lemon-project-template-glpk
comparison deps/glpk/src/glplux.c @ 11:4fc6ad2fb8a6
Test GLPK in src/main.cc
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 21:43:29 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:aafb34031aeb |
---|---|
1 /* glplux.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glplux.h" | |
26 #define xfault xerror | |
27 #define dmp_create_poolx(size) dmp_create_pool() | |
28 | |
29 /*---------------------------------------------------------------------- | |
30 // lux_create - create LU-factorization. | |
31 // | |
32 // SYNOPSIS | |
33 // | |
34 // #include "glplux.h" | |
35 // LUX *lux_create(int n); | |
36 // | |
37 // DESCRIPTION | |
38 // | |
39 // The routine lux_create creates LU-factorization data structure for | |
40 // a matrix of the order n. Initially the factorization corresponds to | |
41 // the unity matrix (F = V = P = Q = I, so A = I). | |
42 // | |
43 // RETURNS | |
44 // | |
45 // The routine returns a pointer to the created LU-factorization data | |
46 // structure, which represents the unity matrix of the order n. */ | |
47 | |
48 LUX *lux_create(int n) | |
49 { LUX *lux; | |
50 int k; | |
51 if (n < 1) | |
52 xfault("lux_create: n = %d; invalid parameter\n", n); | |
53 lux = xmalloc(sizeof(LUX)); | |
54 lux->n = n; | |
55 lux->pool = dmp_create_poolx(sizeof(LUXELM)); | |
56 lux->F_row = xcalloc(1+n, sizeof(LUXELM *)); | |
57 lux->F_col = xcalloc(1+n, sizeof(LUXELM *)); | |
58 lux->V_piv = xcalloc(1+n, sizeof(mpq_t)); | |
59 lux->V_row = xcalloc(1+n, sizeof(LUXELM *)); | |
60 lux->V_col = xcalloc(1+n, sizeof(LUXELM *)); | |
61 lux->P_row = xcalloc(1+n, sizeof(int)); | |
62 lux->P_col = xcalloc(1+n, sizeof(int)); | |
63 lux->Q_row = xcalloc(1+n, sizeof(int)); | |
64 lux->Q_col = xcalloc(1+n, sizeof(int)); | |
65 for (k = 1; k <= n; k++) | |
66 { lux->F_row[k] = lux->F_col[k] = NULL; | |
67 mpq_init(lux->V_piv[k]); | |
68 mpq_set_si(lux->V_piv[k], 1, 1); | |
69 lux->V_row[k] = lux->V_col[k] = NULL; | |
70 lux->P_row[k] = lux->P_col[k] = k; | |
71 lux->Q_row[k] = lux->Q_col[k] = k; | |
72 } | |
73 lux->rank = n; | |
74 return lux; | |
75 } | |
76 | |
77 /*---------------------------------------------------------------------- | |
78 // initialize - initialize LU-factorization data structures. | |
79 // | |
80 // This routine initializes data structures for subsequent computing | |
81 // the LU-factorization of a given matrix A, which is specified by the | |
82 // formal routine col. On exit V = A and F = P = Q = I, where I is the | |
83 // unity matrix. */ | |
84 | |
85 static void initialize(LUX *lux, int (*col)(void *info, int j, | |
86 int ind[], mpq_t val[]), void *info, LUXWKA *wka) | |
87 { int n = lux->n; | |
88 DMP *pool = lux->pool; | |
89 LUXELM **F_row = lux->F_row; | |
90 LUXELM **F_col = lux->F_col; | |
91 mpq_t *V_piv = lux->V_piv; | |
92 LUXELM **V_row = lux->V_row; | |
93 LUXELM **V_col = lux->V_col; | |
94 int *P_row = lux->P_row; | |
95 int *P_col = lux->P_col; | |
96 int *Q_row = lux->Q_row; | |
97 int *Q_col = lux->Q_col; | |
98 int *R_len = wka->R_len; | |
99 int *R_head = wka->R_head; | |
100 int *R_prev = wka->R_prev; | |
101 int *R_next = wka->R_next; | |
102 int *C_len = wka->C_len; | |
103 int *C_head = wka->C_head; | |
104 int *C_prev = wka->C_prev; | |
105 int *C_next = wka->C_next; | |
106 LUXELM *fij, *vij; | |
107 int i, j, k, len, *ind; | |
108 mpq_t *val; | |
109 /* F := I */ | |
110 for (i = 1; i <= n; i++) | |
111 { while (F_row[i] != NULL) | |
112 { fij = F_row[i], F_row[i] = fij->r_next; | |
113 mpq_clear(fij->val); | |
114 dmp_free_atom(pool, fij, sizeof(LUXELM)); | |
115 } | |
116 } | |
117 for (j = 1; j <= n; j++) F_col[j] = NULL; | |
118 /* V := 0 */ | |
119 for (k = 1; k <= n; k++) mpq_set_si(V_piv[k], 0, 1); | |
120 for (i = 1; i <= n; i++) | |
121 { while (V_row[i] != NULL) | |
122 { vij = V_row[i], V_row[i] = vij->r_next; | |
123 mpq_clear(vij->val); | |
124 dmp_free_atom(pool, vij, sizeof(LUXELM)); | |
125 } | |
126 } | |
127 for (j = 1; j <= n; j++) V_col[j] = NULL; | |
128 /* V := A */ | |
129 ind = xcalloc(1+n, sizeof(int)); | |
130 val = xcalloc(1+n, sizeof(mpq_t)); | |
131 for (k = 1; k <= n; k++) mpq_init(val[k]); | |
132 for (j = 1; j <= n; j++) | |
133 { /* obtain j-th column of matrix A */ | |
134 len = col(info, j, ind, val); | |
135 if (!(0 <= len && len <= n)) | |
136 xfault("lux_decomp: j = %d: len = %d; invalid column length" | |
137 "\n", j, len); | |
138 /* copy elements of j-th column to matrix V */ | |
139 for (k = 1; k <= len; k++) | |
140 { /* get row index of a[i,j] */ | |
141 i = ind[k]; | |
142 if (!(1 <= i && i <= n)) | |
143 xfault("lux_decomp: j = %d: i = %d; row index out of ran" | |
144 "ge\n", j, i); | |
145 /* check for duplicate indices */ | |
146 if (V_row[i] != NULL && V_row[i]->j == j) | |
147 xfault("lux_decomp: j = %d: i = %d; duplicate row indice" | |
148 "s not allowed\n", j, i); | |
149 /* check for zero value */ | |
150 if (mpq_sgn(val[k]) == 0) | |
151 xfault("lux_decomp: j = %d: i = %d; zero elements not al" | |
152 "lowed\n", j, i); | |
153 /* add new element v[i,j] = a[i,j] to V */ | |
154 vij = dmp_get_atom(pool, sizeof(LUXELM)); | |
155 vij->i = i, vij->j = j; | |
156 mpq_init(vij->val); | |
157 mpq_set(vij->val, val[k]); | |
158 vij->r_prev = NULL; | |
159 vij->r_next = V_row[i]; | |
160 vij->c_prev = NULL; | |
161 vij->c_next = V_col[j]; | |
162 if (vij->r_next != NULL) vij->r_next->r_prev = vij; | |
163 if (vij->c_next != NULL) vij->c_next->c_prev = vij; | |
164 V_row[i] = V_col[j] = vij; | |
165 } | |
166 } | |
167 xfree(ind); | |
168 for (k = 1; k <= n; k++) mpq_clear(val[k]); | |
169 xfree(val); | |
170 /* P := Q := I */ | |
171 for (k = 1; k <= n; k++) | |
172 P_row[k] = P_col[k] = Q_row[k] = Q_col[k] = k; | |
173 /* the rank of A and V is not determined yet */ | |
174 lux->rank = -1; | |
175 /* initially the entire matrix V is active */ | |
176 /* determine its row lengths */ | |
177 for (i = 1; i <= n; i++) | |
178 { len = 0; | |
179 for (vij = V_row[i]; vij != NULL; vij = vij->r_next) len++; | |
180 R_len[i] = len; | |
181 } | |
182 /* build linked lists of active rows */ | |
183 for (len = 0; len <= n; len++) R_head[len] = 0; | |
184 for (i = 1; i <= n; i++) | |
185 { len = R_len[i]; | |
186 R_prev[i] = 0; | |
187 R_next[i] = R_head[len]; | |
188 if (R_next[i] != 0) R_prev[R_next[i]] = i; | |
189 R_head[len] = i; | |
190 } | |
191 /* determine its column lengths */ | |
192 for (j = 1; j <= n; j++) | |
193 { len = 0; | |
194 for (vij = V_col[j]; vij != NULL; vij = vij->c_next) len++; | |
195 C_len[j] = len; | |
196 } | |
197 /* build linked lists of active columns */ | |
198 for (len = 0; len <= n; len++) C_head[len] = 0; | |
199 for (j = 1; j <= n; j++) | |
200 { len = C_len[j]; | |
201 C_prev[j] = 0; | |
202 C_next[j] = C_head[len]; | |
203 if (C_next[j] != 0) C_prev[C_next[j]] = j; | |
204 C_head[len] = j; | |
205 } | |
206 return; | |
207 } | |
208 | |
209 /*---------------------------------------------------------------------- | |
210 // find_pivot - choose a pivot element. | |
211 // | |
212 // This routine chooses a pivot element v[p,q] in the active submatrix | |
213 // of matrix U = P*V*Q. | |
214 // | |
215 // It is assumed that on entry the matrix U has the following partially | |
216 // triangularized form: | |
217 // | |
218 // 1 k n | |
219 // 1 x x x x x x x x x x | |
220 // . x x x x x x x x x | |
221 // . . x x x x x x x x | |
222 // . . . x x x x x x x | |
223 // k . . . . * * * * * * | |
224 // . . . . * * * * * * | |
225 // . . . . * * * * * * | |
226 // . . . . * * * * * * | |
227 // . . . . * * * * * * | |
228 // n . . . . * * * * * * | |
229 // | |
230 // where rows and columns k, k+1, ..., n belong to the active submatrix | |
231 // (elements of the active submatrix are marked by '*'). | |
232 // | |
233 // Since the matrix U = P*V*Q is not stored, the routine works with the | |
234 // matrix V. It is assumed that the row-wise representation corresponds | |
235 // to the matrix V, but the column-wise representation corresponds to | |
236 // the active submatrix of the matrix V, i.e. elements of the matrix V, | |
237 // which does not belong to the active submatrix, are missing from the | |
238 // column linked lists. It is also assumed that each active row of the | |
239 // matrix V is in the set R[len], where len is number of non-zeros in | |
240 // the row, and each active column of the matrix V is in the set C[len], | |
241 // where len is number of non-zeros in the column (in the latter case | |
242 // only elements of the active submatrix are counted; such elements are | |
243 // marked by '*' on the figure above). | |
244 // | |
245 // Due to exact arithmetic any non-zero element of the active submatrix | |
246 // can be chosen as a pivot. However, to keep sparsity of the matrix V | |
247 // the routine uses Markowitz strategy, trying to choose such element | |
248 // v[p,q], which has smallest Markowitz cost (nr[p]-1) * (nc[q]-1), | |
249 // where nr[p] and nc[q] are the number of non-zero elements, resp., in | |
250 // p-th row and in q-th column of the active submatrix. | |
251 // | |
252 // In order to reduce the search, i.e. not to walk through all elements | |
253 // of the active submatrix, the routine exploits a technique proposed by | |
254 // I.Duff. This technique is based on using the sets R[len] and C[len] | |
255 // of active rows and columns. | |
256 // | |
257 // On exit the routine returns a pointer to a pivot v[p,q] chosen, or | |
258 // NULL, if the active submatrix is empty. */ | |
259 | |
260 static LUXELM *find_pivot(LUX *lux, LUXWKA *wka) | |
261 { int n = lux->n; | |
262 LUXELM **V_row = lux->V_row; | |
263 LUXELM **V_col = lux->V_col; | |
264 int *R_len = wka->R_len; | |
265 int *R_head = wka->R_head; | |
266 int *R_next = wka->R_next; | |
267 int *C_len = wka->C_len; | |
268 int *C_head = wka->C_head; | |
269 int *C_next = wka->C_next; | |
270 LUXELM *piv, *some, *vij; | |
271 int i, j, len, min_len, ncand, piv_lim = 5; | |
272 double best, cost; | |
273 /* nothing is chosen so far */ | |
274 piv = NULL, best = DBL_MAX, ncand = 0; | |
275 /* if in the active submatrix there is a column that has the only | |
276 non-zero (column singleton), choose it as a pivot */ | |
277 j = C_head[1]; | |
278 if (j != 0) | |
279 { xassert(C_len[j] == 1); | |
280 piv = V_col[j]; | |
281 xassert(piv != NULL && piv->c_next == NULL); | |
282 goto done; | |
283 } | |
284 /* if in the active submatrix there is a row that has the only | |
285 non-zero (row singleton), choose it as a pivot */ | |
286 i = R_head[1]; | |
287 if (i != 0) | |
288 { xassert(R_len[i] == 1); | |
289 piv = V_row[i]; | |
290 xassert(piv != NULL && piv->r_next == NULL); | |
291 goto done; | |
292 } | |
293 /* there are no singletons in the active submatrix; walk through | |
294 other non-empty rows and columns */ | |
295 for (len = 2; len <= n; len++) | |
296 { /* consider active columns having len non-zeros */ | |
297 for (j = C_head[len]; j != 0; j = C_next[j]) | |
298 { /* j-th column has len non-zeros */ | |
299 /* find an element in the row of minimal length */ | |
300 some = NULL, min_len = INT_MAX; | |
301 for (vij = V_col[j]; vij != NULL; vij = vij->c_next) | |
302 { if (min_len > R_len[vij->i]) | |
303 some = vij, min_len = R_len[vij->i]; | |
304 /* if Markowitz cost of this element is not greater than | |
305 (len-1)**2, it can be chosen right now; this heuristic | |
306 reduces the search and works well in many cases */ | |
307 if (min_len <= len) | |
308 { piv = some; | |
309 goto done; | |
310 } | |
311 } | |
312 /* j-th column has been scanned */ | |
313 /* the minimal element found is a next pivot candidate */ | |
314 xassert(some != NULL); | |
315 ncand++; | |
316 /* compute its Markowitz cost */ | |
317 cost = (double)(min_len - 1) * (double)(len - 1); | |
318 /* choose between the current candidate and this element */ | |
319 if (cost < best) piv = some, best = cost; | |
320 /* if piv_lim candidates have been considered, there is a | |
321 doubt that a much better candidate exists; therefore it | |
322 is the time to terminate the search */ | |
323 if (ncand == piv_lim) goto done; | |
324 } | |
325 /* now consider active rows having len non-zeros */ | |
326 for (i = R_head[len]; i != 0; i = R_next[i]) | |
327 { /* i-th row has len non-zeros */ | |
328 /* find an element in the column of minimal length */ | |
329 some = NULL, min_len = INT_MAX; | |
330 for (vij = V_row[i]; vij != NULL; vij = vij->r_next) | |
331 { if (min_len > C_len[vij->j]) | |
332 some = vij, min_len = C_len[vij->j]; | |
333 /* if Markowitz cost of this element is not greater than | |
334 (len-1)**2, it can be chosen right now; this heuristic | |
335 reduces the search and works well in many cases */ | |
336 if (min_len <= len) | |
337 { piv = some; | |
338 goto done; | |
339 } | |
340 } | |
341 /* i-th row has been scanned */ | |
342 /* the minimal element found is a next pivot candidate */ | |
343 xassert(some != NULL); | |
344 ncand++; | |
345 /* compute its Markowitz cost */ | |
346 cost = (double)(len - 1) * (double)(min_len - 1); | |
347 /* choose between the current candidate and this element */ | |
348 if (cost < best) piv = some, best = cost; | |
349 /* if piv_lim candidates have been considered, there is a | |
350 doubt that a much better candidate exists; therefore it | |
351 is the time to terminate the search */ | |
352 if (ncand == piv_lim) goto done; | |
353 } | |
354 } | |
355 done: /* bring the pivot v[p,q] to the factorizing routine */ | |
356 return piv; | |
357 } | |
358 | |
359 /*---------------------------------------------------------------------- | |
360 // eliminate - perform gaussian elimination. | |
361 // | |
362 // This routine performs elementary gaussian transformations in order | |
363 // to eliminate subdiagonal elements in the k-th column of the matrix | |
364 // U = P*V*Q using the pivot element u[k,k], where k is the number of | |
365 // the current elimination step. | |
366 // | |
367 // The parameter piv specifies the pivot element v[p,q] = u[k,k]. | |
368 // | |
369 // Each time when the routine applies the elementary transformation to | |
370 // a non-pivot row of the matrix V, it stores the corresponding element | |
371 // to the matrix F in order to keep the main equality A = F*V. | |
372 // | |
373 // The routine assumes that on entry the matrices L = P*F*inv(P) and | |
374 // U = P*V*Q are the following: | |
375 // | |
376 // 1 k 1 k n | |
377 // 1 1 . . . . . . . . . 1 x x x x x x x x x x | |
378 // x 1 . . . . . . . . . x x x x x x x x x | |
379 // x x 1 . . . . . . . . . x x x x x x x x | |
380 // x x x 1 . . . . . . . . . x x x x x x x | |
381 // k x x x x 1 . . . . . k . . . . * * * * * * | |
382 // x x x x _ 1 . . . . . . . . # * * * * * | |
383 // x x x x _ . 1 . . . . . . . # * * * * * | |
384 // x x x x _ . . 1 . . . . . . # * * * * * | |
385 // x x x x _ . . . 1 . . . . . # * * * * * | |
386 // n x x x x _ . . . . 1 n . . . . # * * * * * | |
387 // | |
388 // matrix L matrix U | |
389 // | |
390 // where rows and columns of the matrix U with numbers k, k+1, ..., n | |
391 // form the active submatrix (eliminated elements are marked by '#' and | |
392 // other elements of the active submatrix are marked by '*'). Note that | |
393 // each eliminated non-zero element u[i,k] of the matrix U gives the | |
394 // corresponding element l[i,k] of the matrix L (marked by '_'). | |
395 // | |
396 // Actually all operations are performed on the matrix V. Should note | |
397 // that the row-wise representation corresponds to the matrix V, but the | |
398 // column-wise representation corresponds to the active submatrix of the | |
399 // matrix V, i.e. elements of the matrix V, which doesn't belong to the | |
400 // active submatrix, are missing from the column linked lists. | |
401 // | |
402 // Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal | |
403 // elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies | |
404 // the following elementary gaussian transformations: | |
405 // | |
406 // (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V), | |
407 // | |
408 // where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier. | |
409 // | |
410 // Additionally, in order to keep the main equality A = F*V, each time | |
411 // when the routine applies the transformation to i-th row of the matrix | |
412 // V, it also adds f[i,p] as a new element to the matrix F. | |
413 // | |
414 // IMPORTANT: On entry the working arrays flag and work should contain | |
415 // zeros. This status is provided by the routine on exit. */ | |
416 | |
417 static void eliminate(LUX *lux, LUXWKA *wka, LUXELM *piv, int flag[], | |
418 mpq_t work[]) | |
419 { DMP *pool = lux->pool; | |
420 LUXELM **F_row = lux->F_row; | |
421 LUXELM **F_col = lux->F_col; | |
422 mpq_t *V_piv = lux->V_piv; | |
423 LUXELM **V_row = lux->V_row; | |
424 LUXELM **V_col = lux->V_col; | |
425 int *R_len = wka->R_len; | |
426 int *R_head = wka->R_head; | |
427 int *R_prev = wka->R_prev; | |
428 int *R_next = wka->R_next; | |
429 int *C_len = wka->C_len; | |
430 int *C_head = wka->C_head; | |
431 int *C_prev = wka->C_prev; | |
432 int *C_next = wka->C_next; | |
433 LUXELM *fip, *vij, *vpj, *viq, *next; | |
434 mpq_t temp; | |
435 int i, j, p, q; | |
436 mpq_init(temp); | |
437 /* determine row and column indices of the pivot v[p,q] */ | |
438 xassert(piv != NULL); | |
439 p = piv->i, q = piv->j; | |
440 /* remove p-th (pivot) row from the active set; it will never | |
441 return there */ | |
442 if (R_prev[p] == 0) | |
443 R_head[R_len[p]] = R_next[p]; | |
444 else | |
445 R_next[R_prev[p]] = R_next[p]; | |
446 if (R_next[p] == 0) | |
447 ; | |
448 else | |
449 R_prev[R_next[p]] = R_prev[p]; | |
450 /* remove q-th (pivot) column from the active set; it will never | |
451 return there */ | |
452 if (C_prev[q] == 0) | |
453 C_head[C_len[q]] = C_next[q]; | |
454 else | |
455 C_next[C_prev[q]] = C_next[q]; | |
456 if (C_next[q] == 0) | |
457 ; | |
458 else | |
459 C_prev[C_next[q]] = C_prev[q]; | |
460 /* store the pivot value in a separate array */ | |
461 mpq_set(V_piv[p], piv->val); | |
462 /* remove the pivot from p-th row */ | |
463 if (piv->r_prev == NULL) | |
464 V_row[p] = piv->r_next; | |
465 else | |
466 piv->r_prev->r_next = piv->r_next; | |
467 if (piv->r_next == NULL) | |
468 ; | |
469 else | |
470 piv->r_next->r_prev = piv->r_prev; | |
471 R_len[p]--; | |
472 /* remove the pivot from q-th column */ | |
473 if (piv->c_prev == NULL) | |
474 V_col[q] = piv->c_next; | |
475 else | |
476 piv->c_prev->c_next = piv->c_next; | |
477 if (piv->c_next == NULL) | |
478 ; | |
479 else | |
480 piv->c_next->c_prev = piv->c_prev; | |
481 C_len[q]--; | |
482 /* free the space occupied by the pivot */ | |
483 mpq_clear(piv->val); | |
484 dmp_free_atom(pool, piv, sizeof(LUXELM)); | |
485 /* walk through p-th (pivot) row, which already does not contain | |
486 the pivot v[p,q], and do the following... */ | |
487 for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next) | |
488 { /* get column index of v[p,j] */ | |
489 j = vpj->j; | |
490 /* store v[p,j] in the working array */ | |
491 flag[j] = 1; | |
492 mpq_set(work[j], vpj->val); | |
493 /* remove j-th column from the active set; it will return there | |
494 later with a new length */ | |
495 if (C_prev[j] == 0) | |
496 C_head[C_len[j]] = C_next[j]; | |
497 else | |
498 C_next[C_prev[j]] = C_next[j]; | |
499 if (C_next[j] == 0) | |
500 ; | |
501 else | |
502 C_prev[C_next[j]] = C_prev[j]; | |
503 /* v[p,j] leaves the active submatrix, so remove it from j-th | |
504 column; however, v[p,j] is kept in p-th row */ | |
505 if (vpj->c_prev == NULL) | |
506 V_col[j] = vpj->c_next; | |
507 else | |
508 vpj->c_prev->c_next = vpj->c_next; | |
509 if (vpj->c_next == NULL) | |
510 ; | |
511 else | |
512 vpj->c_next->c_prev = vpj->c_prev; | |
513 C_len[j]--; | |
514 } | |
515 /* now walk through q-th (pivot) column, which already does not | |
516 contain the pivot v[p,q], and perform gaussian elimination */ | |
517 while (V_col[q] != NULL) | |
518 { /* element v[i,q] has to be eliminated */ | |
519 viq = V_col[q]; | |
520 /* get row index of v[i,q] */ | |
521 i = viq->i; | |
522 /* remove i-th row from the active set; later it will return | |
523 there with a new length */ | |
524 if (R_prev[i] == 0) | |
525 R_head[R_len[i]] = R_next[i]; | |
526 else | |
527 R_next[R_prev[i]] = R_next[i]; | |
528 if (R_next[i] == 0) | |
529 ; | |
530 else | |
531 R_prev[R_next[i]] = R_prev[i]; | |
532 /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] and | |
533 store it in the matrix F */ | |
534 fip = dmp_get_atom(pool, sizeof(LUXELM)); | |
535 fip->i = i, fip->j = p; | |
536 mpq_init(fip->val); | |
537 mpq_div(fip->val, viq->val, V_piv[p]); | |
538 fip->r_prev = NULL; | |
539 fip->r_next = F_row[i]; | |
540 fip->c_prev = NULL; | |
541 fip->c_next = F_col[p]; | |
542 if (fip->r_next != NULL) fip->r_next->r_prev = fip; | |
543 if (fip->c_next != NULL) fip->c_next->c_prev = fip; | |
544 F_row[i] = F_col[p] = fip; | |
545 /* v[i,q] has to be eliminated, so remove it from i-th row */ | |
546 if (viq->r_prev == NULL) | |
547 V_row[i] = viq->r_next; | |
548 else | |
549 viq->r_prev->r_next = viq->r_next; | |
550 if (viq->r_next == NULL) | |
551 ; | |
552 else | |
553 viq->r_next->r_prev = viq->r_prev; | |
554 R_len[i]--; | |
555 /* and also from q-th column */ | |
556 V_col[q] = viq->c_next; | |
557 C_len[q]--; | |
558 /* free the space occupied by v[i,q] */ | |
559 mpq_clear(viq->val); | |
560 dmp_free_atom(pool, viq, sizeof(LUXELM)); | |
561 /* perform gaussian transformation: | |
562 (i-th row) := (i-th row) - f[i,p] * (p-th row) | |
563 note that now p-th row, which is in the working array, | |
564 does not contain the pivot v[p,q], and i-th row does not | |
565 contain the element v[i,q] to be eliminated */ | |
566 /* walk through i-th row and transform existing non-zero | |
567 elements */ | |
568 for (vij = V_row[i]; vij != NULL; vij = next) | |
569 { next = vij->r_next; | |
570 /* get column index of v[i,j] */ | |
571 j = vij->j; | |
572 /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */ | |
573 if (flag[j]) | |
574 { /* v[p,j] != 0 */ | |
575 flag[j] = 0; | |
576 mpq_mul(temp, fip->val, work[j]); | |
577 mpq_sub(vij->val, vij->val, temp); | |
578 if (mpq_sgn(vij->val) == 0) | |
579 { /* new v[i,j] is zero, so remove it from the active | |
580 submatrix */ | |
581 /* remove v[i,j] from i-th row */ | |
582 if (vij->r_prev == NULL) | |
583 V_row[i] = vij->r_next; | |
584 else | |
585 vij->r_prev->r_next = vij->r_next; | |
586 if (vij->r_next == NULL) | |
587 ; | |
588 else | |
589 vij->r_next->r_prev = vij->r_prev; | |
590 R_len[i]--; | |
591 /* remove v[i,j] from j-th column */ | |
592 if (vij->c_prev == NULL) | |
593 V_col[j] = vij->c_next; | |
594 else | |
595 vij->c_prev->c_next = vij->c_next; | |
596 if (vij->c_next == NULL) | |
597 ; | |
598 else | |
599 vij->c_next->c_prev = vij->c_prev; | |
600 C_len[j]--; | |
601 /* free the space occupied by v[i,j] */ | |
602 mpq_clear(vij->val); | |
603 dmp_free_atom(pool, vij, sizeof(LUXELM)); | |
604 } | |
605 } | |
606 } | |
607 /* now flag is the pattern of the set v[p,*] \ v[i,*] */ | |
608 /* walk through p-th (pivot) row and create new elements in | |
609 i-th row, which appear due to fill-in */ | |
610 for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next) | |
611 { j = vpj->j; | |
612 if (flag[j]) | |
613 { /* create new non-zero v[i,j] = 0 - f[i,p] * v[p,j] and | |
614 add it to i-th row and j-th column */ | |
615 vij = dmp_get_atom(pool, sizeof(LUXELM)); | |
616 vij->i = i, vij->j = j; | |
617 mpq_init(vij->val); | |
618 mpq_mul(vij->val, fip->val, work[j]); | |
619 mpq_neg(vij->val, vij->val); | |
620 vij->r_prev = NULL; | |
621 vij->r_next = V_row[i]; | |
622 vij->c_prev = NULL; | |
623 vij->c_next = V_col[j]; | |
624 if (vij->r_next != NULL) vij->r_next->r_prev = vij; | |
625 if (vij->c_next != NULL) vij->c_next->c_prev = vij; | |
626 V_row[i] = V_col[j] = vij; | |
627 R_len[i]++, C_len[j]++; | |
628 } | |
629 else | |
630 { /* there is no fill-in, because v[i,j] already exists in | |
631 i-th row; restore the flag, which was reset before */ | |
632 flag[j] = 1; | |
633 } | |
634 } | |
635 /* now i-th row has been completely transformed and can return | |
636 to the active set with a new length */ | |
637 R_prev[i] = 0; | |
638 R_next[i] = R_head[R_len[i]]; | |
639 if (R_next[i] != 0) R_prev[R_next[i]] = i; | |
640 R_head[R_len[i]] = i; | |
641 } | |
642 /* at this point q-th (pivot) column must be empty */ | |
643 xassert(C_len[q] == 0); | |
644 /* walk through p-th (pivot) row again and do the following... */ | |
645 for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next) | |
646 { /* get column index of v[p,j] */ | |
647 j = vpj->j; | |
648 /* erase v[p,j] from the working array */ | |
649 flag[j] = 0; | |
650 mpq_set_si(work[j], 0, 1); | |
651 /* now j-th column has been completely transformed, so it can | |
652 return to the active list with a new length */ | |
653 C_prev[j] = 0; | |
654 C_next[j] = C_head[C_len[j]]; | |
655 if (C_next[j] != 0) C_prev[C_next[j]] = j; | |
656 C_head[C_len[j]] = j; | |
657 } | |
658 mpq_clear(temp); | |
659 /* return to the factorizing routine */ | |
660 return; | |
661 } | |
662 | |
663 /*---------------------------------------------------------------------- | |
664 // lux_decomp - compute LU-factorization. | |
665 // | |
666 // SYNOPSIS | |
667 // | |
668 // #include "glplux.h" | |
669 // int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[], | |
670 // mpq_t val[]), void *info); | |
671 // | |
672 // DESCRIPTION | |
673 // | |
674 // The routine lux_decomp computes LU-factorization of a given square | |
675 // matrix A. | |
676 // | |
677 // The parameter lux specifies LU-factorization data structure built by | |
678 // means of the routine lux_create. | |
679 // | |
680 // The formal routine col specifies the original matrix A. In order to | |
681 // obtain j-th column of the matrix A the routine lux_decomp calls the | |
682 // routine col with the parameter j (1 <= j <= n, where n is the order | |
683 // of A). In response the routine col should store row indices and | |
684 // numerical values of non-zero elements of j-th column of A to the | |
685 // locations ind[1], ..., ind[len] and val[1], ..., val[len], resp., | |
686 // where len is the number of non-zeros in j-th column, which should be | |
687 // returned on exit. Neiter zero nor duplicate elements are allowed. | |
688 // | |
689 // The parameter info is a transit pointer passed to the formal routine | |
690 // col; it can be used for various purposes. | |
691 // | |
692 // RETURNS | |
693 // | |
694 // The routine lux_decomp returns the singularity flag. Zero flag means | |
695 // that the original matrix A is non-singular while non-zero flag means | |
696 // that A is (exactly!) singular. | |
697 // | |
698 // Note that LU-factorization is valid in both cases, however, in case | |
699 // of singularity some rows of the matrix V (including pivot elements) | |
700 // will be empty. | |
701 // | |
702 // REPAIRING SINGULAR MATRIX | |
703 // | |
704 // If the routine lux_decomp returns non-zero flag, it provides all | |
705 // necessary information that can be used for "repairing" the matrix A, | |
706 // where "repairing" means replacing linearly dependent columns of the | |
707 // matrix A by appropriate columns of the unity matrix. This feature is | |
708 // needed when the routine lux_decomp is used for reinverting the basis | |
709 // matrix within the simplex method procedure. | |
710 // | |
711 // On exit linearly dependent columns of the matrix U have the numbers | |
712 // rank+1, rank+2, ..., n, where rank is the exact rank of the matrix A | |
713 // stored by the routine to the member lux->rank. The correspondence | |
714 // between columns of A and U is the same as between columns of V and U. | |
715 // Thus, linearly dependent columns of the matrix A have the numbers | |
716 // Q_col[rank+1], Q_col[rank+2], ..., Q_col[n], where Q_col is an array | |
717 // representing the permutation matrix Q in column-like format. It is | |
718 // understood that each j-th linearly dependent column of the matrix U | |
719 // should be replaced by the unity vector, where all elements are zero | |
720 // except the unity diagonal element u[j,j]. On the other hand j-th row | |
721 // of the matrix U corresponds to the row of the matrix V (and therefore | |
722 // of the matrix A) with the number P_row[j], where P_row is an array | |
723 // representing the permutation matrix P in row-like format. Thus, each | |
724 // j-th linearly dependent column of the matrix U should be replaced by | |
725 // a column of the unity matrix with the number P_row[j]. | |
726 // | |
727 // The code that repairs the matrix A may look like follows: | |
728 // | |
729 // for (j = rank+1; j <= n; j++) | |
730 // { replace column Q_col[j] of the matrix A by column P_row[j] of | |
731 // the unity matrix; | |
732 // } | |
733 // | |
734 // where rank, P_row, and Q_col are members of the structure LUX. */ | |
735 | |
736 int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[], | |
737 mpq_t val[]), void *info) | |
738 { int n = lux->n; | |
739 LUXELM **V_row = lux->V_row; | |
740 LUXELM **V_col = lux->V_col; | |
741 int *P_row = lux->P_row; | |
742 int *P_col = lux->P_col; | |
743 int *Q_row = lux->Q_row; | |
744 int *Q_col = lux->Q_col; | |
745 LUXELM *piv, *vij; | |
746 LUXWKA *wka; | |
747 int i, j, k, p, q, t, *flag; | |
748 mpq_t *work; | |
749 /* allocate working area */ | |
750 wka = xmalloc(sizeof(LUXWKA)); | |
751 wka->R_len = xcalloc(1+n, sizeof(int)); | |
752 wka->R_head = xcalloc(1+n, sizeof(int)); | |
753 wka->R_prev = xcalloc(1+n, sizeof(int)); | |
754 wka->R_next = xcalloc(1+n, sizeof(int)); | |
755 wka->C_len = xcalloc(1+n, sizeof(int)); | |
756 wka->C_head = xcalloc(1+n, sizeof(int)); | |
757 wka->C_prev = xcalloc(1+n, sizeof(int)); | |
758 wka->C_next = xcalloc(1+n, sizeof(int)); | |
759 /* initialize LU-factorization data structures */ | |
760 initialize(lux, col, info, wka); | |
761 /* allocate working arrays */ | |
762 flag = xcalloc(1+n, sizeof(int)); | |
763 work = xcalloc(1+n, sizeof(mpq_t)); | |
764 for (k = 1; k <= n; k++) | |
765 { flag[k] = 0; | |
766 mpq_init(work[k]); | |
767 } | |
768 /* main elimination loop */ | |
769 for (k = 1; k <= n; k++) | |
770 { /* choose a pivot element v[p,q] */ | |
771 piv = find_pivot(lux, wka); | |
772 if (piv == NULL) | |
773 { /* no pivot can be chosen, because the active submatrix is | |
774 empty */ | |
775 break; | |
776 } | |
777 /* determine row and column indices of the pivot element */ | |
778 p = piv->i, q = piv->j; | |
779 /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th | |
780 rows and k-th and j'-th columns of the matrix U = P*V*Q to | |
781 move the element u[i',j'] to the position u[k,k] */ | |
782 i = P_col[p], j = Q_row[q]; | |
783 xassert(k <= i && i <= n && k <= j && j <= n); | |
784 /* permute k-th and i-th rows of the matrix U */ | |
785 t = P_row[k]; | |
786 P_row[i] = t, P_col[t] = i; | |
787 P_row[k] = p, P_col[p] = k; | |
788 /* permute k-th and j-th columns of the matrix U */ | |
789 t = Q_col[k]; | |
790 Q_col[j] = t, Q_row[t] = j; | |
791 Q_col[k] = q, Q_row[q] = k; | |
792 /* eliminate subdiagonal elements of k-th column of the matrix | |
793 U = P*V*Q using the pivot element u[k,k] = v[p,q] */ | |
794 eliminate(lux, wka, piv, flag, work); | |
795 } | |
796 /* determine the rank of A (and V) */ | |
797 lux->rank = k - 1; | |
798 /* free working arrays */ | |
799 xfree(flag); | |
800 for (k = 1; k <= n; k++) mpq_clear(work[k]); | |
801 xfree(work); | |
802 /* build column lists of the matrix V using its row lists */ | |
803 for (j = 1; j <= n; j++) | |
804 xassert(V_col[j] == NULL); | |
805 for (i = 1; i <= n; i++) | |
806 { for (vij = V_row[i]; vij != NULL; vij = vij->r_next) | |
807 { j = vij->j; | |
808 vij->c_prev = NULL; | |
809 vij->c_next = V_col[j]; | |
810 if (vij->c_next != NULL) vij->c_next->c_prev = vij; | |
811 V_col[j] = vij; | |
812 } | |
813 } | |
814 /* free working area */ | |
815 xfree(wka->R_len); | |
816 xfree(wka->R_head); | |
817 xfree(wka->R_prev); | |
818 xfree(wka->R_next); | |
819 xfree(wka->C_len); | |
820 xfree(wka->C_head); | |
821 xfree(wka->C_prev); | |
822 xfree(wka->C_next); | |
823 xfree(wka); | |
824 /* return to the calling program */ | |
825 return (lux->rank < n); | |
826 } | |
827 | |
828 /*---------------------------------------------------------------------- | |
829 // lux_f_solve - solve system F*x = b or F'*x = b. | |
830 // | |
831 // SYNOPSIS | |
832 // | |
833 // #include "glplux.h" | |
834 // void lux_f_solve(LUX *lux, int tr, mpq_t x[]); | |
835 // | |
836 // DESCRIPTION | |
837 // | |
838 // The routine lux_f_solve solves either the system F*x = b (if the | |
839 // flag tr is zero) or the system F'*x = b (if the flag tr is non-zero), | |
840 // where the matrix F is a component of LU-factorization specified by | |
841 // the parameter lux, F' is a matrix transposed to F. | |
842 // | |
843 // On entry the array x should contain elements of the right-hand side | |
844 // vector b in locations x[1], ..., x[n], where n is the order of the | |
845 // matrix F. On exit this array will contain elements of the solution | |
846 // vector x in the same locations. */ | |
847 | |
848 void lux_f_solve(LUX *lux, int tr, mpq_t x[]) | |
849 { int n = lux->n; | |
850 LUXELM **F_row = lux->F_row; | |
851 LUXELM **F_col = lux->F_col; | |
852 int *P_row = lux->P_row; | |
853 LUXELM *fik, *fkj; | |
854 int i, j, k; | |
855 mpq_t temp; | |
856 mpq_init(temp); | |
857 if (!tr) | |
858 { /* solve the system F*x = b */ | |
859 for (j = 1; j <= n; j++) | |
860 { k = P_row[j]; | |
861 if (mpq_sgn(x[k]) != 0) | |
862 { for (fik = F_col[k]; fik != NULL; fik = fik->c_next) | |
863 { mpq_mul(temp, fik->val, x[k]); | |
864 mpq_sub(x[fik->i], x[fik->i], temp); | |
865 } | |
866 } | |
867 } | |
868 } | |
869 else | |
870 { /* solve the system F'*x = b */ | |
871 for (i = n; i >= 1; i--) | |
872 { k = P_row[i]; | |
873 if (mpq_sgn(x[k]) != 0) | |
874 { for (fkj = F_row[k]; fkj != NULL; fkj = fkj->r_next) | |
875 { mpq_mul(temp, fkj->val, x[k]); | |
876 mpq_sub(x[fkj->j], x[fkj->j], temp); | |
877 } | |
878 } | |
879 } | |
880 } | |
881 mpq_clear(temp); | |
882 return; | |
883 } | |
884 | |
885 /*---------------------------------------------------------------------- | |
886 // lux_v_solve - solve system V*x = b or V'*x = b. | |
887 // | |
888 // SYNOPSIS | |
889 // | |
890 // #include "glplux.h" | |
891 // void lux_v_solve(LUX *lux, int tr, double x[]); | |
892 // | |
893 // DESCRIPTION | |
894 // | |
895 // The routine lux_v_solve solves either the system V*x = b (if the | |
896 // flag tr is zero) or the system V'*x = b (if the flag tr is non-zero), | |
897 // where the matrix V is a component of LU-factorization specified by | |
898 // the parameter lux, V' is a matrix transposed to V. | |
899 // | |
900 // On entry the array x should contain elements of the right-hand side | |
901 // vector b in locations x[1], ..., x[n], where n is the order of the | |
902 // matrix V. On exit this array will contain elements of the solution | |
903 // vector x in the same locations. */ | |
904 | |
905 void lux_v_solve(LUX *lux, int tr, mpq_t x[]) | |
906 { int n = lux->n; | |
907 mpq_t *V_piv = lux->V_piv; | |
908 LUXELM **V_row = lux->V_row; | |
909 LUXELM **V_col = lux->V_col; | |
910 int *P_row = lux->P_row; | |
911 int *Q_col = lux->Q_col; | |
912 LUXELM *vij; | |
913 int i, j, k; | |
914 mpq_t *b, temp; | |
915 b = xcalloc(1+n, sizeof(mpq_t)); | |
916 for (k = 1; k <= n; k++) | |
917 mpq_init(b[k]), mpq_set(b[k], x[k]), mpq_set_si(x[k], 0, 1); | |
918 mpq_init(temp); | |
919 if (!tr) | |
920 { /* solve the system V*x = b */ | |
921 for (k = n; k >= 1; k--) | |
922 { i = P_row[k], j = Q_col[k]; | |
923 if (mpq_sgn(b[i]) != 0) | |
924 { mpq_set(x[j], b[i]); | |
925 mpq_div(x[j], x[j], V_piv[i]); | |
926 for (vij = V_col[j]; vij != NULL; vij = vij->c_next) | |
927 { mpq_mul(temp, vij->val, x[j]); | |
928 mpq_sub(b[vij->i], b[vij->i], temp); | |
929 } | |
930 } | |
931 } | |
932 } | |
933 else | |
934 { /* solve the system V'*x = b */ | |
935 for (k = 1; k <= n; k++) | |
936 { i = P_row[k], j = Q_col[k]; | |
937 if (mpq_sgn(b[j]) != 0) | |
938 { mpq_set(x[i], b[j]); | |
939 mpq_div(x[i], x[i], V_piv[i]); | |
940 for (vij = V_row[i]; vij != NULL; vij = vij->r_next) | |
941 { mpq_mul(temp, vij->val, x[i]); | |
942 mpq_sub(b[vij->j], b[vij->j], temp); | |
943 } | |
944 } | |
945 } | |
946 } | |
947 for (k = 1; k <= n; k++) mpq_clear(b[k]); | |
948 mpq_clear(temp); | |
949 xfree(b); | |
950 return; | |
951 } | |
952 | |
953 /*---------------------------------------------------------------------- | |
954 // lux_solve - solve system A*x = b or A'*x = b. | |
955 // | |
956 // SYNOPSIS | |
957 // | |
958 // #include "glplux.h" | |
959 // void lux_solve(LUX *lux, int tr, mpq_t x[]); | |
960 // | |
961 // DESCRIPTION | |
962 // | |
963 // The routine lux_solve solves either the system A*x = b (if the flag | |
964 // tr is zero) or the system A'*x = b (if the flag tr is non-zero), | |
965 // where the parameter lux specifies LU-factorization of the matrix A, | |
966 // A' is a matrix transposed to A. | |
967 // | |
968 // On entry the array x should contain elements of the right-hand side | |
969 // vector b in locations x[1], ..., x[n], where n is the order of the | |
970 // matrix A. On exit this array will contain elements of the solution | |
971 // vector x in the same locations. */ | |
972 | |
973 void lux_solve(LUX *lux, int tr, mpq_t x[]) | |
974 { if (lux->rank < lux->n) | |
975 xfault("lux_solve: LU-factorization has incomplete rank\n"); | |
976 if (!tr) | |
977 { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */ | |
978 lux_f_solve(lux, 0, x); | |
979 lux_v_solve(lux, 0, x); | |
980 } | |
981 else | |
982 { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */ | |
983 lux_v_solve(lux, 1, x); | |
984 lux_f_solve(lux, 1, x); | |
985 } | |
986 return; | |
987 } | |
988 | |
989 /*---------------------------------------------------------------------- | |
990 // lux_delete - delete LU-factorization. | |
991 // | |
992 // SYNOPSIS | |
993 // | |
994 // #include "glplux.h" | |
995 // void lux_delete(LUX *lux); | |
996 // | |
997 // DESCRIPTION | |
998 // | |
999 // The routine lux_delete deletes LU-factorization data structure, | |
1000 // which the parameter lux points to, freeing all the memory allocated | |
1001 // to this object. */ | |
1002 | |
1003 void lux_delete(LUX *lux) | |
1004 { int n = lux->n; | |
1005 LUXELM *fij, *vij; | |
1006 int i; | |
1007 for (i = 1; i <= n; i++) | |
1008 { for (fij = lux->F_row[i]; fij != NULL; fij = fij->r_next) | |
1009 mpq_clear(fij->val); | |
1010 mpq_clear(lux->V_piv[i]); | |
1011 for (vij = lux->V_row[i]; vij != NULL; vij = vij->r_next) | |
1012 mpq_clear(vij->val); | |
1013 } | |
1014 dmp_delete_pool(lux->pool); | |
1015 xfree(lux->F_row); | |
1016 xfree(lux->F_col); | |
1017 xfree(lux->V_piv); | |
1018 xfree(lux->V_row); | |
1019 xfree(lux->V_col); | |
1020 xfree(lux->P_row); | |
1021 xfree(lux->P_col); | |
1022 xfree(lux->Q_row); | |
1023 xfree(lux->Q_col); | |
1024 xfree(lux); | |
1025 return; | |
1026 } | |
1027 | |
1028 /* eof */ |