lemon-project-template-glpk
comparison deps/glpk/src/glpnet07.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b5095fb8db03 |
---|---|
1 /* glpnet07.c (Ford-Fulkerson algorithm) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpenv.h" | |
26 #include "glpnet.h" | |
27 | |
28 /*********************************************************************** | |
29 * NAME | |
30 * | |
31 * ffalg - Ford-Fulkerson algorithm | |
32 * | |
33 * SYNOPSIS | |
34 * | |
35 * #include "glpnet.h" | |
36 * void ffalg(int nv, int na, const int tail[], const int head[], | |
37 * int s, int t, const int cap[], int x[], char cut[]); | |
38 * | |
39 * DESCRIPTION | |
40 * | |
41 * The routine ffalg implements the Ford-Fulkerson algorithm to find a | |
42 * maximal flow in the specified flow network. | |
43 * | |
44 * INPUT PARAMETERS | |
45 * | |
46 * nv is the number of nodes, nv >= 2. | |
47 * | |
48 * na is the number of arcs, na >= 0. | |
49 * | |
50 * tail[a], a = 1,...,na, is the index of tail node of arc a. | |
51 * | |
52 * head[a], a = 1,...,na, is the index of head node of arc a. | |
53 * | |
54 * s is the source node index, 1 <= s <= nv. | |
55 * | |
56 * t is the sink node index, 1 <= t <= nv, t != s. | |
57 * | |
58 * cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0. | |
59 * | |
60 * NOTE: Multiple arcs are allowed, but self-loops are not allowed. | |
61 * | |
62 * OUTPUT PARAMETERS | |
63 * | |
64 * x[a], a = 1,...,na, is optimal value of the flow through arc a. | |
65 * | |
66 * cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise. | |
67 * The set of arcs, whose one endpoint is labelled and other is not, | |
68 * defines the minimal cut corresponding to the maximal flow found. | |
69 * If the parameter cut is NULL, the cut information are not stored. | |
70 * | |
71 * REFERENCES | |
72 * | |
73 * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND | |
74 * Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow," | |
75 * pp.30-33. */ | |
76 | |
77 void ffalg(int nv, int na, const int tail[], const int head[], | |
78 int s, int t, const int cap[], int x[], char cut[]) | |
79 { int a, delta, i, j, k, pos1, pos2, temp, | |
80 *ptr, *arc, *link, *list; | |
81 /* sanity checks */ | |
82 xassert(nv >= 2); | |
83 xassert(na >= 0); | |
84 xassert(1 <= s && s <= nv); | |
85 xassert(1 <= t && t <= nv); | |
86 xassert(s != t); | |
87 for (a = 1; a <= na; a++) | |
88 { i = tail[a], j = head[a]; | |
89 xassert(1 <= i && i <= nv); | |
90 xassert(1 <= j && j <= nv); | |
91 xassert(i != j); | |
92 xassert(cap[a] >= 0); | |
93 } | |
94 /* allocate working arrays */ | |
95 ptr = xcalloc(1+nv+1, sizeof(int)); | |
96 arc = xcalloc(1+na+na, sizeof(int)); | |
97 link = xcalloc(1+nv, sizeof(int)); | |
98 list = xcalloc(1+nv, sizeof(int)); | |
99 /* ptr[i] := (degree of node i) */ | |
100 for (i = 1; i <= nv; i++) | |
101 ptr[i] = 0; | |
102 for (a = 1; a <= na; a++) | |
103 { ptr[tail[a]]++; | |
104 ptr[head[a]]++; | |
105 } | |
106 /* initialize arc pointers */ | |
107 ptr[1]++; | |
108 for (i = 1; i < nv; i++) | |
109 ptr[i+1] += ptr[i]; | |
110 ptr[nv+1] = ptr[nv]; | |
111 /* build arc lists */ | |
112 for (a = 1; a <= na; a++) | |
113 { arc[--ptr[tail[a]]] = a; | |
114 arc[--ptr[head[a]]] = a; | |
115 } | |
116 xassert(ptr[1] == 1); | |
117 xassert(ptr[nv+1] == na+na+1); | |
118 /* now the indices of arcs incident to node i are stored in | |
119 locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ | |
120 /* initialize arc flows */ | |
121 for (a = 1; a <= na; a++) | |
122 x[a] = 0; | |
123 loop: /* main loop starts here */ | |
124 /* build augmenting tree rooted at s */ | |
125 /* link[i] = 0 means that node i is not labelled yet; | |
126 link[i] = a means that arc a immediately precedes node i */ | |
127 /* initially node s is labelled as the root */ | |
128 for (i = 1; i <= nv; i++) | |
129 link[i] = 0; | |
130 link[s] = -1, list[1] = s, pos1 = pos2 = 1; | |
131 /* breadth first search */ | |
132 while (pos1 <= pos2) | |
133 { /* dequeue node i */ | |
134 i = list[pos1++]; | |
135 /* consider all arcs incident to node i */ | |
136 for (k = ptr[i]; k < ptr[i+1]; k++) | |
137 { a = arc[k]; | |
138 if (tail[a] == i) | |
139 { /* a = i->j is a forward arc from s to t */ | |
140 j = head[a]; | |
141 /* if node j has been labelled, skip the arc */ | |
142 if (link[j] != 0) continue; | |
143 /* if the arc does not allow increasing the flow through | |
144 it, skip the arc */ | |
145 if (x[a] == cap[a]) continue; | |
146 } | |
147 else if (head[a] == i) | |
148 { /* a = i<-j is a backward arc from s to t */ | |
149 j = tail[a]; | |
150 /* if node j has been labelled, skip the arc */ | |
151 if (link[j] != 0) continue; | |
152 /* if the arc does not allow decreasing the flow through | |
153 it, skip the arc */ | |
154 if (x[a] == 0) continue; | |
155 } | |
156 else | |
157 xassert(a != a); | |
158 /* label node j and enqueue it */ | |
159 link[j] = a, list[++pos2] = j; | |
160 /* check for breakthrough */ | |
161 if (j == t) goto brkt; | |
162 } | |
163 } | |
164 /* NONBREAKTHROUGH */ | |
165 /* no augmenting path exists; current flow is maximal */ | |
166 /* store minimal cut information, if necessary */ | |
167 if (cut != NULL) | |
168 { for (i = 1; i <= nv; i++) | |
169 cut[i] = (char)(link[i] != 0); | |
170 } | |
171 goto done; | |
172 brkt: /* BREAKTHROUGH */ | |
173 /* walk through arcs of the augmenting path (s, ..., t) found in | |
174 the reverse order and determine maximal change of the flow */ | |
175 delta = 0; | |
176 for (j = t; j != s; j = i) | |
177 { /* arc a immediately precedes node j in the path */ | |
178 a = link[j]; | |
179 if (head[a] == j) | |
180 { /* a = i->j is a forward arc of the cycle */ | |
181 i = tail[a]; | |
182 /* x[a] may be increased until its upper bound */ | |
183 temp = cap[a] - x[a]; | |
184 } | |
185 else if (tail[a] == j) | |
186 { /* a = i<-j is a backward arc of the cycle */ | |
187 i = head[a]; | |
188 /* x[a] may be decreased until its lower bound */ | |
189 temp = x[a]; | |
190 } | |
191 else | |
192 xassert(a != a); | |
193 if (delta == 0 || delta > temp) delta = temp; | |
194 } | |
195 xassert(delta > 0); | |
196 /* increase the flow along the path */ | |
197 for (j = t; j != s; j = i) | |
198 { /* arc a immediately precedes node j in the path */ | |
199 a = link[j]; | |
200 if (head[a] == j) | |
201 { /* a = i->j is a forward arc of the cycle */ | |
202 i = tail[a]; | |
203 x[a] += delta; | |
204 } | |
205 else if (tail[a] == j) | |
206 { /* a = i<-j is a backward arc of the cycle */ | |
207 i = head[a]; | |
208 x[a] -= delta; | |
209 } | |
210 else | |
211 xassert(a != a); | |
212 } | |
213 goto loop; | |
214 done: /* free working arrays */ | |
215 xfree(ptr); | |
216 xfree(arc); | |
217 xfree(link); | |
218 xfree(list); | |
219 return; | |
220 } | |
221 | |
222 /* eof */ |