lemon-project-template-glpk
comparison deps/glpk/src/glpscf.h @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:473537540af1 |
---|---|
1 /* glpscf.h (Schur complement factorization) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #ifndef GLPSCF_H | |
26 #define GLPSCF_H | |
27 | |
28 /*********************************************************************** | |
29 * The structure SCF defines the following factorization of a square | |
30 * nxn matrix C (which is the Schur complement): | |
31 * | |
32 * F * C = U * P, | |
33 * | |
34 * where F is a square transforming matrix, U is an upper triangular | |
35 * matrix, P is a permutation matrix. | |
36 * | |
37 * It is assumed that matrix C is small and dense, so matrices F and U | |
38 * are stored in the dense format by rows as follows: | |
39 * | |
40 * 1 n n_max 1 n n_max | |
41 * 1 * * * * * * x x x x 1 * * * * * * x x x x | |
42 * * * * * * * x x x x . * * * * * x x x x | |
43 * * * * * * * x x x x . . * * * * x x x x | |
44 * * * * * * * x x x x . . . * * * x x x x | |
45 * * * * * * * x x x x . . . . * * x x x x | |
46 * n * * * * * * x x x x n . . . . . * x x x x | |
47 * x x x x x x x x x x . . . . . . x x x x | |
48 * x x x x x x x x x x . . . . . . . x x x | |
49 * x x x x x x x x x x . . . . . . . . x x | |
50 * n_max x x x x x x x x x x n_max . . . . . . . . . x | |
51 * | |
52 * matrix F matrix U | |
53 * | |
54 * where '*' are matrix elements, 'x' are reserved locations. | |
55 * | |
56 * Permutation matrix P is stored in row-like format. | |
57 * | |
58 * Matrix C normally is not stored. | |
59 * | |
60 * REFERENCES | |
61 * | |
62 * 1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza- | |
63 * tion," SCCM, Stanford University, 2006. | |
64 * | |
65 * 2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer- | |
66 * sity, Spring 2006. | |
67 * | |
68 * 3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package," | |
69 * ibid. */ | |
70 | |
71 typedef struct SCF SCF; | |
72 | |
73 struct SCF | |
74 { /* Schur complement factorization */ | |
75 int n_max; | |
76 /* maximal order of matrices C, F, U, P; n_max >= 1 */ | |
77 int n; | |
78 /* current order of matrices C, F, U, P; n >= 0 */ | |
79 double *f; /* double f[1+n_max*n_max]; */ | |
80 /* matrix F stored by rows */ | |
81 double *u; /* double u[1+n_max*(n_max+1)/2]; */ | |
82 /* upper triangle of matrix U stored by rows */ | |
83 int *p; /* int p[1+n_max]; */ | |
84 /* matrix P; p[i] = j means that P[i,j] = 1 */ | |
85 int t_opt; | |
86 /* type of transformation used to restore triangular structure of | |
87 matrix U: */ | |
88 #define SCF_TBG 1 /* Bartels-Golub elimination */ | |
89 #define SCF_TGR 2 /* Givens plane rotation */ | |
90 int rank; | |
91 /* estimated rank of matrices C and U */ | |
92 double *c; /* double c[1+n_max*n_max]; */ | |
93 /* matrix C stored in the same format as matrix F and used only | |
94 for debugging; normally this array is not allocated */ | |
95 double *w; /* double w[1+n_max]; */ | |
96 /* working array */ | |
97 }; | |
98 | |
99 /* return codes: */ | |
100 #define SCF_ESING 1 /* singular matrix */ | |
101 #define SCF_ELIMIT 2 /* update limit reached */ | |
102 | |
103 #define scf_create_it _glp_scf_create_it | |
104 SCF *scf_create_it(int n_max); | |
105 /* create Schur complement factorization */ | |
106 | |
107 #define scf_update_exp _glp_scf_update_exp | |
108 int scf_update_exp(SCF *scf, const double x[], const double y[], | |
109 double z); | |
110 /* update factorization on expanding C */ | |
111 | |
112 #define scf_solve_it _glp_scf_solve_it | |
113 void scf_solve_it(SCF *scf, int tr, double x[]); | |
114 /* solve either system C * x = b or C' * x = b */ | |
115 | |
116 #define scf_reset_it _glp_scf_reset_it | |
117 void scf_reset_it(SCF *scf); | |
118 /* reset factorization for empty matrix C */ | |
119 | |
120 #define scf_delete_it _glp_scf_delete_it | |
121 void scf_delete_it(SCF *scf); | |
122 /* delete Schur complement factorization */ | |
123 | |
124 #endif | |
125 | |
126 /* eof */ |