lemon-project-template-glpk

comparison deps/glpk/src/glpnet07.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:b5095fb8db03
1 /* glpnet07.c (Ford-Fulkerson algorithm) */
2
3 /***********************************************************************
4 * This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 * E-mail: <mao@gnu.org>.
10 *
11 * GLPK is free software: you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 3 of the License, or
14 * (at your option) any later version.
15 *
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 * License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
24
25 #include "glpenv.h"
26 #include "glpnet.h"
27
28 /***********************************************************************
29 * NAME
30 *
31 * ffalg - Ford-Fulkerson algorithm
32 *
33 * SYNOPSIS
34 *
35 * #include "glpnet.h"
36 * void ffalg(int nv, int na, const int tail[], const int head[],
37 * int s, int t, const int cap[], int x[], char cut[]);
38 *
39 * DESCRIPTION
40 *
41 * The routine ffalg implements the Ford-Fulkerson algorithm to find a
42 * maximal flow in the specified flow network.
43 *
44 * INPUT PARAMETERS
45 *
46 * nv is the number of nodes, nv >= 2.
47 *
48 * na is the number of arcs, na >= 0.
49 *
50 * tail[a], a = 1,...,na, is the index of tail node of arc a.
51 *
52 * head[a], a = 1,...,na, is the index of head node of arc a.
53 *
54 * s is the source node index, 1 <= s <= nv.
55 *
56 * t is the sink node index, 1 <= t <= nv, t != s.
57 *
58 * cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0.
59 *
60 * NOTE: Multiple arcs are allowed, but self-loops are not allowed.
61 *
62 * OUTPUT PARAMETERS
63 *
64 * x[a], a = 1,...,na, is optimal value of the flow through arc a.
65 *
66 * cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise.
67 * The set of arcs, whose one endpoint is labelled and other is not,
68 * defines the minimal cut corresponding to the maximal flow found.
69 * If the parameter cut is NULL, the cut information are not stored.
70 *
71 * REFERENCES
72 *
73 * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND
74 * Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow,"
75 * pp.30-33. */
76
77 void ffalg(int nv, int na, const int tail[], const int head[],
78 int s, int t, const int cap[], int x[], char cut[])
79 { int a, delta, i, j, k, pos1, pos2, temp,
80 *ptr, *arc, *link, *list;
81 /* sanity checks */
82 xassert(nv >= 2);
83 xassert(na >= 0);
84 xassert(1 <= s && s <= nv);
85 xassert(1 <= t && t <= nv);
86 xassert(s != t);
87 for (a = 1; a <= na; a++)
88 { i = tail[a], j = head[a];
89 xassert(1 <= i && i <= nv);
90 xassert(1 <= j && j <= nv);
91 xassert(i != j);
92 xassert(cap[a] >= 0);
93 }
94 /* allocate working arrays */
95 ptr = xcalloc(1+nv+1, sizeof(int));
96 arc = xcalloc(1+na+na, sizeof(int));
97 link = xcalloc(1+nv, sizeof(int));
98 list = xcalloc(1+nv, sizeof(int));
99 /* ptr[i] := (degree of node i) */
100 for (i = 1; i <= nv; i++)
101 ptr[i] = 0;
102 for (a = 1; a <= na; a++)
103 { ptr[tail[a]]++;
104 ptr[head[a]]++;
105 }
106 /* initialize arc pointers */
107 ptr[1]++;
108 for (i = 1; i < nv; i++)
109 ptr[i+1] += ptr[i];
110 ptr[nv+1] = ptr[nv];
111 /* build arc lists */
112 for (a = 1; a <= na; a++)
113 { arc[--ptr[tail[a]]] = a;
114 arc[--ptr[head[a]]] = a;
115 }
116 xassert(ptr[1] == 1);
117 xassert(ptr[nv+1] == na+na+1);
118 /* now the indices of arcs incident to node i are stored in
119 locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */
120 /* initialize arc flows */
121 for (a = 1; a <= na; a++)
122 x[a] = 0;
123 loop: /* main loop starts here */
124 /* build augmenting tree rooted at s */
125 /* link[i] = 0 means that node i is not labelled yet;
126 link[i] = a means that arc a immediately precedes node i */
127 /* initially node s is labelled as the root */
128 for (i = 1; i <= nv; i++)
129 link[i] = 0;
130 link[s] = -1, list[1] = s, pos1 = pos2 = 1;
131 /* breadth first search */
132 while (pos1 <= pos2)
133 { /* dequeue node i */
134 i = list[pos1++];
135 /* consider all arcs incident to node i */
136 for (k = ptr[i]; k < ptr[i+1]; k++)
137 { a = arc[k];
138 if (tail[a] == i)
139 { /* a = i->j is a forward arc from s to t */
140 j = head[a];
141 /* if node j has been labelled, skip the arc */
142 if (link[j] != 0) continue;
143 /* if the arc does not allow increasing the flow through
144 it, skip the arc */
145 if (x[a] == cap[a]) continue;
146 }
147 else if (head[a] == i)
148 { /* a = i<-j is a backward arc from s to t */
149 j = tail[a];
150 /* if node j has been labelled, skip the arc */
151 if (link[j] != 0) continue;
152 /* if the arc does not allow decreasing the flow through
153 it, skip the arc */
154 if (x[a] == 0) continue;
155 }
156 else
157 xassert(a != a);
158 /* label node j and enqueue it */
159 link[j] = a, list[++pos2] = j;
160 /* check for breakthrough */
161 if (j == t) goto brkt;
162 }
163 }
164 /* NONBREAKTHROUGH */
165 /* no augmenting path exists; current flow is maximal */
166 /* store minimal cut information, if necessary */
167 if (cut != NULL)
168 { for (i = 1; i <= nv; i++)
169 cut[i] = (char)(link[i] != 0);
170 }
171 goto done;
172 brkt: /* BREAKTHROUGH */
173 /* walk through arcs of the augmenting path (s, ..., t) found in
174 the reverse order and determine maximal change of the flow */
175 delta = 0;
176 for (j = t; j != s; j = i)
177 { /* arc a immediately precedes node j in the path */
178 a = link[j];
179 if (head[a] == j)
180 { /* a = i->j is a forward arc of the cycle */
181 i = tail[a];
182 /* x[a] may be increased until its upper bound */
183 temp = cap[a] - x[a];
184 }
185 else if (tail[a] == j)
186 { /* a = i<-j is a backward arc of the cycle */
187 i = head[a];
188 /* x[a] may be decreased until its lower bound */
189 temp = x[a];
190 }
191 else
192 xassert(a != a);
193 if (delta == 0 || delta > temp) delta = temp;
194 }
195 xassert(delta > 0);
196 /* increase the flow along the path */
197 for (j = t; j != s; j = i)
198 { /* arc a immediately precedes node j in the path */
199 a = link[j];
200 if (head[a] == j)
201 { /* a = i->j is a forward arc of the cycle */
202 i = tail[a];
203 x[a] += delta;
204 }
205 else if (tail[a] == j)
206 { /* a = i<-j is a backward arc of the cycle */
207 i = head[a];
208 x[a] -= delta;
209 }
210 else
211 xassert(a != a);
212 }
213 goto loop;
214 done: /* free working arrays */
215 xfree(ptr);
216 xfree(arc);
217 xfree(link);
218 xfree(list);
219 return;
220 }
221
222 /* eof */