lemon-project-template-glpk
comparison deps/glpk/src/glpspm.c @ 11:4fc6ad2fb8a6
Test GLPK in src/main.cc
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 21:43:29 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:4c32059463f8 |
---|---|
1 /* glpspm.c */ | |
2 | |
3 /*********************************************************************** | |
4 * This code is part of GLPK (GNU Linear Programming Kit). | |
5 * | |
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, | |
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, | |
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. | |
9 * E-mail: <mao@gnu.org>. | |
10 * | |
11 * GLPK is free software: you can redistribute it and/or modify it | |
12 * under the terms of the GNU General Public License as published by | |
13 * the Free Software Foundation, either version 3 of the License, or | |
14 * (at your option) any later version. | |
15 * | |
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT | |
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | |
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public | |
19 * License for more details. | |
20 * | |
21 * You should have received a copy of the GNU General Public License | |
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. | |
23 ***********************************************************************/ | |
24 | |
25 #include "glphbm.h" | |
26 #include "glprgr.h" | |
27 #include "glpspm.h" | |
28 | |
29 /*********************************************************************** | |
30 * NAME | |
31 * | |
32 * spm_create_mat - create general sparse matrix | |
33 * | |
34 * SYNOPSIS | |
35 * | |
36 * #include "glpspm.h" | |
37 * SPM *spm_create_mat(int m, int n); | |
38 * | |
39 * DESCRIPTION | |
40 * | |
41 * The routine spm_create_mat creates a general sparse matrix having | |
42 * m rows and n columns. Being created the matrix is zero (empty), i.e. | |
43 * has no elements. | |
44 * | |
45 * RETURNS | |
46 * | |
47 * The routine returns a pointer to the matrix created. */ | |
48 | |
49 SPM *spm_create_mat(int m, int n) | |
50 { SPM *A; | |
51 xassert(0 <= m && m < INT_MAX); | |
52 xassert(0 <= n && n < INT_MAX); | |
53 A = xmalloc(sizeof(SPM)); | |
54 A->m = m; | |
55 A->n = n; | |
56 if (m == 0 || n == 0) | |
57 { A->pool = NULL; | |
58 A->row = NULL; | |
59 A->col = NULL; | |
60 } | |
61 else | |
62 { int i, j; | |
63 A->pool = dmp_create_pool(); | |
64 A->row = xcalloc(1+m, sizeof(SPME *)); | |
65 for (i = 1; i <= m; i++) A->row[i] = NULL; | |
66 A->col = xcalloc(1+n, sizeof(SPME *)); | |
67 for (j = 1; j <= n; j++) A->col[j] = NULL; | |
68 } | |
69 return A; | |
70 } | |
71 | |
72 /*********************************************************************** | |
73 * NAME | |
74 * | |
75 * spm_new_elem - add new element to sparse matrix | |
76 * | |
77 * SYNOPSIS | |
78 * | |
79 * #include "glpspm.h" | |
80 * SPME *spm_new_elem(SPM *A, int i, int j, double val); | |
81 * | |
82 * DESCRIPTION | |
83 * | |
84 * The routine spm_new_elem adds a new element to the specified sparse | |
85 * matrix. Parameters i, j, and val specify the row number, the column | |
86 * number, and a numerical value of the element, respectively. | |
87 * | |
88 * RETURNS | |
89 * | |
90 * The routine returns a pointer to the new element added. */ | |
91 | |
92 SPME *spm_new_elem(SPM *A, int i, int j, double val) | |
93 { SPME *e; | |
94 xassert(1 <= i && i <= A->m); | |
95 xassert(1 <= j && j <= A->n); | |
96 e = dmp_get_atom(A->pool, sizeof(SPME)); | |
97 e->i = i; | |
98 e->j = j; | |
99 e->val = val; | |
100 e->r_prev = NULL; | |
101 e->r_next = A->row[i]; | |
102 if (e->r_next != NULL) e->r_next->r_prev = e; | |
103 e->c_prev = NULL; | |
104 e->c_next = A->col[j]; | |
105 if (e->c_next != NULL) e->c_next->c_prev = e; | |
106 A->row[i] = A->col[j] = e; | |
107 return e; | |
108 } | |
109 | |
110 /*********************************************************************** | |
111 * NAME | |
112 * | |
113 * spm_delete_mat - delete general sparse matrix | |
114 * | |
115 * SYNOPSIS | |
116 * | |
117 * #include "glpspm.h" | |
118 * void spm_delete_mat(SPM *A); | |
119 * | |
120 * DESCRIPTION | |
121 * | |
122 * The routine deletes the specified general sparse matrix freeing all | |
123 * the memory allocated to this object. */ | |
124 | |
125 void spm_delete_mat(SPM *A) | |
126 { /* delete sparse matrix */ | |
127 if (A->pool != NULL) dmp_delete_pool(A->pool); | |
128 if (A->row != NULL) xfree(A->row); | |
129 if (A->col != NULL) xfree(A->col); | |
130 xfree(A); | |
131 return; | |
132 } | |
133 | |
134 /*********************************************************************** | |
135 * NAME | |
136 * | |
137 * spm_test_mat_e - create test sparse matrix of E(n,c) class | |
138 * | |
139 * SYNOPSIS | |
140 * | |
141 * #include "glpspm.h" | |
142 * SPM *spm_test_mat_e(int n, int c); | |
143 * | |
144 * DESCRIPTION | |
145 * | |
146 * The routine spm_test_mat_e creates a test sparse matrix of E(n,c) | |
147 * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct | |
148 * Methods for Sparse Matrices. Springer-Verlag, 1983. | |
149 * | |
150 * Matrix of E(n,c) class is a symmetric positive definite matrix of | |
151 * the order n. It has the number 4 on its main diagonal and the number | |
152 * -1 on its four co-diagonals, two of which are neighbour to the main | |
153 * diagonal and two others are shifted from the main diagonal on the | |
154 * distance c. | |
155 * | |
156 * It is necessary that n >= 3 and 2 <= c <= n-1. | |
157 * | |
158 * RETURNS | |
159 * | |
160 * The routine returns a pointer to the matrix created. */ | |
161 | |
162 SPM *spm_test_mat_e(int n, int c) | |
163 { SPM *A; | |
164 int i; | |
165 xassert(n >= 3 && 2 <= c && c <= n-1); | |
166 A = spm_create_mat(n, n); | |
167 for (i = 1; i <= n; i++) | |
168 spm_new_elem(A, i, i, 4.0); | |
169 for (i = 1; i <= n-1; i++) | |
170 { spm_new_elem(A, i, i+1, -1.0); | |
171 spm_new_elem(A, i+1, i, -1.0); | |
172 } | |
173 for (i = 1; i <= n-c; i++) | |
174 { spm_new_elem(A, i, i+c, -1.0); | |
175 spm_new_elem(A, i+c, i, -1.0); | |
176 } | |
177 return A; | |
178 } | |
179 | |
180 /*********************************************************************** | |
181 * NAME | |
182 * | |
183 * spm_test_mat_d - create test sparse matrix of D(n,c) class | |
184 * | |
185 * SYNOPSIS | |
186 * | |
187 * #include "glpspm.h" | |
188 * SPM *spm_test_mat_d(int n, int c); | |
189 * | |
190 * DESCRIPTION | |
191 * | |
192 * The routine spm_test_mat_d creates a test sparse matrix of D(n,c) | |
193 * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct | |
194 * Methods for Sparse Matrices. Springer-Verlag, 1983. | |
195 * | |
196 * Matrix of D(n,c) class is a non-singular matrix of the order n. It | |
197 * has unity main diagonal, three co-diagonals above the main diagonal | |
198 * on the distance c, which are cyclically continued below the main | |
199 * diagonal, and a triangle block of the size 10x10 in the upper right | |
200 * corner. | |
201 * | |
202 * It is necessary that n >= 14 and 1 <= c <= n-13. | |
203 * | |
204 * RETURNS | |
205 * | |
206 * The routine returns a pointer to the matrix created. */ | |
207 | |
208 SPM *spm_test_mat_d(int n, int c) | |
209 { SPM *A; | |
210 int i, j; | |
211 xassert(n >= 14 && 1 <= c && c <= n-13); | |
212 A = spm_create_mat(n, n); | |
213 for (i = 1; i <= n; i++) | |
214 spm_new_elem(A, i, i, 1.0); | |
215 for (i = 1; i <= n-c; i++) | |
216 spm_new_elem(A, i, i+c, (double)(i+1)); | |
217 for (i = n-c+1; i <= n; i++) | |
218 spm_new_elem(A, i, i-n+c, (double)(i+1)); | |
219 for (i = 1; i <= n-c-1; i++) | |
220 spm_new_elem(A, i, i+c+1, (double)(-i)); | |
221 for (i = n-c; i <= n; i++) | |
222 spm_new_elem(A, i, i-n+c+1, (double)(-i)); | |
223 for (i = 1; i <= n-c-2; i++) | |
224 spm_new_elem(A, i, i+c+2, 16.0); | |
225 for (i = n-c-1; i <= n; i++) | |
226 spm_new_elem(A, i, i-n+c+2, 16.0); | |
227 for (j = 1; j <= 10; j++) | |
228 for (i = 1; i <= 11-j; i++) | |
229 spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j); | |
230 return A; | |
231 } | |
232 | |
233 /*********************************************************************** | |
234 * NAME | |
235 * | |
236 * spm_show_mat - write sparse matrix pattern in BMP file format | |
237 * | |
238 * SYNOPSIS | |
239 * | |
240 * #include "glpspm.h" | |
241 * int spm_show_mat(const SPM *A, const char *fname); | |
242 * | |
243 * DESCRIPTION | |
244 * | |
245 * The routine spm_show_mat writes pattern of the specified sparse | |
246 * matrix in uncompressed BMP file format (Windows bitmap) to a binary | |
247 * file whose name is specified by the character string fname. | |
248 * | |
249 * Each pixel corresponds to one matrix element. The pixel colors have | |
250 * the following meaning: | |
251 * | |
252 * Black structurally zero element | |
253 * White positive element | |
254 * Cyan negative element | |
255 * Green zero element | |
256 * Red duplicate element | |
257 * | |
258 * RETURNS | |
259 * | |
260 * If no error occured, the routine returns zero. Otherwise, it prints | |
261 * an appropriate error message and returns non-zero. */ | |
262 | |
263 int spm_show_mat(const SPM *A, const char *fname) | |
264 { int m = A->m; | |
265 int n = A->n; | |
266 int i, j, k, ret; | |
267 char *map; | |
268 xprintf("spm_show_mat: writing matrix pattern to `%s'...\n", | |
269 fname); | |
270 xassert(1 <= m && m <= 32767); | |
271 xassert(1 <= n && n <= 32767); | |
272 map = xmalloc(m * n); | |
273 memset(map, 0x08, m * n); | |
274 for (i = 1; i <= m; i++) | |
275 { SPME *e; | |
276 for (e = A->row[i]; e != NULL; e = e->r_next) | |
277 { j = e->j; | |
278 xassert(1 <= j && j <= n); | |
279 k = n * (i - 1) + (j - 1); | |
280 if (map[k] != 0x08) | |
281 map[k] = 0x0C; | |
282 else if (e->val > 0.0) | |
283 map[k] = 0x0F; | |
284 else if (e->val < 0.0) | |
285 map[k] = 0x0B; | |
286 else | |
287 map[k] = 0x0A; | |
288 } | |
289 } | |
290 ret = rgr_write_bmp16(fname, m, n, map); | |
291 xfree(map); | |
292 return ret; | |
293 } | |
294 | |
295 /*********************************************************************** | |
296 * NAME | |
297 * | |
298 * spm_read_hbm - read sparse matrix in Harwell-Boeing format | |
299 * | |
300 * SYNOPSIS | |
301 * | |
302 * #include "glpspm.h" | |
303 * SPM *spm_read_hbm(const char *fname); | |
304 * | |
305 * DESCRIPTION | |
306 * | |
307 * The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing | |
308 * format from a text file whose name is the character string fname. | |
309 * | |
310 * Detailed description of the Harwell-Boeing format recognised by this | |
311 * routine can be found in the following report: | |
312 * | |
313 * I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing | |
314 * Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992. | |
315 * | |
316 * NOTE | |
317 * | |
318 * The routine spm_read_hbm reads the matrix "as is", due to which zero | |
319 * and/or duplicate elements can appear in the matrix. | |
320 * | |
321 * RETURNS | |
322 * | |
323 * If no error occured, the routine returns a pointer to the matrix | |
324 * created. Otherwise, the routine prints an appropriate error message | |
325 * and returns NULL. */ | |
326 | |
327 SPM *spm_read_hbm(const char *fname) | |
328 { SPM *A = NULL; | |
329 HBM *hbm; | |
330 int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind; | |
331 double val, *values; | |
332 char *mxtype; | |
333 hbm = hbm_read_mat(fname); | |
334 if (hbm == NULL) | |
335 { xprintf("spm_read_hbm: unable to read matrix\n"); | |
336 goto fini; | |
337 } | |
338 mxtype = hbm->mxtype; | |
339 nrow = hbm->nrow; | |
340 ncol = hbm->ncol; | |
341 nnzero = hbm->nnzero; | |
342 colptr = hbm->colptr; | |
343 rowind = hbm->rowind; | |
344 values = hbm->values; | |
345 if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 || | |
346 strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 || | |
347 strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0)) | |
348 { xprintf("spm_read_hbm: matrix type `%s' not supported\n", | |
349 mxtype); | |
350 goto fini; | |
351 } | |
352 A = spm_create_mat(nrow, ncol); | |
353 if (mxtype[1] == 'S' || mxtype[1] == 'U') | |
354 xassert(nrow == ncol); | |
355 for (j = 1; j <= ncol; j++) | |
356 { beg = colptr[j]; | |
357 end = colptr[j+1]; | |
358 xassert(1 <= beg && beg <= end && end <= nnzero + 1); | |
359 for (ptr = beg; ptr < end; ptr++) | |
360 { i = rowind[ptr]; | |
361 xassert(1 <= i && i <= nrow); | |
362 if (mxtype[0] == 'R') | |
363 val = values[ptr]; | |
364 else | |
365 val = 1.0; | |
366 spm_new_elem(A, i, j, val); | |
367 if (mxtype[1] == 'S' && i != j) | |
368 spm_new_elem(A, j, i, val); | |
369 } | |
370 } | |
371 fini: if (hbm != NULL) hbm_free_mat(hbm); | |
372 return A; | |
373 } | |
374 | |
375 /*********************************************************************** | |
376 * NAME | |
377 * | |
378 * spm_count_nnz - determine number of non-zeros in sparse matrix | |
379 * | |
380 * SYNOPSIS | |
381 * | |
382 * #include "glpspm.h" | |
383 * int spm_count_nnz(const SPM *A); | |
384 * | |
385 * RETURNS | |
386 * | |
387 * The routine spm_count_nnz returns the number of structural non-zero | |
388 * elements in the specified sparse matrix. */ | |
389 | |
390 int spm_count_nnz(const SPM *A) | |
391 { SPME *e; | |
392 int i, nnz = 0; | |
393 for (i = 1; i <= A->m; i++) | |
394 for (e = A->row[i]; e != NULL; e = e->r_next) nnz++; | |
395 return nnz; | |
396 } | |
397 | |
398 /*********************************************************************** | |
399 * NAME | |
400 * | |
401 * spm_drop_zeros - remove zero elements from sparse matrix | |
402 * | |
403 * SYNOPSIS | |
404 * | |
405 * #include "glpspm.h" | |
406 * int spm_drop_zeros(SPM *A, double eps); | |
407 * | |
408 * DESCRIPTION | |
409 * | |
410 * The routine spm_drop_zeros removes all elements from the specified | |
411 * sparse matrix, whose absolute value is less than eps. | |
412 * | |
413 * If the parameter eps is 0, only zero elements are removed from the | |
414 * matrix. | |
415 * | |
416 * RETURNS | |
417 * | |
418 * The routine returns the number of elements removed. */ | |
419 | |
420 int spm_drop_zeros(SPM *A, double eps) | |
421 { SPME *e, *next; | |
422 int i, count = 0; | |
423 for (i = 1; i <= A->m; i++) | |
424 { for (e = A->row[i]; e != NULL; e = next) | |
425 { next = e->r_next; | |
426 if (e->val == 0.0 || fabs(e->val) < eps) | |
427 { /* remove element from the row list */ | |
428 if (e->r_prev == NULL) | |
429 A->row[e->i] = e->r_next; | |
430 else | |
431 e->r_prev->r_next = e->r_next; | |
432 if (e->r_next == NULL) | |
433 ; | |
434 else | |
435 e->r_next->r_prev = e->r_prev; | |
436 /* remove element from the column list */ | |
437 if (e->c_prev == NULL) | |
438 A->col[e->j] = e->c_next; | |
439 else | |
440 e->c_prev->c_next = e->c_next; | |
441 if (e->c_next == NULL) | |
442 ; | |
443 else | |
444 e->c_next->c_prev = e->c_prev; | |
445 /* return element to the memory pool */ | |
446 dmp_free_atom(A->pool, e, sizeof(SPME)); | |
447 count++; | |
448 } | |
449 } | |
450 } | |
451 return count; | |
452 } | |
453 | |
454 /*********************************************************************** | |
455 * NAME | |
456 * | |
457 * spm_read_mat - read sparse matrix from text file | |
458 * | |
459 * SYNOPSIS | |
460 * | |
461 * #include "glpspm.h" | |
462 * SPM *spm_read_mat(const char *fname); | |
463 * | |
464 * DESCRIPTION | |
465 * | |
466 * The routine reads a sparse matrix from a text file whose name is | |
467 * specified by the parameter fname. | |
468 * | |
469 * For the file format see description of the routine spm_write_mat. | |
470 * | |
471 * RETURNS | |
472 * | |
473 * On success the routine returns a pointer to the matrix created, | |
474 * otherwise NULL. */ | |
475 | |
476 #if 1 | |
477 SPM *spm_read_mat(const char *fname) | |
478 { xassert(fname != fname); | |
479 return NULL; | |
480 } | |
481 #else | |
482 SPM *spm_read_mat(const char *fname) | |
483 { SPM *A = NULL; | |
484 PDS *pds; | |
485 jmp_buf jump; | |
486 int i, j, k, m, n, nnz, fail = 0; | |
487 double val; | |
488 xprintf("spm_read_mat: reading matrix from `%s'...\n", fname); | |
489 pds = pds_open_file(fname); | |
490 if (pds == NULL) | |
491 { xprintf("spm_read_mat: unable to open `%s' - %s\n", fname, | |
492 strerror(errno)); | |
493 fail = 1; | |
494 goto done; | |
495 } | |
496 if (setjmp(jump)) | |
497 { fail = 1; | |
498 goto done; | |
499 } | |
500 pds_set_jump(pds, jump); | |
501 /* number of rows, number of columns, number of non-zeros */ | |
502 m = pds_scan_int(pds); | |
503 if (m < 0) | |
504 pds_error(pds, "invalid number of rows\n"); | |
505 n = pds_scan_int(pds); | |
506 if (n < 0) | |
507 pds_error(pds, "invalid number of columns\n"); | |
508 nnz = pds_scan_int(pds); | |
509 if (nnz < 0) | |
510 pds_error(pds, "invalid number of non-zeros\n"); | |
511 /* create matrix */ | |
512 xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n", | |
513 m, n, nnz); | |
514 A = spm_create_mat(m, n); | |
515 /* read matrix elements */ | |
516 for (k = 1; k <= nnz; k++) | |
517 { /* row index, column index, element value */ | |
518 i = pds_scan_int(pds); | |
519 if (!(1 <= i && i <= m)) | |
520 pds_error(pds, "row index out of range\n"); | |
521 j = pds_scan_int(pds); | |
522 if (!(1 <= j && j <= n)) | |
523 pds_error(pds, "column index out of range\n"); | |
524 val = pds_scan_num(pds); | |
525 /* add new element to the matrix */ | |
526 spm_new_elem(A, i, j, val); | |
527 } | |
528 xprintf("spm_read_mat: %d lines were read\n", pds->count); | |
529 done: if (pds != NULL) pds_close_file(pds); | |
530 if (fail && A != NULL) spm_delete_mat(A), A = NULL; | |
531 return A; | |
532 } | |
533 #endif | |
534 | |
535 /*********************************************************************** | |
536 * NAME | |
537 * | |
538 * spm_write_mat - write sparse matrix to text file | |
539 * | |
540 * SYNOPSIS | |
541 * | |
542 * #include "glpspm.h" | |
543 * int spm_write_mat(const SPM *A, const char *fname); | |
544 * | |
545 * DESCRIPTION | |
546 * | |
547 * The routine spm_write_mat writes the specified sparse matrix to a | |
548 * text file whose name is specified by the parameter fname. This file | |
549 * can be read back with the routine spm_read_mat. | |
550 * | |
551 * RETURNS | |
552 * | |
553 * On success the routine returns zero, otherwise non-zero. | |
554 * | |
555 * FILE FORMAT | |
556 * | |
557 * The file created by the routine spm_write_mat is a plain text file, | |
558 * which contains the following information: | |
559 * | |
560 * m n nnz | |
561 * row[1] col[1] val[1] | |
562 * row[2] col[2] val[2] | |
563 * . . . | |
564 * row[nnz] col[nnz] val[nnz] | |
565 * | |
566 * where: | |
567 * m is the number of rows; | |
568 * n is the number of columns; | |
569 * nnz is the number of non-zeros; | |
570 * row[k], k = 1,...,nnz, are row indices; | |
571 * col[k], k = 1,...,nnz, are column indices; | |
572 * val[k], k = 1,...,nnz, are element values. */ | |
573 | |
574 #if 1 | |
575 int spm_write_mat(const SPM *A, const char *fname) | |
576 { xassert(A != A); | |
577 xassert(fname != fname); | |
578 return 0; | |
579 } | |
580 #else | |
581 int spm_write_mat(const SPM *A, const char *fname) | |
582 { FILE *fp; | |
583 int i, nnz, ret = 0; | |
584 xprintf("spm_write_mat: writing matrix to `%s'...\n", fname); | |
585 fp = fopen(fname, "w"); | |
586 if (fp == NULL) | |
587 { xprintf("spm_write_mat: unable to create `%s' - %s\n", fname, | |
588 strerror(errno)); | |
589 ret = 1; | |
590 goto done; | |
591 } | |
592 /* number of rows, number of columns, number of non-zeros */ | |
593 nnz = spm_count_nnz(A); | |
594 fprintf(fp, "%d %d %d\n", A->m, A->n, nnz); | |
595 /* walk through rows of the matrix */ | |
596 for (i = 1; i <= A->m; i++) | |
597 { SPME *e; | |
598 /* walk through elements of i-th row */ | |
599 for (e = A->row[i]; e != NULL; e = e->r_next) | |
600 { /* row index, column index, element value */ | |
601 fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val); | |
602 } | |
603 } | |
604 fflush(fp); | |
605 if (ferror(fp)) | |
606 { xprintf("spm_write_mat: writing error on `%s' - %s\n", fname, | |
607 strerror(errno)); | |
608 ret = 1; | |
609 goto done; | |
610 } | |
611 xprintf("spm_write_mat: %d lines were written\n", 1 + nnz); | |
612 done: if (fp != NULL) fclose(fp); | |
613 return ret; | |
614 } | |
615 #endif | |
616 | |
617 /*********************************************************************** | |
618 * NAME | |
619 * | |
620 * spm_transpose - transpose sparse matrix | |
621 * | |
622 * SYNOPSIS | |
623 * | |
624 * #include "glpspm.h" | |
625 * SPM *spm_transpose(const SPM *A); | |
626 * | |
627 * RETURNS | |
628 * | |
629 * The routine computes and returns sparse matrix B, which is a matrix | |
630 * transposed to sparse matrix A. */ | |
631 | |
632 SPM *spm_transpose(const SPM *A) | |
633 { SPM *B; | |
634 int i; | |
635 B = spm_create_mat(A->n, A->m); | |
636 for (i = 1; i <= A->m; i++) | |
637 { SPME *e; | |
638 for (e = A->row[i]; e != NULL; e = e->r_next) | |
639 spm_new_elem(B, e->j, i, e->val); | |
640 } | |
641 return B; | |
642 } | |
643 | |
644 SPM *spm_add_sym(const SPM *A, const SPM *B) | |
645 { /* add two sparse matrices (symbolic phase) */ | |
646 SPM *C; | |
647 int i, j, *flag; | |
648 xassert(A->m == B->m); | |
649 xassert(A->n == B->n); | |
650 /* create resultant matrix */ | |
651 C = spm_create_mat(A->m, A->n); | |
652 /* allocate and clear the flag array */ | |
653 flag = xcalloc(1+C->n, sizeof(int)); | |
654 for (j = 1; j <= C->n; j++) | |
655 flag[j] = 0; | |
656 /* compute pattern of C = A + B */ | |
657 for (i = 1; i <= C->m; i++) | |
658 { SPME *e; | |
659 /* at the beginning i-th row of C is empty */ | |
660 /* (i-th row of C) := (i-th row of C) union (i-th row of A) */ | |
661 for (e = A->row[i]; e != NULL; e = e->r_next) | |
662 { /* (note that i-th row of A may have duplicate elements) */ | |
663 j = e->j; | |
664 if (!flag[j]) | |
665 { spm_new_elem(C, i, j, 0.0); | |
666 flag[j] = 1; | |
667 } | |
668 } | |
669 /* (i-th row of C) := (i-th row of C) union (i-th row of B) */ | |
670 for (e = B->row[i]; e != NULL; e = e->r_next) | |
671 { /* (note that i-th row of B may have duplicate elements) */ | |
672 j = e->j; | |
673 if (!flag[j]) | |
674 { spm_new_elem(C, i, j, 0.0); | |
675 flag[j] = 1; | |
676 } | |
677 } | |
678 /* reset the flag array */ | |
679 for (e = C->row[i]; e != NULL; e = e->r_next) | |
680 flag[e->j] = 0; | |
681 } | |
682 /* check and deallocate the flag array */ | |
683 for (j = 1; j <= C->n; j++) | |
684 xassert(!flag[j]); | |
685 xfree(flag); | |
686 return C; | |
687 } | |
688 | |
689 void spm_add_num(SPM *C, double alfa, const SPM *A, double beta, | |
690 const SPM *B) | |
691 { /* add two sparse matrices (numeric phase) */ | |
692 int i, j; | |
693 double *work; | |
694 /* allocate and clear the working array */ | |
695 work = xcalloc(1+C->n, sizeof(double)); | |
696 for (j = 1; j <= C->n; j++) | |
697 work[j] = 0.0; | |
698 /* compute matrix C = alfa * A + beta * B */ | |
699 for (i = 1; i <= C->n; i++) | |
700 { SPME *e; | |
701 /* work := alfa * (i-th row of A) + beta * (i-th row of B) */ | |
702 /* (note that A and/or B may have duplicate elements) */ | |
703 for (e = A->row[i]; e != NULL; e = e->r_next) | |
704 work[e->j] += alfa * e->val; | |
705 for (e = B->row[i]; e != NULL; e = e->r_next) | |
706 work[e->j] += beta * e->val; | |
707 /* (i-th row of C) := work, work := 0 */ | |
708 for (e = C->row[i]; e != NULL; e = e->r_next) | |
709 { j = e->j; | |
710 e->val = work[j]; | |
711 work[j] = 0.0; | |
712 } | |
713 } | |
714 /* check and deallocate the working array */ | |
715 for (j = 1; j <= C->n; j++) | |
716 xassert(work[j] == 0.0); | |
717 xfree(work); | |
718 return; | |
719 } | |
720 | |
721 SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B) | |
722 { /* add two sparse matrices (driver routine) */ | |
723 SPM *C; | |
724 C = spm_add_sym(A, B); | |
725 spm_add_num(C, alfa, A, beta, B); | |
726 return C; | |
727 } | |
728 | |
729 SPM *spm_mul_sym(const SPM *A, const SPM *B) | |
730 { /* multiply two sparse matrices (symbolic phase) */ | |
731 int i, j, k, *flag; | |
732 SPM *C; | |
733 xassert(A->n == B->m); | |
734 /* create resultant matrix */ | |
735 C = spm_create_mat(A->m, B->n); | |
736 /* allocate and clear the flag array */ | |
737 flag = xcalloc(1+C->n, sizeof(int)); | |
738 for (j = 1; j <= C->n; j++) | |
739 flag[j] = 0; | |
740 /* compute pattern of C = A * B */ | |
741 for (i = 1; i <= C->m; i++) | |
742 { SPME *e, *ee; | |
743 /* compute pattern of i-th row of C */ | |
744 for (e = A->row[i]; e != NULL; e = e->r_next) | |
745 { k = e->j; | |
746 for (ee = B->row[k]; ee != NULL; ee = ee->r_next) | |
747 { j = ee->j; | |
748 /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */ | |
749 if (!flag[j]) | |
750 { /* c[i,j] does not exist, so create it */ | |
751 spm_new_elem(C, i, j, 0.0); | |
752 flag[j] = 1; | |
753 } | |
754 } | |
755 } | |
756 /* reset the flag array */ | |
757 for (e = C->row[i]; e != NULL; e = e->r_next) | |
758 flag[e->j] = 0; | |
759 } | |
760 /* check and deallocate the flag array */ | |
761 for (j = 1; j <= C->n; j++) | |
762 xassert(!flag[j]); | |
763 xfree(flag); | |
764 return C; | |
765 } | |
766 | |
767 void spm_mul_num(SPM *C, const SPM *A, const SPM *B) | |
768 { /* multiply two sparse matrices (numeric phase) */ | |
769 int i, j; | |
770 double *work; | |
771 /* allocate and clear the working array */ | |
772 work = xcalloc(1+A->n, sizeof(double)); | |
773 for (j = 1; j <= A->n; j++) | |
774 work[j] = 0.0; | |
775 /* compute matrix C = A * B */ | |
776 for (i = 1; i <= C->m; i++) | |
777 { SPME *e, *ee; | |
778 double temp; | |
779 /* work := (i-th row of A) */ | |
780 /* (note that A may have duplicate elements) */ | |
781 for (e = A->row[i]; e != NULL; e = e->r_next) | |
782 work[e->j] += e->val; | |
783 /* compute i-th row of C */ | |
784 for (e = C->row[i]; e != NULL; e = e->r_next) | |
785 { j = e->j; | |
786 /* c[i,j] := work * (j-th column of B) */ | |
787 temp = 0.0; | |
788 for (ee = B->col[j]; ee != NULL; ee = ee->c_next) | |
789 temp += work[ee->i] * ee->val; | |
790 e->val = temp; | |
791 } | |
792 /* reset the working array */ | |
793 for (e = A->row[i]; e != NULL; e = e->r_next) | |
794 work[e->j] = 0.0; | |
795 } | |
796 /* check and deallocate the working array */ | |
797 for (j = 1; j <= A->n; j++) | |
798 xassert(work[j] == 0.0); | |
799 xfree(work); | |
800 return; | |
801 } | |
802 | |
803 SPM *spm_mul_mat(const SPM *A, const SPM *B) | |
804 { /* multiply two sparse matrices (driver routine) */ | |
805 SPM *C; | |
806 C = spm_mul_sym(A, B); | |
807 spm_mul_num(C, A, B); | |
808 return C; | |
809 } | |
810 | |
811 PER *spm_create_per(int n) | |
812 { /* create permutation matrix */ | |
813 PER *P; | |
814 int k; | |
815 xassert(n >= 0); | |
816 P = xmalloc(sizeof(PER)); | |
817 P->n = n; | |
818 P->row = xcalloc(1+n, sizeof(int)); | |
819 P->col = xcalloc(1+n, sizeof(int)); | |
820 /* initially it is identity matrix */ | |
821 for (k = 1; k <= n; k++) | |
822 P->row[k] = P->col[k] = k; | |
823 return P; | |
824 } | |
825 | |
826 void spm_check_per(PER *P) | |
827 { /* check permutation matrix for correctness */ | |
828 int i, j; | |
829 xassert(P->n >= 0); | |
830 for (i = 1; i <= P->n; i++) | |
831 { j = P->row[i]; | |
832 xassert(1 <= j && j <= P->n); | |
833 xassert(P->col[j] == i); | |
834 } | |
835 return; | |
836 } | |
837 | |
838 void spm_delete_per(PER *P) | |
839 { /* delete permutation matrix */ | |
840 xfree(P->row); | |
841 xfree(P->col); | |
842 xfree(P); | |
843 return; | |
844 } | |
845 | |
846 /* eof */ |