lemon-project-template-glpk
comparison deps/glpk/src/glpscf.c @ 11:4fc6ad2fb8a6
Test GLPK in src/main.cc
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 21:43:29 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:b34321cc4d05 |
---|---|
1 /* glpscf.c (Schur complement factorization) */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glpenv.h" | |
26 #include "glpscf.h" | |
27 #define xfault xerror | |
28 | |
29 #define _GLPSCF_DEBUG 0 | |
30 | |
31 #define eps 1e-10 | |
32 | |
33 /*********************************************************************** | |
34 * NAME | |
35 * | |
36 * scf_create_it - create Schur complement factorization | |
37 * | |
38 * SYNOPSIS | |
39 * | |
40 * #include "glpscf.h" | |
41 * SCF *scf_create_it(int n_max); | |
42 * | |
43 * DESCRIPTION | |
44 * | |
45 * The routine scf_create_it creates the factorization of matrix C, | |
46 * which initially has no rows and columns. | |
47 * | |
48 * The parameter n_max specifies the maximal order of matrix C to be | |
49 * factorized, 1 <= n_max <= 32767. | |
50 * | |
51 * RETURNS | |
52 * | |
53 * The routine scf_create_it returns a pointer to the structure SCF, | |
54 * which defines the factorization. */ | |
55 | |
56 SCF *scf_create_it(int n_max) | |
57 { SCF *scf; | |
58 #if _GLPSCF_DEBUG | |
59 xprintf("scf_create_it: warning: debug mode enabled\n"); | |
60 #endif | |
61 if (!(1 <= n_max && n_max <= 32767)) | |
62 xfault("scf_create_it: n_max = %d; invalid parameter\n", | |
63 n_max); | |
64 scf = xmalloc(sizeof(SCF)); | |
65 scf->n_max = n_max; | |
66 scf->n = 0; | |
67 scf->f = xcalloc(1 + n_max * n_max, sizeof(double)); | |
68 scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double)); | |
69 scf->p = xcalloc(1 + n_max, sizeof(int)); | |
70 scf->t_opt = SCF_TBG; | |
71 scf->rank = 0; | |
72 #if _GLPSCF_DEBUG | |
73 scf->c = xcalloc(1 + n_max * n_max, sizeof(double)); | |
74 #else | |
75 scf->c = NULL; | |
76 #endif | |
77 scf->w = xcalloc(1 + n_max, sizeof(double)); | |
78 return scf; | |
79 } | |
80 | |
81 /*********************************************************************** | |
82 * The routine f_loc determines location of matrix element F[i,j] in | |
83 * the one-dimensional array f. */ | |
84 | |
85 static int f_loc(SCF *scf, int i, int j) | |
86 { int n_max = scf->n_max; | |
87 int n = scf->n; | |
88 xassert(1 <= i && i <= n); | |
89 xassert(1 <= j && j <= n); | |
90 return (i - 1) * n_max + j; | |
91 } | |
92 | |
93 /*********************************************************************** | |
94 * The routine u_loc determines location of matrix element U[i,j] in | |
95 * the one-dimensional array u. */ | |
96 | |
97 static int u_loc(SCF *scf, int i, int j) | |
98 { int n_max = scf->n_max; | |
99 int n = scf->n; | |
100 xassert(1 <= i && i <= n); | |
101 xassert(i <= j && j <= n); | |
102 return (i - 1) * n_max + j - i * (i - 1) / 2; | |
103 } | |
104 | |
105 /*********************************************************************** | |
106 * The routine bg_transform applies Bartels-Golub version of gaussian | |
107 * elimination to restore triangular structure of matrix U. | |
108 * | |
109 * On entry matrix U has the following structure: | |
110 * | |
111 * 1 k n | |
112 * 1 * * * * * * * * * * | |
113 * . * * * * * * * * * | |
114 * . . * * * * * * * * | |
115 * . . . * * * * * * * | |
116 * k . . . . * * * * * * | |
117 * . . . . . * * * * * | |
118 * . . . . . . * * * * | |
119 * . . . . . . . * * * | |
120 * . . . . . . . . * * | |
121 * n . . . . # # # # # # | |
122 * | |
123 * where '#' is a row spike to be eliminated. | |
124 * | |
125 * Elements of n-th row are passed separately in locations un[k], ..., | |
126 * un[n]. On exit the content of the array un is destroyed. | |
127 * | |
128 * REFERENCES | |
129 * | |
130 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming | |
131 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */ | |
132 | |
133 static void bg_transform(SCF *scf, int k, double un[]) | |
134 { int n = scf->n; | |
135 double *f = scf->f; | |
136 double *u = scf->u; | |
137 int j, k1, kj, kk, n1, nj; | |
138 double t; | |
139 xassert(1 <= k && k <= n); | |
140 /* main elimination loop */ | |
141 for (k = k; k < n; k++) | |
142 { /* determine location of U[k,k] */ | |
143 kk = u_loc(scf, k, k); | |
144 /* determine location of F[k,1] */ | |
145 k1 = f_loc(scf, k, 1); | |
146 /* determine location of F[n,1] */ | |
147 n1 = f_loc(scf, n, 1); | |
148 /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to | |
149 provide |U[k,k]| >= |U[n,k]| */ | |
150 if (fabs(u[kk]) < fabs(un[k])) | |
151 { /* interchange k-th and n-th rows of matrix U */ | |
152 for (j = k, kj = kk; j <= n; j++, kj++) | |
153 t = u[kj], u[kj] = un[j], un[j] = t; | |
154 /* interchange k-th and n-th rows of matrix F to keep the | |
155 main equality F * C = U * P */ | |
156 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) | |
157 t = f[kj], f[kj] = f[nj], f[nj] = t; | |
158 } | |
159 /* now |U[k,k]| >= |U[n,k]| */ | |
160 /* if U[k,k] is too small in the magnitude, replace U[k,k] and | |
161 U[n,k] by exact zero */ | |
162 if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0; | |
163 /* if U[n,k] is already zero, elimination is not needed */ | |
164 if (un[k] == 0.0) continue; | |
165 /* compute gaussian multiplier t = U[n,k] / U[k,k] */ | |
166 t = un[k] / u[kk]; | |
167 /* apply gaussian elimination to nullify U[n,k] */ | |
168 /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */ | |
169 for (j = k+1, kj = kk+1; j <= n; j++, kj++) | |
170 un[j] -= t * u[kj]; | |
171 /* (n-th row of F) := (n-th row of F) - t * (k-th row of F) | |
172 to keep the main equality F * C = U * P */ | |
173 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) | |
174 f[nj] -= t * f[kj]; | |
175 } | |
176 /* if U[n,n] is too small in the magnitude, replace it by exact | |
177 zero */ | |
178 if (fabs(un[n]) < eps) un[n] = 0.0; | |
179 /* store U[n,n] in a proper location */ | |
180 u[u_loc(scf, n, n)] = un[n]; | |
181 return; | |
182 } | |
183 | |
184 /*********************************************************************** | |
185 * The routine givens computes the parameters of Givens plane rotation | |
186 * c = cos(teta) and s = sin(teta) such that: | |
187 * | |
188 * ( c -s ) ( a ) ( r ) | |
189 * ( ) ( ) = ( ) , | |
190 * ( s c ) ( b ) ( 0 ) | |
191 * | |
192 * where a and b are given scalars. | |
193 * | |
194 * REFERENCES | |
195 * | |
196 * G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */ | |
197 | |
198 static void givens(double a, double b, double *c, double *s) | |
199 { double t; | |
200 if (b == 0.0) | |
201 (*c) = 1.0, (*s) = 0.0; | |
202 else if (fabs(a) <= fabs(b)) | |
203 t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t; | |
204 else | |
205 t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t; | |
206 return; | |
207 } | |
208 | |
209 /*---------------------------------------------------------------------- | |
210 * The routine gr_transform applies Givens plane rotations to restore | |
211 * triangular structure of matrix U. | |
212 * | |
213 * On entry matrix U has the following structure: | |
214 * | |
215 * 1 k n | |
216 * 1 * * * * * * * * * * | |
217 * . * * * * * * * * * | |
218 * . . * * * * * * * * | |
219 * . . . * * * * * * * | |
220 * k . . . . * * * * * * | |
221 * . . . . . * * * * * | |
222 * . . . . . . * * * * | |
223 * . . . . . . . * * * | |
224 * . . . . . . . . * * | |
225 * n . . . . # # # # # # | |
226 * | |
227 * where '#' is a row spike to be eliminated. | |
228 * | |
229 * Elements of n-th row are passed separately in locations un[k], ..., | |
230 * un[n]. On exit the content of the array un is destroyed. | |
231 * | |
232 * REFERENCES | |
233 * | |
234 * R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming | |
235 * Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */ | |
236 | |
237 static void gr_transform(SCF *scf, int k, double un[]) | |
238 { int n = scf->n; | |
239 double *f = scf->f; | |
240 double *u = scf->u; | |
241 int j, k1, kj, kk, n1, nj; | |
242 double c, s; | |
243 xassert(1 <= k && k <= n); | |
244 /* main elimination loop */ | |
245 for (k = k; k < n; k++) | |
246 { /* determine location of U[k,k] */ | |
247 kk = u_loc(scf, k, k); | |
248 /* determine location of F[k,1] */ | |
249 k1 = f_loc(scf, k, 1); | |
250 /* determine location of F[n,1] */ | |
251 n1 = f_loc(scf, n, 1); | |
252 /* if both U[k,k] and U[n,k] are too small in the magnitude, | |
253 replace them by exact zero */ | |
254 if (fabs(u[kk]) < eps && fabs(un[k]) < eps) | |
255 u[kk] = un[k] = 0.0; | |
256 /* if U[n,k] is already zero, elimination is not needed */ | |
257 if (un[k] == 0.0) continue; | |
258 /* compute the parameters of Givens plane rotation */ | |
259 givens(u[kk], un[k], &c, &s); | |
260 /* apply Givens rotation to k-th and n-th rows of matrix U */ | |
261 for (j = k, kj = kk; j <= n; j++, kj++) | |
262 { double ukj = u[kj], unj = un[j]; | |
263 u[kj] = c * ukj - s * unj; | |
264 un[j] = s * ukj + c * unj; | |
265 } | |
266 /* apply Givens rotation to k-th and n-th rows of matrix F | |
267 to keep the main equality F * C = U * P */ | |
268 for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) | |
269 { double fkj = f[kj], fnj = f[nj]; | |
270 f[kj] = c * fkj - s * fnj; | |
271 f[nj] = s * fkj + c * fnj; | |
272 } | |
273 } | |
274 /* if U[n,n] is too small in the magnitude, replace it by exact | |
275 zero */ | |
276 if (fabs(un[n]) < eps) un[n] = 0.0; | |
277 /* store U[n,n] in a proper location */ | |
278 u[u_loc(scf, n, n)] = un[n]; | |
279 return; | |
280 } | |
281 | |
282 /*********************************************************************** | |
283 * The routine transform restores triangular structure of matrix U. | |
284 * It is a driver to the routines bg_transform and gr_transform (see | |
285 * comments to these routines above). */ | |
286 | |
287 static void transform(SCF *scf, int k, double un[]) | |
288 { switch (scf->t_opt) | |
289 { case SCF_TBG: | |
290 bg_transform(scf, k, un); | |
291 break; | |
292 case SCF_TGR: | |
293 gr_transform(scf, k, un); | |
294 break; | |
295 default: | |
296 xassert(scf != scf); | |
297 } | |
298 return; | |
299 } | |
300 | |
301 /*********************************************************************** | |
302 * The routine estimate_rank estimates the rank of matrix C. | |
303 * | |
304 * Since all transformations applied to matrix F are non-singular, | |
305 * and F is assumed to be well conditioned, from the main equaility | |
306 * F * C = U * P it follows that rank(C) = rank(U), where rank(U) is | |
307 * estimated as the number of non-zero diagonal elements of U. */ | |
308 | |
309 static int estimate_rank(SCF *scf) | |
310 { int n_max = scf->n_max; | |
311 int n = scf->n; | |
312 double *u = scf->u; | |
313 int i, ii, inc, rank = 0; | |
314 for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n; | |
315 i++, ii += inc, inc--) | |
316 if (u[ii] != 0.0) rank++; | |
317 return rank; | |
318 } | |
319 | |
320 #if _GLPSCF_DEBUG | |
321 /*********************************************************************** | |
322 * The routine check_error computes the maximal relative error between | |
323 * left- and right-hand sides of the main equality F * C = U * P. (This | |
324 * routine is intended only for debugging.) */ | |
325 | |
326 static void check_error(SCF *scf, const char *func) | |
327 { int n = scf->n; | |
328 double *f = scf->f; | |
329 double *u = scf->u; | |
330 int *p = scf->p; | |
331 double *c = scf->c; | |
332 int i, j, k; | |
333 double d, dmax = 0.0, s, t; | |
334 xassert(c != NULL); | |
335 for (i = 1; i <= n; i++) | |
336 { for (j = 1; j <= n; j++) | |
337 { /* compute element (i,j) of product F * C */ | |
338 s = 0.0; | |
339 for (k = 1; k <= n; k++) | |
340 s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)]; | |
341 /* compute element (i,j) of product U * P */ | |
342 k = p[j]; | |
343 t = (i <= k ? u[u_loc(scf, i, k)] : 0.0); | |
344 /* compute the maximal relative error */ | |
345 d = fabs(s - t) / (1.0 + fabs(t)); | |
346 if (dmax < d) dmax = d; | |
347 } | |
348 } | |
349 if (dmax > 1e-8) | |
350 xprintf("%s: dmax = %g; relative error too large\n", func, | |
351 dmax); | |
352 return; | |
353 } | |
354 #endif | |
355 | |
356 /*********************************************************************** | |
357 * NAME | |
358 * | |
359 * scf_update_exp - update factorization on expanding C | |
360 * | |
361 * SYNOPSIS | |
362 * | |
363 * #include "glpscf.h" | |
364 * int scf_update_exp(SCF *scf, const double x[], const double y[], | |
365 * double z); | |
366 * | |
367 * DESCRIPTION | |
368 * | |
369 * The routine scf_update_exp updates the factorization of matrix C on | |
370 * expanding it by adding a new row and column as follows: | |
371 * | |
372 * ( C x ) | |
373 * new C = ( ) | |
374 * ( y' z ) | |
375 * | |
376 * where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is | |
377 * a new diagonal element. | |
378 * | |
379 * If on entry the factorization is empty, the parameters x and y can | |
380 * be specified as NULL. | |
381 * | |
382 * RETURNS | |
383 * | |
384 * 0 The factorization has been successfully updated. | |
385 * | |
386 * SCF_ESING | |
387 * The factorization has been successfully updated, however, new | |
388 * matrix C is singular within working precision. Note that the new | |
389 * factorization remains valid. | |
390 * | |
391 * SCF_ELIMIT | |
392 * There is not enough room to expand the factorization, because | |
393 * n = n_max. The factorization remains unchanged. | |
394 * | |
395 * ALGORITHM | |
396 * | |
397 * We can see that: | |
398 * | |
399 * ( F 0 ) ( C x ) ( FC Fx ) ( UP Fx ) | |
400 * ( ) ( ) = ( ) = ( ) = | |
401 * ( 0 1 ) ( y' z ) ( y' z ) ( y' z ) | |
402 * | |
403 * ( U Fx ) ( P 0 ) | |
404 * = ( ) ( ), | |
405 * ( y'P' z ) ( 0 1 ) | |
406 * | |
407 * therefore to keep the main equality F * C = U * P we can take: | |
408 * | |
409 * ( F 0 ) ( U Fx ) ( P 0 ) | |
410 * new F = ( ), new U = ( ), new P = ( ), | |
411 * ( 0 1 ) ( y'P' z ) ( 0 1 ) | |
412 * | |
413 * and eliminate the row spike y'P' in the last row of new U to restore | |
414 * its upper triangular structure. */ | |
415 | |
416 int scf_update_exp(SCF *scf, const double x[], const double y[], | |
417 double z) | |
418 { int n_max = scf->n_max; | |
419 int n = scf->n; | |
420 double *f = scf->f; | |
421 double *u = scf->u; | |
422 int *p = scf->p; | |
423 #if _GLPSCF_DEBUG | |
424 double *c = scf->c; | |
425 #endif | |
426 double *un = scf->w; | |
427 int i, ij, in, j, k, nj, ret = 0; | |
428 double t; | |
429 /* check if the factorization can be expanded */ | |
430 if (n == n_max) | |
431 { /* there is not enough room */ | |
432 ret = SCF_ELIMIT; | |
433 goto done; | |
434 } | |
435 /* increase the order of the factorization */ | |
436 scf->n = ++n; | |
437 /* fill new zero column of matrix F */ | |
438 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max) | |
439 f[in] = 0.0; | |
440 /* fill new zero row of matrix F */ | |
441 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++) | |
442 f[nj] = 0.0; | |
443 /* fill new unity diagonal element of matrix F */ | |
444 f[f_loc(scf, n, n)] = 1.0; | |
445 /* compute new column of matrix U, which is (old F) * x */ | |
446 for (i = 1; i < n; i++) | |
447 { /* u[i,n] := (i-th row of old F) * x */ | |
448 t = 0.0; | |
449 for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++) | |
450 t += f[ij] * x[j]; | |
451 u[u_loc(scf, i, n)] = t; | |
452 } | |
453 /* compute new (spiked) row of matrix U, which is (old P) * y */ | |
454 for (j = 1; j < n; j++) un[j] = y[p[j]]; | |
455 /* store new diagonal element of matrix U, which is z */ | |
456 un[n] = z; | |
457 /* expand matrix P */ | |
458 p[n] = n; | |
459 #if _GLPSCF_DEBUG | |
460 /* expand matrix C */ | |
461 /* fill its new column, which is x */ | |
462 for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max) | |
463 c[in] = x[i]; | |
464 /* fill its new row, which is y */ | |
465 for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++) | |
466 c[nj] = y[j]; | |
467 /* fill its new diagonal element, which is z */ | |
468 c[f_loc(scf, n, n)] = z; | |
469 #endif | |
470 /* restore upper triangular structure of matrix U */ | |
471 for (k = 1; k < n; k++) | |
472 if (un[k] != 0.0) break; | |
473 transform(scf, k, un); | |
474 /* estimate the rank of matrices C and U */ | |
475 scf->rank = estimate_rank(scf); | |
476 if (scf->rank != n) ret = SCF_ESING; | |
477 #if _GLPSCF_DEBUG | |
478 /* check that the factorization is accurate enough */ | |
479 check_error(scf, "scf_update_exp"); | |
480 #endif | |
481 done: return ret; | |
482 } | |
483 | |
484 /*********************************************************************** | |
485 * The routine solve solves the system C * x = b. | |
486 * | |
487 * From the main equation F * C = U * P it follows that: | |
488 * | |
489 * C * x = b => F * C * x = F * b => U * P * x = F * b => | |
490 * | |
491 * P * x = inv(U) * F * b => x = P' * inv(U) * F * b. | |
492 * | |
493 * On entry the array x contains right-hand side vector b. On exit this | |
494 * array contains solution vector x. */ | |
495 | |
496 static void solve(SCF *scf, double x[]) | |
497 { int n = scf->n; | |
498 double *f = scf->f; | |
499 double *u = scf->u; | |
500 int *p = scf->p; | |
501 double *y = scf->w; | |
502 int i, j, ij; | |
503 double t; | |
504 /* y := F * b */ | |
505 for (i = 1; i <= n; i++) | |
506 { /* y[i] = (i-th row of F) * b */ | |
507 t = 0.0; | |
508 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++) | |
509 t += f[ij] * x[j]; | |
510 y[i] = t; | |
511 } | |
512 /* y := inv(U) * y */ | |
513 for (i = n; i >= 1; i--) | |
514 { t = y[i]; | |
515 for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--) | |
516 t -= u[ij] * y[j]; | |
517 y[i] = t / u[ij]; | |
518 } | |
519 /* x := P' * y */ | |
520 for (i = 1; i <= n; i++) x[p[i]] = y[i]; | |
521 return; | |
522 } | |
523 | |
524 /*********************************************************************** | |
525 * The routine tsolve solves the transposed system C' * x = b. | |
526 * | |
527 * From the main equation F * C = U * P it follows that: | |
528 * | |
529 * C' * F' = P' * U', | |
530 * | |
531 * therefore: | |
532 * | |
533 * C' * x = b => C' * F' * inv(F') * x = b => | |
534 * | |
535 * P' * U' * inv(F') * x = b => U' * inv(F') * x = P * b => | |
536 * | |
537 * inv(F') * x = inv(U') * P * b => x = F' * inv(U') * P * b. | |
538 * | |
539 * On entry the array x contains right-hand side vector b. On exit this | |
540 * array contains solution vector x. */ | |
541 | |
542 static void tsolve(SCF *scf, double x[]) | |
543 { int n = scf->n; | |
544 double *f = scf->f; | |
545 double *u = scf->u; | |
546 int *p = scf->p; | |
547 double *y = scf->w; | |
548 int i, j, ij; | |
549 double t; | |
550 /* y := P * b */ | |
551 for (i = 1; i <= n; i++) y[i] = x[p[i]]; | |
552 /* y := inv(U') * y */ | |
553 for (i = 1; i <= n; i++) | |
554 { /* compute y[i] */ | |
555 ij = u_loc(scf, i, i); | |
556 t = (y[i] /= u[ij]); | |
557 /* substitute y[i] in other equations */ | |
558 for (j = i+1, ij++; j <= n; j++, ij++) | |
559 y[j] -= u[ij] * t; | |
560 } | |
561 /* x := F' * y (computed as linear combination of rows of F) */ | |
562 for (j = 1; j <= n; j++) x[j] = 0.0; | |
563 for (i = 1; i <= n; i++) | |
564 { t = y[i]; /* coefficient of linear combination */ | |
565 for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++) | |
566 x[j] += f[ij] * t; | |
567 } | |
568 return; | |
569 } | |
570 | |
571 /*********************************************************************** | |
572 * NAME | |
573 * | |
574 * scf_solve_it - solve either system C * x = b or C' * x = b | |
575 * | |
576 * SYNOPSIS | |
577 * | |
578 * #include "glpscf.h" | |
579 * void scf_solve_it(SCF *scf, int tr, double x[]); | |
580 * | |
581 * DESCRIPTION | |
582 * | |
583 * The routine scf_solve_it solves either the system C * x = b (if tr | |
584 * is zero) or the system C' * x = b, where C' is a matrix transposed | |
585 * to C (if tr is non-zero). C is assumed to be non-singular. | |
586 * | |
587 * On entry the array x should contain the right-hand side vector b in | |
588 * locations x[1], ..., x[n], where n is the order of matrix C. On exit | |
589 * the array x contains the solution vector x in the same locations. */ | |
590 | |
591 void scf_solve_it(SCF *scf, int tr, double x[]) | |
592 { if (scf->rank < scf->n) | |
593 xfault("scf_solve_it: singular matrix\n"); | |
594 if (!tr) | |
595 solve(scf, x); | |
596 else | |
597 tsolve(scf, x); | |
598 return; | |
599 } | |
600 | |
601 void scf_reset_it(SCF *scf) | |
602 { /* reset factorization for empty matrix C */ | |
603 scf->n = scf->rank = 0; | |
604 return; | |
605 } | |
606 | |
607 /*********************************************************************** | |
608 * NAME | |
609 * | |
610 * scf_delete_it - delete Schur complement factorization | |
611 * | |
612 * SYNOPSIS | |
613 * | |
614 * #include "glpscf.h" | |
615 * void scf_delete_it(SCF *scf); | |
616 * | |
617 * DESCRIPTION | |
618 * | |
619 * The routine scf_delete_it deletes the specified factorization and | |
620 * frees all the memory allocated to this object. */ | |
621 | |
622 void scf_delete_it(SCF *scf) | |
623 { xfree(scf->f); | |
624 xfree(scf->u); | |
625 xfree(scf->p); | |
626 #if _GLPSCF_DEBUG | |
627 xfree(scf->c); | |
628 #endif | |
629 xfree(scf->w); | |
630 xfree(scf); | |
631 return; | |
632 } | |
633 | |
634 /* eof */ |