lemon-project-template-glpk
comparison deps/glpk/src/glpnet09.c @ 11:4fc6ad2fb8a6
Test GLPK in src/main.cc
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 21:43:29 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f85adbca5364 |
---|---|
1 /* glpnet09.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpapi.h" | |
26 #include "glpnet.h" | |
27 | |
28 /*********************************************************************** | |
29 * NAME | |
30 * | |
31 * kellerman - cover edges by cliques with Kellerman's heuristic | |
32 * | |
33 * SYNOPSIS | |
34 * | |
35 * #include "glpnet.h" | |
36 * int kellerman(int n, int (*func)(void *info, int i, int ind[]), | |
37 * void *info, glp_graph *H); | |
38 * | |
39 * DESCRIPTION | |
40 * | |
41 * The routine kellerman implements Kellerman's heuristic algorithm | |
42 * to find a minimal set of cliques which cover all edges of specified | |
43 * graph G = (V, E). | |
44 * | |
45 * The parameter n specifies the number of vertices |V|, n >= 0. | |
46 * | |
47 * Formal routine func specifies the set of edges E in the following | |
48 * way. Running the routine kellerman calls the routine func and passes | |
49 * to it parameter i, which is the number of some vertex, 1 <= i <= n. | |
50 * In response the routine func should store numbers of all vertices | |
51 * adjacent to vertex i to locations ind[1], ind[2], ..., ind[len] and | |
52 * return the value of len, which is the number of adjacent vertices, | |
53 * 0 <= len <= n. Self-loops are allowed, but ignored. Multiple edges | |
54 * are not allowed. | |
55 * | |
56 * The parameter info is a transit pointer (magic cookie) passed to the | |
57 * formal routine func as its first parameter. | |
58 * | |
59 * The result provided by the routine kellerman is the bipartite graph | |
60 * H = (V union C, F), which defines the covering found. (The program | |
61 * object of type glp_graph specified by the parameter H should be | |
62 * previously created with the routine glp_create_graph. On entry the | |
63 * routine kellerman erases the content of this object with the routine | |
64 * glp_erase_graph.) Vertices of first part V correspond to vertices of | |
65 * the graph G and have the same ordinal numbers 1, 2, ..., n. Vertices | |
66 * of second part C correspond to cliques and have ordinal numbers | |
67 * n+1, n+2, ..., n+k, where k is the total number of cliques in the | |
68 * edge covering found. Every edge f in F in the program object H is | |
69 * represented as arc f = (i->j), where i in V and j in C, which means | |
70 * that vertex i of the graph G is in clique C[j], 1 <= j <= k. (Thus, | |
71 * if two vertices of the graph G are in the same clique, these vertices | |
72 * are adjacent in G, and corresponding edge is covered by that clique.) | |
73 * | |
74 * RETURNS | |
75 * | |
76 * The routine Kellerman returns k, the total number of cliques in the | |
77 * edge covering found. | |
78 * | |
79 * REFERENCE | |
80 * | |
81 * For more details see: glpk/doc/notes/keller.pdf (in Russian). */ | |
82 | |
83 struct set | |
84 { /* set of vertices */ | |
85 int size; | |
86 /* size (cardinality) of the set, 0 <= card <= n */ | |
87 int *list; /* int list[1+n]; */ | |
88 /* the set contains vertices list[1,...,size] */ | |
89 int *pos; /* int pos[1+n]; */ | |
90 /* pos[i] > 0 means that vertex i is in the set and | |
91 list[pos[i]] = i; pos[i] = 0 means that vertex i is not in | |
92 the set */ | |
93 }; | |
94 | |
95 int kellerman(int n, int (*func)(void *info, int i, int ind[]), | |
96 void *info, void /* glp_graph */ *H_) | |
97 { glp_graph *H = H_; | |
98 struct set W_, *W = &W_, V_, *V = &V_; | |
99 glp_arc *a; | |
100 int i, j, k, m, t, len, card, best; | |
101 xassert(n >= 0); | |
102 /* H := (V, 0; 0), where V is the set of vertices of graph G */ | |
103 glp_erase_graph(H, H->v_size, H->a_size); | |
104 glp_add_vertices(H, n); | |
105 /* W := 0 */ | |
106 W->size = 0; | |
107 W->list = xcalloc(1+n, sizeof(int)); | |
108 W->pos = xcalloc(1+n, sizeof(int)); | |
109 memset(&W->pos[1], 0, sizeof(int) * n); | |
110 /* V := 0 */ | |
111 V->size = 0; | |
112 V->list = xcalloc(1+n, sizeof(int)); | |
113 V->pos = xcalloc(1+n, sizeof(int)); | |
114 memset(&V->pos[1], 0, sizeof(int) * n); | |
115 /* main loop */ | |
116 for (i = 1; i <= n; i++) | |
117 { /* W must be empty */ | |
118 xassert(W->size == 0); | |
119 /* W := { j : i > j and (i,j) in E } */ | |
120 len = func(info, i, W->list); | |
121 xassert(0 <= len && len <= n); | |
122 for (t = 1; t <= len; t++) | |
123 { j = W->list[t]; | |
124 xassert(1 <= j && j <= n); | |
125 if (j >= i) continue; | |
126 xassert(W->pos[j] == 0); | |
127 W->list[++W->size] = j, W->pos[j] = W->size; | |
128 } | |
129 /* on i-th iteration we need to cover edges (i,j) for all | |
130 j in W */ | |
131 /* if W is empty, it is a special case */ | |
132 if (W->size == 0) | |
133 { /* set k := k + 1 and create new clique C[k] = { i } */ | |
134 k = glp_add_vertices(H, 1) - n; | |
135 glp_add_arc(H, i, n + k); | |
136 continue; | |
137 } | |
138 /* try to include vertex i into existing cliques */ | |
139 /* V must be empty */ | |
140 xassert(V->size == 0); | |
141 /* k is the number of cliques found so far */ | |
142 k = H->nv - n; | |
143 for (m = 1; m <= k; m++) | |
144 { /* do while V != W; since here V is within W, we can use | |
145 equivalent condition: do while |V| < |W| */ | |
146 if (V->size == W->size) break; | |
147 /* check if C[m] is within W */ | |
148 for (a = H->v[n + m]->in; a != NULL; a = a->h_next) | |
149 { j = a->tail->i; | |
150 if (W->pos[j] == 0) break; | |
151 } | |
152 if (a != NULL) continue; | |
153 /* C[m] is within W, expand clique C[m] with vertex i */ | |
154 /* C[m] := C[m] union {i} */ | |
155 glp_add_arc(H, i, n + m); | |
156 /* V is a set of vertices whose incident edges are already | |
157 covered by existing cliques */ | |
158 /* V := V union C[m] */ | |
159 for (a = H->v[n + m]->in; a != NULL; a = a->h_next) | |
160 { j = a->tail->i; | |
161 if (V->pos[j] == 0) | |
162 V->list[++V->size] = j, V->pos[j] = V->size; | |
163 } | |
164 } | |
165 /* remove from set W the vertices whose incident edges are | |
166 already covered by existing cliques */ | |
167 /* W := W \ V, V := 0 */ | |
168 for (t = 1; t <= V->size; t++) | |
169 { j = V->list[t], V->pos[j] = 0; | |
170 if (W->pos[j] != 0) | |
171 { /* remove vertex j from W */ | |
172 if (W->pos[j] != W->size) | |
173 { int jj = W->list[W->size]; | |
174 W->list[W->pos[j]] = jj; | |
175 W->pos[jj] = W->pos[j]; | |
176 } | |
177 W->size--, W->pos[j] = 0; | |
178 } | |
179 } | |
180 V->size = 0; | |
181 /* now set W contains only vertices whose incident edges are | |
182 still not covered by existing cliques; create new cliques | |
183 to cover remaining edges until set W becomes empty */ | |
184 while (W->size > 0) | |
185 { /* find clique C[m], 1 <= m <= k, which shares maximal | |
186 number of vertices with W; to break ties choose clique | |
187 having smallest number m */ | |
188 m = 0, best = -1; | |
189 k = H->nv - n; | |
190 for (t = 1; t <= k; t++) | |
191 { /* compute cardinality of intersection of W and C[t] */ | |
192 card = 0; | |
193 for (a = H->v[n + t]->in; a != NULL; a = a->h_next) | |
194 { j = a->tail->i; | |
195 if (W->pos[j] != 0) card++; | |
196 } | |
197 if (best < card) | |
198 m = t, best = card; | |
199 } | |
200 xassert(m > 0); | |
201 /* set k := k + 1 and create new clique: | |
202 C[k] := (W intersect C[m]) union { i }, which covers all | |
203 edges incident to vertices from (W intersect C[m]) */ | |
204 k = glp_add_vertices(H, 1) - n; | |
205 for (a = H->v[n + m]->in; a != NULL; a = a->h_next) | |
206 { j = a->tail->i; | |
207 if (W->pos[j] != 0) | |
208 { /* vertex j is in both W and C[m]; include it in new | |
209 clique C[k] */ | |
210 glp_add_arc(H, j, n + k); | |
211 /* remove vertex j from W, since edge (i,j) will be | |
212 covered by new clique C[k] */ | |
213 if (W->pos[j] != W->size) | |
214 { int jj = W->list[W->size]; | |
215 W->list[W->pos[j]] = jj; | |
216 W->pos[jj] = W->pos[j]; | |
217 } | |
218 W->size--, W->pos[j] = 0; | |
219 } | |
220 } | |
221 /* include vertex i to new clique C[k] to cover edges (i,j) | |
222 incident to all vertices j just removed from W */ | |
223 glp_add_arc(H, i, n + k); | |
224 } | |
225 } | |
226 /* free working arrays */ | |
227 xfree(W->list); | |
228 xfree(W->pos); | |
229 xfree(V->list); | |
230 xfree(V->pos); | |
231 /* return the number of cliques in the edge covering found */ | |
232 return H->nv - n; | |
233 } | |
234 | |
235 /* eof */ |