->link != NULL) | |
5288 mpl_tab_drv_close(mpl); | |
5289 if (dca->arg != NULL) | |
5290 { for (k = 1; k <= dca->na; k++) | |
5291 #if 1 /* 28/IX-2008 */ | |
5292 if (dca->arg[k] != NULL) | |
5293 #endif | |
5294 xfree(dca->arg[k]); | |
5295 xfree(dca->arg); | |
5296 } | |
5297 if (dca->name != NULL) xfree(dca->name); | |
5298 if (dca->type != NULL) xfree(dca->type); | |
5299 if (dca->num != NULL) xfree(dca->num); | |
5300 if (dca->str != NULL) | |
5301 { for (k = 1; k <= dca->nf; k++) | |
5302 xfree(dca->str[k]); | |
5303 xfree(dca->str); | |
5304 } | |
5305 xfree(dca), mpl->dca = NULL; | |
5306 } | |
5307 return; | |
5308 } | |
5309 | |
5310 void clean_table(MPL *mpl, TABLE *tab) | |
5311 { /* clean table statement */ | |
5312 TABARG *arg; | |
5313 TABOUT *out; | |
5314 /* clean string list */ | |
5315 for (arg = tab->arg; arg != NULL; arg = arg->next) | |
5316 clean_code(mpl, arg->code); | |
5317 switch (tab->type) | |
5318 { case A_INPUT: | |
5319 break; | |
5320 case A_OUTPUT: | |
5321 /* clean subscript domain */ | |
5322 clean_domain(mpl, tab->u.out.domain); | |
5323 /* clean output list */ | |
5324 for (out = tab->u.out.list; out != NULL; out = out->next) | |
5325 clean_code(mpl, out->code); | |
5326 break; | |
5327 default: | |
5328 xassert(tab != tab); | |
5329 } | |
5330 return; | |
5331 } | |
5332 #endif | |
5333 | |
5334 /**********************************************************************/ | |
5335 /* * * MODEL STATEMENTS * * */ | |
5336 /**********************************************************************/ | |
5337 | |
5338 /*---------------------------------------------------------------------- | |
5339 -- execute_check - execute check statement. | |
5340 -- | |
5341 -- This routine executes specified check statement. */ | |
5342 | |
5343 static int check_func(MPL *mpl, void *info) | |
5344 { /* this is auxiliary routine to work within domain scope */ | |
5345 CHECK *chk = (CHECK *)info; | |
5346 if (!eval_logical(mpl, chk->code)) | |
5347 error(mpl, "check%s failed", format_tuple(mpl, '[', | |
5348 get_domain_tuple(mpl, chk->domain))); | |
5349 return 0; | |
5350 } | |
5351 | |
5352 void execute_check(MPL *mpl, CHECK *chk) | |
5353 { loop_within_domain(mpl, chk->domain, chk, check_func); | |
5354 return; | |
5355 } | |
5356 | |
5357 /*---------------------------------------------------------------------- | |
5358 -- clean_check - clean check statement. | |
5359 -- | |
5360 -- This routine cleans specified check statement that assumes deleting | |
5361 -- all stuff dynamically allocated on generating/postsolving phase. */ | |
5362 | |
5363 void clean_check(MPL *mpl, CHECK *chk) | |
5364 { /* clean subscript domain */ | |
5365 clean_domain(mpl, chk->domain); | |
5366 /* clean pseudo-code for computing predicate */ | |
5367 clean_code(mpl, chk->code); | |
5368 return; | |
5369 } | |
5370 | |
5371 /*---------------------------------------------------------------------- | |
5372 -- execute_display - execute display statement. | |
5373 -- | |
5374 -- This routine executes specified display statement. */ | |
5375 | |
5376 static void display_set(MPL *mpl, SET *set, MEMBER *memb) | |
5377 { /* display member of model set */ | |
5378 ELEMSET *s = memb->value.set; | |
5379 MEMBER *m; | |
5380 write_text(mpl, "%s%s%s\n", set->name, | |
5381 format_tuple(mpl, '[', memb->tuple), | |
5382 s->head == NULL ? " is empty" : ":"); | |
5383 for (m = s->head; m != NULL; m = m->next) | |
5384 write_text(mpl, " %s\n", format_tuple(mpl, '(', m->tuple)); | |
5385 return; | |
5386 } | |
5387 | |
5388 static void display_par(MPL *mpl, PARAMETER *par, MEMBER *memb) | |
5389 { /* display member of model parameter */ | |
5390 switch (par->type) | |
5391 { case A_NUMERIC: | |
5392 case A_INTEGER: | |
5393 case A_BINARY: | |
5394 write_text(mpl, "%s%s = %.*g\n", par->name, | |
5395 format_tuple(mpl, '[', memb->tuple), | |
5396 DBL_DIG, memb->value.num); | |
5397 break; | |
5398 case A_SYMBOLIC: | |
5399 write_text(mpl, "%s%s = %s\n", par->name, | |
5400 format_tuple(mpl, '[', memb->tuple), | |
5401 format_symbol(mpl, memb->value.sym)); | |
5402 break; | |
5403 default: | |
5404 xassert(par != par); | |
5405 } | |
5406 return; | |
5407 } | |
5408 | |
5409 #if 1 /* 15/V-2010 */ | |
5410 static void display_var(MPL *mpl, VARIABLE *var, MEMBER *memb, | |
5411 int suff) | |
5412 { /* display member of model variable */ | |
5413 if (suff == DOT_NONE || suff == DOT_VAL) | |
5414 write_text(mpl, "%s%s.val = %.*g\n", var->name, | |
5415 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5416 memb->value.var->prim); | |
5417 else if (suff == DOT_LB) | |
5418 write_text(mpl, "%s%s.lb = %.*g\n", var->name, | |
5419 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5420 memb->value.var->var->lbnd == NULL ? -DBL_MAX : | |
5421 memb->value.var->lbnd); | |
5422 else if (suff == DOT_UB) | |
5423 write_text(mpl, "%s%s.ub = %.*g\n", var->name, | |
5424 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5425 memb->value.var->var->ubnd == NULL ? +DBL_MAX : | |
5426 memb->value.var->ubnd); | |
5427 else if (suff == DOT_STATUS) | |
5428 write_text(mpl, "%s%s.status = %d\n", var->name, format_tuple | |
5429 (mpl, '[', memb->tuple), memb->value.var->stat); | |
5430 else if (suff == DOT_DUAL) | |
5431 write_text(mpl, "%s%s.dual = %.*g\n", var->name, | |
5432 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5433 memb->value.var->dual); | |
5434 else | |
5435 xassert(suff != suff); | |
5436 return; | |
5437 } | |
5438 #endif | |
5439 | |
5440 #if 1 /* 15/V-2010 */ | |
5441 static void display_con(MPL *mpl, CONSTRAINT *con, MEMBER *memb, | |
5442 int suff) | |
5443 { /* display member of model constraint */ | |
5444 if (suff == DOT_NONE || suff == DOT_VAL) | |
5445 write_text(mpl, "%s%s.val = %.*g\n", con->name, | |
5446 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5447 memb->value.con->prim); | |
5448 else if (suff == DOT_LB) | |
5449 write_text(mpl, "%s%s.lb = %.*g\n", con->name, | |
5450 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5451 memb->value.con->con->lbnd == NULL ? -DBL_MAX : | |
5452 memb->value.con->lbnd); | |
5453 else if (suff == DOT_UB) | |
5454 write_text(mpl, "%s%s.ub = %.*g\n", con->name, | |
5455 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5456 memb->value.con->con->ubnd == NULL ? +DBL_MAX : | |
5457 memb->value.con->ubnd); | |
5458 else if (suff == DOT_STATUS) | |
5459 write_text(mpl, "%s%s.status = %d\n", con->name, format_tuple | |
5460 (mpl, '[', memb->tuple), memb->value.con->stat); | |
5461 else if (suff == DOT_DUAL) | |
5462 write_text(mpl, "%s%s.dual = %.*g\n", con->name, | |
5463 format_tuple(mpl, '[', memb->tuple), DBL_DIG, | |
5464 memb->value.con->dual); | |
5465 else | |
5466 xassert(suff != suff); | |
5467 return; | |
5468 } | |
5469 #endif | |
5470 | |
5471 static void display_memb(MPL *mpl, CODE *code) | |
5472 { /* display member specified by pseudo-code */ | |
5473 MEMBER memb; | |
5474 ARG_LIST *e; | |
5475 xassert(code->op == O_MEMNUM || code->op == O_MEMSYM | |
5476 || code->op == O_MEMSET || code->op == O_MEMVAR | |
5477 || code->op == O_MEMCON); | |
5478 memb.tuple = create_tuple(mpl); | |
5479 for (e = code->arg.par.list; e != NULL; e = e->next) | |
5480 memb.tuple = expand_tuple(mpl, memb.tuple, eval_symbolic(mpl, | |
5481 e->x)); | |
5482 switch (code->op) | |
5483 { case O_MEMNUM: | |
5484 memb.value.num = eval_member_num(mpl, code->arg.par.par, | |
5485 memb.tuple); | |
5486 display_par(mpl, code->arg.par.par, &memb); | |
5487 break; | |
5488 case O_MEMSYM: | |
5489 memb.value.sym = eval_member_sym(mpl, code->arg.par.par, | |
5490 memb.tuple); | |
5491 display_par(mpl, code->arg.par.par, &memb); | |
5492 delete_symbol(mpl, memb.value.sym); | |
5493 break; | |
5494 case O_MEMSET: | |
5495 memb.value.set = eval_member_set(mpl, code->arg.set.set, | |
5496 memb.tuple); | |
5497 display_set(mpl, code->arg.set.set, &memb); | |
5498 break; | |
5499 case O_MEMVAR: | |
5500 memb.value.var = eval_member_var(mpl, code->arg.var.var, | |
5501 memb.tuple); | |
5502 display_var | |
5503 (mpl, code->arg.var.var, &memb, code->arg.var.suff); | |
5504 break; | |
5505 case O_MEMCON: | |
5506 memb.value.con = eval_member_con(mpl, code->arg.con.con, | |
5507 memb.tuple); | |
5508 display_con | |
5509 (mpl, code->arg.con.con, &memb, code->arg.con.suff); | |
5510 break; | |
5511 default: | |
5512 xassert(code != code); | |
5513 } | |
5514 delete_tuple(mpl, memb.tuple); | |
5515 return; | |
5516 } | |
5517 | |
5518 static void display_code(MPL *mpl, CODE *code) | |
5519 { /* display value of expression */ | |
5520 switch (code->type) | |
5521 { case A_NUMERIC: | |
5522 /* numeric value */ | |
5523 { double num; | |
5524 num = eval_numeric(mpl, code); | |
5525 write_text(mpl, "%.*g\n", DBL_DIG, num); | |
5526 } | |
5527 break; | |
5528 case A_SYMBOLIC: | |
5529 /* symbolic value */ | |
5530 { SYMBOL *sym; | |
5531 sym = eval_symbolic(mpl, code); | |
5532 write_text(mpl, "%s\n", format_symbol(mpl, sym)); | |
5533 delete_symbol(mpl, sym); | |
5534 } | |
5535 break; | |
5536 case A_LOGICAL: | |
5537 /* logical value */ | |
5538 { int bit; | |
5539 bit = eval_logical(mpl, code); | |
5540 write_text(mpl, "%s\n", bit ? "true" : "false"); | |
5541 } | |
5542 break; | |
5543 case A_TUPLE: | |
5544 /* n-tuple */ | |
5545 { TUPLE *tuple; | |
5546 tuple = eval_tuple(mpl, code); | |
5547 write_text(mpl, "%s\n", format_tuple(mpl, '(', tuple)); | |
5548 delete_tuple(mpl, tuple); | |
5549 } | |
5550 break; | |
5551 case A_ELEMSET: | |
5552 /* elemental set */ | |
5553 { ELEMSET *set; | |
5554 MEMBER *memb; | |
5555 set = eval_elemset(mpl, code); | |
5556 if (set->head == 0) | |
5557 write_text(mpl, "set is empty\n"); | |
5558 for (memb = set->head; memb != NULL; memb = memb->next) | |
5559 write_text(mpl, " %s\n", format_tuple(mpl, '(', | |
5560 memb->tuple)); | |
5561 delete_elemset(mpl, set); | |
5562 } | |
5563 break; | |
5564 case A_FORMULA: | |
5565 /* linear form */ | |
5566 { FORMULA *form, *term; | |
5567 form = eval_formula(mpl, code); | |
5568 if (form == NULL) | |
5569 write_text(mpl, "linear form is empty\n"); | |
5570 for (term = form; term != NULL; term = term->next) | |
5571 { if (term->var == NULL) | |
5572 write_text(mpl, " %.*g\n", term->coef); | |
5573 else | |
5574 write_text(mpl, " %.*g %s%s\n", DBL_DIG, | |
5575 term->coef, term->var->var->name, | |
5576 format_tuple(mpl, '[', term->var->memb->tuple)); | |
5577 } | |
5578 delete_formula(mpl, form); | |
5579 } | |
5580 break; | |
5581 default: | |
5582 xassert(code != code); | |
5583 } | |
5584 return; | |
5585 } | |
5586 | |
5587 static int display_func(MPL *mpl, void *info) | |
5588 { /* this is auxiliary routine to work within domain scope */ | |
5589 DISPLAY *dpy = (DISPLAY *)info; | |
5590 DISPLAY1 *entry; | |
5591 for (entry = dpy->list; entry != NULL; entry = entry->next) | |
5592 { if (entry->type == A_INDEX) | |
5593 { /* dummy index */ | |
5594 DOMAIN_SLOT *slot = entry->u.slot; | |
5595 write_text(mpl, "%s = %s\n", slot->name, | |
5596 format_symbol(mpl, slot->value)); | |
5597 } | |
5598 else if (entry->type == A_SET) | |
5599 { /* model set */ | |
5600 SET *set = entry->u.set; | |
5601 MEMBER *memb; | |
5602 if (set->assign != NULL) | |
5603 { /* the set has assignment expression; evaluate all its | |
5604 members over entire domain */ | |
5605 eval_whole_set(mpl, set); | |
5606 } | |
5607 else | |
5608 { /* the set has no assignment expression; refer to its | |
5609 any existing member ignoring resultant value to check | |
5610 the data provided the data section */ | |
5611 #if 1 /* 12/XII-2008 */ | |
5612 if (set->gadget != NULL && set->data == 0) | |
5613 { /* initialize the set with data from a plain set */ | |
5614 saturate_set(mpl, set); | |
5615 } | |
5616 #endif | |
5617 if (set->array->head != NULL) | |
5618 eval_member_set(mpl, set, set->array->head->tuple); | |
5619 } | |
5620 /* display all members of the set array */ | |
5621 if (set->array->head == NULL) | |
5622 write_text(mpl, "%s has empty content\n", set->name); | |
5623 for (memb = set->array->head; memb != NULL; memb = | |
5624 memb->next) display_set(mpl, set, memb); | |
5625 } | |
5626 else if (entry->type == A_PARAMETER) | |
5627 { /* model parameter */ | |
5628 PARAMETER *par = entry->u.par; | |
5629 MEMBER *memb; | |
5630 if (par->assign != NULL) | |
5631 { /* the parameter has an assignment expression; evaluate | |
5632 all its member over entire domain */ | |
5633 eval_whole_par(mpl, par); | |
5634 } | |
5635 else | |
5636 { /* the parameter has no assignment expression; refer to | |
5637 its any existing member ignoring resultant value to | |
5638 check the data provided in the data section */ | |
5639 if (par->array->head != NULL) | |
5640 { if (par->type != A_SYMBOLIC) | |
5641 eval_member_num(mpl, par, par->array->head->tuple); | |
5642 else | |
5643 delete_symbol(mpl, eval_member_sym(mpl, par, | |
5644 par->array->head->tuple)); | |
5645 } | |
5646 } | |
5647 /* display all members of the parameter array */ | |
5648 if (par->array->head == NULL) | |
5649 write_text(mpl, "%s has empty content\n", par->name); | |
5650 for (memb = par->array->head; memb != NULL; memb = | |
5651 memb->next) display_par(mpl, par, memb); | |
5652 } | |
5653 else if (entry->type == A_VARIABLE) | |
5654 { /* model variable */ | |
5655 VARIABLE *var = entry->u.var; | |
5656 MEMBER *memb; | |
5657 xassert(mpl->flag_p); | |
5658 /* display all members of the variable array */ | |
5659 if (var->array->head == NULL) | |
5660 write_text(mpl, "%s has empty content\n", var->name); | |
5661 for (memb = var->array->head; memb != NULL; memb = | |
5662 memb->next) display_var(mpl, var, memb, DOT_NONE); | |
5663 } | |
5664 else if (entry->type == A_CONSTRAINT) | |
5665 { /* model constraint */ | |
5666 CONSTRAINT *con = entry->u.con; | |
5667 MEMBER *memb; | |
5668 xassert(mpl->flag_p); | |
5669 /* display all members of the constraint array */ | |
5670 if (con->array->head == NULL) | |
5671 write_text(mpl, "%s has empty content\n", con->name); | |
5672 for (memb = con->array->head; memb != NULL; memb = | |
5673 memb->next) display_con(mpl, con, memb, DOT_NONE); | |
5674 } | |
5675 else if (entry->type == A_EXPRESSION) | |
5676 { /* expression */ | |
5677 CODE *code = entry->u.code; | |
5678 if (code->op == O_MEMNUM || code->op == O_MEMSYM || | |
5679 code->op == O_MEMSET || code->op == O_MEMVAR || | |
5680 code->op == O_MEMCON) | |
5681 display_memb(mpl, code); | |
5682 else | |
5683 display_code(mpl, code); | |
5684 } | |
5685 else | |
5686 xassert(entry != entry); | |
5687 } | |
5688 return 0; | |
5689 } | |
5690 | |
5691 void execute_display(MPL *mpl, DISPLAY *dpy) | |
5692 { loop_within_domain(mpl, dpy->domain, dpy, display_func); | |
5693 return; | |
5694 } | |
5695 | |
5696 /*---------------------------------------------------------------------- | |
5697 -- clean_display - clean display statement. | |
5698 -- | |
5699 -- This routine cleans specified display statement that assumes deleting | |
5700 -- all stuff dynamically allocated on generating/postsolving phase. */ | |
5701 | |
5702 void clean_display(MPL *mpl, DISPLAY *dpy) | |
5703 { DISPLAY1 *d; | |
5704 #if 0 /* 15/V-2010 */ | |
5705 ARG_LIST *e; | |
5706 #endif | |
5707 /* clean subscript domain */ | |
5708 clean_domain(mpl, dpy->domain); | |
5709 /* clean display list */ | |
5710 for (d = dpy->list; d != NULL; d = d->next) | |
5711 { /* clean pseudo-code for computing expression */ | |
5712 if (d->type == A_EXPRESSION) | |
5713 clean_code(mpl, d->u.code); | |
5714 #if 0 /* 15/V-2010 */ | |
5715 /* clean pseudo-code for computing subscripts */ | |
5716 for (e = d->list; e != NULL; e = e->next) | |
5717 clean_code(mpl, e->x); | |
5718 #endif | |
5719 } | |
5720 return; | |
5721 } | |
5722 | |
5723 /*---------------------------------------------------------------------- | |
5724 -- execute_printf - execute printf statement. | |
5725 -- | |
5726 -- This routine executes specified printf statement. */ | |
5727 | |
5728 #if 1 /* 14/VII-2006 */ | |
5729 static void print_char(MPL *mpl, int c) | |
5730 { if (mpl->prt_fp == NULL) | |
5731 write_char(mpl, c); | |
5732 else | |
5733 xfputc(c, mpl->prt_fp); | |
5734 return; | |
5735 } | |
5736 | |
5737 static void print_text(MPL *mpl, char *fmt, ...) | |
5738 { va_list arg; | |
5739 char buf[OUTBUF_SIZE], *c; | |
5740 va_start(arg, fmt); | |
5741 vsprintf(buf, fmt, arg); | |
5742 xassert(strlen(buf) < sizeof(buf)); | |
5743 va_end(arg); | |
5744 for (c = buf; *c != '\0'; c++) print_char(mpl, *c); | |
5745 return; | |
5746 } | |
5747 #endif | |
5748 | |
5749 static int printf_func(MPL *mpl, void *info) | |
5750 { /* this is auxiliary routine to work within domain scope */ | |
5751 PRINTF *prt = (PRINTF *)info; | |
5752 PRINTF1 *entry; | |
5753 SYMBOL *sym; | |
5754 char fmt[MAX_LENGTH+1], *c, *from, save; | |
5755 /* evaluate format control string */ | |
5756 sym = eval_symbolic(mpl, prt->fmt); | |
5757 if (sym->str == NULL) | |
5758 sprintf(fmt, "%.*g", DBL_DIG, sym->num); | |
5759 else | |
5760 fetch_string(mpl, sym->str, fmt); | |
5761 delete_symbol(mpl, sym); | |
5762 /* scan format control string and perform formatting output */ | |
5763 entry = prt->list; | |
5764 for (c = fmt; *c != '\0'; c++) | |
5765 { if (*c == '%') | |
5766 { /* scan format specifier */ | |
5767 from = c++; | |
5768 if (*c == '%') | |
5769 { print_char(mpl, '%'); | |
5770 continue; | |
5771 } | |
5772 if (entry == NULL) break; | |
5773 /* scan optional flags */ | |
5774 while (*c == '-' || *c == '+' || *c == ' ' || *c == '#' || | |
5775 *c == '0') c++; | |
5776 /* scan optional minimum field width */ | |
5777 while (isdigit((unsigned char)*c)) c++; | |
5778 /* scan optional precision */ | |
5779 if (*c == '.') | |
5780 { c++; | |
5781 while (isdigit((unsigned char)*c)) c++; | |
5782 } | |
5783 /* scan conversion specifier and perform formatting */ | |
5784 save = *(c+1), *(c+1) = '\0'; | |
5785 if (*c == 'd' || *c == 'i' || *c == 'e' || *c == 'E' || | |
5786 *c == 'f' || *c == 'F' || *c == 'g' || *c == 'G') | |
5787 { /* the specifier requires numeric value */ | |
5788 double value; | |
5789 xassert(entry != NULL); | |
5790 switch (entry->code->type) | |
5791 { case A_NUMERIC: | |
5792 value = eval_numeric(mpl, entry->code); | |
5793 break; | |
5794 case A_SYMBOLIC: | |
5795 sym = eval_symbolic(mpl, entry->code); | |
5796 if (sym->str != NULL) | |
5797 error(mpl, "cannot convert %s to floating-point" | |
5798 " number", format_symbol(mpl, sym)); | |
5799 value = sym->num; | |
5800 delete_symbol(mpl, sym); | |
5801 break; | |
5802 case A_LOGICAL: | |
5803 if (eval_logical(mpl, entry->code)) | |
5804 value = 1.0; | |
5805 else | |
5806 value = 0.0; | |
5807 break; | |
5808 default: | |
5809 xassert(entry != entry); | |
5810 } | |
5811 if (*c == 'd' || *c == 'i') | |
5812 { double int_max = (double)INT_MAX; | |
5813 if (!(-int_max <= value && value <= +int_max)) | |
5814 error(mpl, "cannot convert %.*g to integer", | |
5815 DBL_DIG, value); | |
5816 print_text(mpl, from, (int)floor(value + 0.5)); | |
5817 } | |
5818 else | |
5819 print_text(mpl, from, value); | |
5820 } | |
5821 else if (*c == 's') | |
5822 { /* the specifier requires symbolic value */ | |
5823 char value[MAX_LENGTH+1]; | |
5824 switch (entry->code->type) | |
5825 { case A_NUMERIC: | |
5826 sprintf(value, "%.*g", DBL_DIG, eval_numeric(mpl, | |
5827 entry->code)); | |
5828 break; | |
5829 case A_LOGICAL: | |
5830 if (eval_logical(mpl, entry->code)) | |
5831 strcpy(value, "T"); | |
5832 else | |
5833 strcpy(value, "F"); | |
5834 break; | |
5835 case A_SYMBOLIC: | |
5836 sym = eval_symbolic(mpl, entry->code); | |
5837 if (sym->str == NULL) | |
5838 sprintf(value, "%.*g", DBL_DIG, sym->num); | |
5839 else | |
5840 fetch_string(mpl, sym->str, value); | |
5841 delete_symbol(mpl, sym); | |
5842 break; | |
5843 default: | |
5844 xassert(entry != entry); | |
5845 } | |
5846 print_text(mpl, from, value); | |
5847 } | |
5848 else | |
5849 error(mpl, "format specifier missing or invalid"); | |
5850 *(c+1) = save; | |
5851 entry = entry->next; | |
5852 } | |
5853 else if (*c == '\\') | |
5854 { /* write some control character */ | |
5855 c++; | |
5856 if (*c == 't') | |
5857 print_char(mpl, '\t'); | |
5858 else if (*c == 'n') | |
5859 print_char(mpl, '\n'); | |
5860 #if 1 /* 28/X-2010 */ | |
5861 else if (*c == '\0') | |
5862 { /* format string ends with backslash */ | |
5863 error(mpl, "invalid use of escape character \\ in format" | |
5864 " control string"); | |
5865 } | |
5866 #endif | |
5867 else | |
5868 print_char(mpl, *c); | |
5869 } | |
5870 else | |
5871 { /* write character without formatting */ | |
5872 print_char(mpl, *c); | |
5873 } | |
5874 } | |
5875 return 0; | |
5876 } | |
5877 | |
5878 #if 0 /* 14/VII-2006 */ | |
5879 void execute_printf(MPL *mpl, PRINTF *prt) | |
5880 { loop_within_domain(mpl, prt->domain, prt, printf_func); | |
5881 return; | |
5882 } | |
5883 #else | |
5884 void execute_printf(MPL *mpl, PRINTF *prt) | |
5885 { if (prt->fname == NULL) | |
5886 { /* switch to the standard output */ | |
5887 if (mpl->prt_fp != NULL) | |
5888 { xfclose(mpl->prt_fp), mpl->prt_fp = NULL; | |
5889 xfree(mpl->prt_file), mpl->prt_file = NULL; | |
5890 } | |
5891 } | |
5892 else | |
5893 { /* evaluate file name string */ | |
5894 SYMBOL *sym; | |
5895 char fname[MAX_LENGTH+1]; | |
5896 sym = eval_symbolic(mpl, prt->fname); | |
5897 if (sym->str == NULL) | |
5898 sprintf(fname, "%.*g", DBL_DIG, sym->num); | |
5899 else | |
5900 fetch_string(mpl, sym->str, fname); | |
5901 delete_symbol(mpl, sym); | |
5902 /* close the current print file, if necessary */ | |
5903 if (mpl->prt_fp != NULL && | |
5904 (!prt->app || strcmp(mpl->prt_file, fname) != 0)) | |
5905 { xfclose(mpl->prt_fp), mpl->prt_fp = NULL; | |
5906 xfree(mpl->prt_file), mpl->prt_file = NULL; | |
5907 } | |
5908 /* open the specified print file, if necessary */ | |
5909 if (mpl->prt_fp == NULL) | |
5910 { mpl->prt_fp = xfopen(fname, prt->app ? "a" : "w"); | |
5911 if (mpl->prt_fp == NULL) | |
5912 error(mpl, "unable to open `%s' for writing - %s", | |
5913 fname, xerrmsg()); | |
5914 mpl->prt_file = xmalloc(strlen(fname)+1); | |
5915 strcpy(mpl->prt_file, fname); | |
5916 } | |
5917 } | |
5918 loop_within_domain(mpl, prt->domain, prt, printf_func); | |
5919 if (mpl->prt_fp != NULL) | |
5920 { xfflush(mpl->prt_fp); | |
5921 if (xferror(mpl->prt_fp)) | |
5922 error(mpl, "writing error to `%s' - %s", mpl->prt_file, | |
5923 xerrmsg()); | |
5924 } | |
5925 return; | |
5926 } | |
5927 #endif | |
5928 | |
5929 /*---------------------------------------------------------------------- | |
5930 -- clean_printf - clean printf statement. | |
5931 -- | |
5932 -- This routine cleans specified printf statement that assumes deleting | |
5933 -- all stuff dynamically allocated on generating/postsolving phase. */ | |
5934 | |
5935 void clean_printf(MPL *mpl, PRINTF *prt) | |
5936 { PRINTF1 *p; | |
5937 /* clean subscript domain */ | |
5938 clean_domain(mpl, prt->domain); | |
5939 /* clean pseudo-code for computing format string */ | |
5940 clean_code(mpl, prt->fmt); | |
5941 /* clean printf list */ | |
5942 for (p = prt->list; p != NULL; p = p->next) | |
5943 { /* clean pseudo-code for computing value to be printed */ | |
5944 clean_code(mpl, p->code); | |
5945 } | |
5946 #if 1 /* 14/VII-2006 */ | |
5947 /* clean pseudo-code for computing file name string */ | |
5948 clean_code(mpl, prt->fname); | |
5949 #endif | |
5950 return; | |
5951 } | |
5952 | |
5953 /*---------------------------------------------------------------------- | |
5954 -- execute_for - execute for statement. | |
5955 -- | |
5956 -- This routine executes specified for statement. */ | |
5957 | |
5958 static int for_func(MPL *mpl, void *info) | |
5959 { /* this is auxiliary routine to work within domain scope */ | |
5960 FOR *fur = (FOR *)info; | |
5961 STATEMENT *stmt, *save; | |
5962 save = mpl->stmt; | |
5963 for (stmt = fur->list; stmt != NULL; stmt = stmt->next) | |
5964 execute_statement(mpl, stmt); | |
5965 mpl->stmt = save; | |
5966 return 0; | |
5967 } | |
5968 | |
5969 void execute_for(MPL *mpl, FOR *fur) | |
5970 { loop_within_domain(mpl, fur->domain, fur, for_func); | |
5971 return; | |
5972 } | |
5973 | |
5974 /*---------------------------------------------------------------------- | |
5975 -- clean_for - clean for statement. | |
5976 -- | |
5977 -- This routine cleans specified for statement that assumes deleting all | |
5978 -- stuff dynamically allocated on generating/postsolving phase. */ | |
5979 | |
5980 void clean_for(MPL *mpl, FOR *fur) | |
5981 { STATEMENT *stmt; | |
5982 /* clean subscript domain */ | |
5983 clean_domain(mpl, fur->domain); | |
5984 /* clean all sub-statements */ | |
5985 for (stmt = fur->list; stmt != NULL; stmt = stmt->next) | |
5986 clean_statement(mpl, stmt); | |
5987 return; | |
5988 } | |
5989 | |
5990 /*---------------------------------------------------------------------- | |
5991 -- execute_statement - execute specified model statement. | |
5992 -- | |
5993 -- This routine executes specified model statement. */ | |
5994 | |
5995 void execute_statement(MPL *mpl, STATEMENT *stmt) | |
5996 { mpl->stmt = stmt; | |
5997 switch (stmt->type) | |
5998 { case A_SET: | |
5999 case A_PARAMETER: | |
6000 case A_VARIABLE: | |
6001 break; | |
6002 case A_CONSTRAINT: | |
6003 xprintf("Generating %s...\n", stmt->u.con->name); | |
6004 eval_whole_con(mpl, stmt->u.con); | |
6005 break; | |
6006 case A_TABLE: | |
6007 switch (stmt->u.tab->type) | |
6008 { case A_INPUT: | |
6009 xprintf("Reading %s...\n", stmt->u.tab->name); | |
6010 break; | |
6011 case A_OUTPUT: | |
6012 xprintf("Writing %s...\n", stmt->u.tab->name); | |
6013 break; | |
6014 default: | |
6015 xassert(stmt != stmt); | |
6016 } | |
6017 execute_table(mpl, stmt->u.tab); | |
6018 break; | |
6019 case A_SOLVE: | |
6020 break; | |
6021 case A_CHECK: | |
6022 xprintf("Checking (line %d)...\n", stmt->line); | |
6023 execute_check(mpl, stmt->u.chk); | |
6024 break; | |
6025 case A_DISPLAY: | |
6026 write_text(mpl, "Display statement at line %d\n", | |
6027 stmt->line); | |
6028 execute_display(mpl, stmt->u.dpy); | |
6029 break; | |
6030 case A_PRINTF: | |
6031 execute_printf(mpl, stmt->u.prt); | |
6032 break; | |
6033 case A_FOR: | |
6034 execute_for(mpl, stmt->u.fur); | |
6035 break; | |
6036 default: | |
6037 xassert(stmt != stmt); | |
6038 } | |
6039 return; | |
6040 } | |
6041 | |
6042 /*---------------------------------------------------------------------- | |
6043 -- clean_statement - clean specified model statement. | |
6044 -- | |
6045 -- This routine cleans specified model statement that assumes deleting | |
6046 -- all stuff dynamically allocated on generating/postsolving phase. */ | |
6047 | |
6048 void clean_statement(MPL *mpl, STATEMENT *stmt) | |
6049 { switch(stmt->type) | |
6050 { case A_SET: | |
6051 clean_set(mpl, stmt->u.set); break; | |
6052 case A_PARAMETER: | |
6053 clean_parameter(mpl, stmt->u.par); break; | |
6054 case A_VARIABLE: | |
6055 clean_variable(mpl, stmt->u.var); break; | |
6056 case A_CONSTRAINT: | |
6057 clean_constraint(mpl, stmt->u.con); break; | |
6058 #if 1 /* 11/II-2008 */ | |
6059 case A_TABLE: | |
6060 clean_table(mpl, stmt->u.tab); break; | |
6061 #endif | |
6062 case A_SOLVE: | |
6063 break; | |
6064 case A_CHECK: | |
6065 clean_check(mpl, stmt->u.chk); break; | |
6066 case A_DISPLAY: | |
6067 clean_display(mpl, stmt->u.dpy); break; | |
6068 case A_PRINTF: | |
6069 clean_printf(mpl, stmt->u.prt); break; | |
6070 case A_FOR: | |
6071 clean_for(mpl, stmt->u.fur); break; | |
6072 default: | |
6073 xassert(stmt != stmt); | |
6074 } | |
6075 return; | |
6076 } | |
6077 | |
6078 /* eof */ |