lemon-project-template-glpk
diff deps/glpk/doc/graphs.tex @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/doc/graphs.tex Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,3935 @@ 1.4 +%* graphs.tex *% 1.5 + 1.6 +%*********************************************************************** 1.7 +% This code is part of GLPK (GNU Linear Programming Kit). 1.8 +% 1.9 +% Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 1.10 +% 2009, 2010 Andrew Makhorin, Department for Applied Informatics, 1.11 +% Moscow Aviation Institute, Moscow, Russia. All rights reserved. 1.12 +% E-mail: <mao@gnu.org>. 1.13 +% 1.14 +% GLPK is free software: you can redistribute it and/or modify it 1.15 +% under the terms of the GNU General Public License as published by 1.16 +% the Free Software Foundation, either version 3 of the License, or 1.17 +% (at your option) any later version. 1.18 +% 1.19 +% GLPK is distributed in the hope that it will be useful, but WITHOUT 1.20 +% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 1.21 +% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 1.22 +% License for more details. 1.23 +% 1.24 +% You should have received a copy of the GNU General Public License 1.25 +% along with GLPK. If not, see <http://www.gnu.org/licenses/>. 1.26 +%*********************************************************************** 1.27 + 1.28 +\documentclass[11pt]{report} 1.29 +\usepackage{amssymb} 1.30 +\usepackage[dvipdfm,linktocpage,colorlinks,linkcolor=blue, 1.31 +urlcolor=blue]{hyperref} 1.32 +\usepackage[all]{xy} 1.33 + 1.34 +\renewcommand\contentsname{\sf\bfseries Contents} 1.35 +\renewcommand\chaptername{\sf\bfseries Chapter} 1.36 +\renewcommand\appendixname{\sf\bfseries Appendix} 1.37 + 1.38 +\begin{document} 1.39 + 1.40 +\thispagestyle{empty} 1.41 + 1.42 +\begin{center} 1.43 + 1.44 +\vspace*{1in} 1.45 + 1.46 +\begin{huge} 1.47 +\sf\bfseries GNU Linear Programming Kit 1.48 +\end{huge} 1.49 + 1.50 +\vspace{0.5in} 1.51 + 1.52 +\begin{LARGE} 1.53 +\sf Graph and Network Routines 1.54 +\end{LARGE} 1.55 + 1.56 +\vspace{0.5in} 1.57 + 1.58 +\begin{LARGE} 1.59 +\sf for GLPK Version 4.45 1.60 +\end{LARGE} 1.61 + 1.62 +\vspace{0.5in} 1.63 +\begin{Large} 1.64 +\sf (DRAFT, December 2010) 1.65 +\end{Large} 1.66 +\end{center} 1.67 + 1.68 +\newpage 1.69 + 1.70 +\vspace*{1in} 1.71 + 1.72 +\vfill 1.73 + 1.74 +\noindent 1.75 +The GLPK package is part of the GNU Project released under the aegis of 1.76 +GNU. 1.77 + 1.78 +\medskip \noindent 1.79 +Copyright \copyright{} 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 1.80 +2008, 2009, 2010 Andrew Makhorin, Department for Applied Informatics, 1.81 +Moscow Aviation Institute, Moscow, Russia. All rights reserved. 1.82 + 1.83 +\medskip \noindent 1.84 +Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 1.85 +02110-1301, USA. 1.86 + 1.87 +\medskip \noindent 1.88 +Permission is granted to make and distribute verbatim copies of this 1.89 +manual provided the copyright notice and this permission notice are 1.90 +preserved on all copies. 1.91 + 1.92 +\medskip \noindent 1.93 +Permission is granted to copy and distribute modified versions of this 1.94 +manual under the conditions for verbatim copying, provided also that the 1.95 +entire resulting derived work is distributed under the terms of 1.96 +a permission notice identical to this one. 1.97 + 1.98 +\medskip \noindent 1.99 +Permission is granted to copy and distribute translations of this manual 1.100 +into another language, under the above conditions for modified versions. 1.101 + 1.102 +\tableofcontents 1.103 + 1.104 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.105 + 1.106 +\chapter{Basic Graph API Routines} 1.107 + 1.108 +\section{Graph program object} 1.109 + 1.110 +In GLPK the base program object used to represent graphs and networks 1.111 +is a directed graph (digraph). 1.112 + 1.113 +Formally, {\it digraph} (or simply, {\it graph}) is a pair $G=(V,A)$, 1.114 +where $V$ is a set of {\it vertices}, and $A$ is a set 1.115 +{\it arcs}.\footnote{$A$ may be a multiset.} Each arc $a\in A$ is an 1.116 +ordered pair of vertices $a=(x,y)$, where $x\in V$ is called {\it tail 1.117 +vertex} of arc $a$, and $y\in V$ is called its {\it head vertex}. 1.118 + 1.119 +Representation of a graph in the program includes three structs defined 1.120 +by typedef in the header \verb|glpk.h|: 1.121 + 1.122 +\medskip 1.123 + 1.124 +$\bullet$ \verb|glp_graph|, which represents the graph in a whole, 1.125 + 1.126 +$\bullet$ \verb|glp_vertex|, which represents a vertex of the graph, and 1.127 + 1.128 +$\bullet$ \verb|glp_arc|, which represents an arc of the graph. 1.129 + 1.130 +\medskip 1.131 + 1.132 +All these three structs are ``semi-opaque'', i.e. the application 1.133 +program can directly access their fields through pointers, however, 1.134 +changing the fields directly is not allowed---all changes should be 1.135 +performed only with appropriate GLPK API routines. 1.136 + 1.137 +\newpage 1.138 + 1.139 +\newenvironment{comment} 1.140 +{\addtolength{\leftskip}{17pt}\noindent} 1.141 +{\par\addtolength{\leftskip}{-17pt}} 1.142 + 1.143 +\noindent 1.144 +{\bf glp\_graph.} The struct \verb|glp_graph| has the following 1.145 +fields available to the application program: 1.146 + 1.147 +\medskip 1.148 + 1.149 +\noindent 1.150 +\verb|char *name;| 1.151 + 1.152 +\begin{comment}Symbolic name assigned to the graph. It is a pointer to 1.153 +a null terminated character string of length from 1 to 255 characters. 1.154 +If no name is assigned to the graph, this field contains \verb|NULL|. 1.155 +\end{comment} 1.156 + 1.157 +\medskip 1.158 + 1.159 +\noindent 1.160 +\verb|int nv;| 1.161 + 1.162 +\begin{comment}The number of vertices in the graph, $nv\geq 0$. 1.163 +\end{comment} 1.164 + 1.165 +\medskip 1.166 + 1.167 +\noindent 1.168 +\verb|int na;| 1.169 + 1.170 +\begin{comment}The number of arcs in the graph, $na\geq 0$. 1.171 +\end{comment} 1.172 + 1.173 +\medskip 1.174 + 1.175 +\noindent 1.176 +\verb|glp_vertex **v;| 1.177 + 1.178 +\begin{comment}Pointer to an array containing the list of vertices. 1.179 +Element $v[0]$ is not used. Element $v[i]$, $1\leq i\leq nv$, is a 1.180 +pointer to $i$-th vertex of the graph. Note that on adding new vertices 1.181 +to the graph the field $v$ may be altered due to reallocation. However, 1.182 +pointers $v[i]$ are not changed while corresponding vertices exist in 1.183 +the graph. 1.184 +\end{comment} 1.185 + 1.186 +\medskip 1.187 + 1.188 +\noindent 1.189 +\verb|int v_size;| 1.190 + 1.191 +\begin{comment}Size of vertex data blocks, in bytes, 1.192 +$0\leq v\_size\leq 256$. (See also the field \verb|data| in the struct 1.193 +\verb|glp_vertex|.) 1.194 +\end{comment} 1.195 + 1.196 +\medskip 1.197 + 1.198 +\noindent 1.199 +\verb|int a_size;| 1.200 + 1.201 +\begin{comment}Size of arc data blocks, in bytes, 1.202 +$0\leq v\_size\leq 256$. (See also the field \verb|data| in the struct 1.203 +\verb|glp_arc|.) 1.204 +\end{comment} 1.205 + 1.206 +\bigskip 1.207 + 1.208 +\noindent 1.209 +{\bf glp\_vertex.} The struct \verb|glp_vertex| has the following 1.210 +fields available to the application program: 1.211 + 1.212 +\medskip 1.213 + 1.214 +\noindent 1.215 +\verb|int i;| 1.216 + 1.217 +\begin{comment}Ordinal number of the vertex, $1\leq i\leq nv$. Note 1.218 +that element $v[i]$ in the struct \verb|glp_graph| points to the vertex, 1.219 +whose ordinal number is $i$. 1.220 +\end{comment} 1.221 + 1.222 +\medskip 1.223 + 1.224 +\noindent 1.225 +\verb|char *name;| 1.226 + 1.227 +\begin{comment}Symbolic name assigned to the vertex. It is a pointer to 1.228 +a null terminated character string of length from 1 to 255 characters. 1.229 +If no name is assigned to the vertex, this field contains \verb|NULL|. 1.230 +\end{comment} 1.231 + 1.232 +\medskip 1.233 + 1.234 +\noindent 1.235 +\verb|void *data;| 1.236 + 1.237 +\begin{comment}Pointer to a data block associated with the vertex. This 1.238 +data block is automatically allocated on creating a new vertex and freed 1.239 +on deleting the vertex. If $v\_size=0$, the block is not allocated, and 1.240 +this field contains \verb|NULL|. 1.241 +\end{comment} 1.242 + 1.243 +\medskip 1.244 + 1.245 +\noindent 1.246 +\verb|void *temp;| 1.247 + 1.248 +\begin{comment}Working pointer, which may be used freely for any 1.249 +purposes. The application program can change this field directly. 1.250 +\end{comment} 1.251 + 1.252 +\medskip 1.253 + 1.254 +\noindent 1.255 +\verb|glp_arc *in;| 1.256 + 1.257 +\begin{comment}Pointer to the (unordered) list of incoming arcs. If the 1.258 +vertex has no incoming arcs, this field contains \verb|NULL|. 1.259 +\end{comment} 1.260 + 1.261 +\medskip 1.262 + 1.263 +\noindent 1.264 +\verb|glp_arc *out;| 1.265 + 1.266 +\begin{comment}Pointer to the (unordered) list of outgoing arcs. If the 1.267 +vertex has no outgoing arcs, this field contains \verb|NULL|. 1.268 +\end{comment} 1.269 + 1.270 +\bigskip 1.271 + 1.272 +\noindent 1.273 +{\bf glp\_arc.} The struct \verb|glp_arc| has the following fields 1.274 +available to the application program: 1.275 + 1.276 +\medskip 1.277 + 1.278 +\noindent 1.279 +\verb|glp_vertex *tail;| 1.280 + 1.281 +\begin{comment}Pointer to a vertex, which is tail endpoint of the arc. 1.282 +\end{comment} 1.283 + 1.284 +\medskip 1.285 + 1.286 +\noindent 1.287 +\verb|glp_vertex *head;| 1.288 + 1.289 +\begin{comment}Pointer to a vertex, which is head endpoint of the arc. 1.290 +\end{comment} 1.291 + 1.292 +\medskip 1.293 + 1.294 +\noindent 1.295 +\verb|void *data;| 1.296 + 1.297 +\begin{comment}Pointer to a data block associated with the arc. This 1.298 +data block is automatically allocated on creating a new arc and freed on 1.299 +deleting the arc. If $v\_size=0$, the block is not allocated, and this 1.300 +field contains \verb|NULL|. 1.301 +\end{comment} 1.302 + 1.303 +\medskip 1.304 + 1.305 +\noindent 1.306 +\verb|void *temp;| 1.307 + 1.308 +\begin{comment}Working pointer, which may be used freely for any 1.309 +purposes. The application program can change this field directly. 1.310 +\end{comment} 1.311 + 1.312 +\medskip 1.313 + 1.314 +\noindent 1.315 +\verb|glp_arc *t_next;| 1.316 + 1.317 +\begin{comment}Pointer to another arc, which has the same tail endpoint 1.318 +as this one. \verb|NULL| in this field indicates the end of the list of 1.319 +outgoing arcs. 1.320 +\end{comment} 1.321 + 1.322 +\medskip 1.323 + 1.324 +\noindent 1.325 +\verb|glp_arc *h_next;| 1.326 + 1.327 +\begin{comment}Pointer to another arc, which has the same head endpoint 1.328 +as this one. \verb|NULL| in this field indicates the end of the list of 1.329 +incoming arcs. 1.330 +\end{comment} 1.331 + 1.332 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.333 + 1.334 +\newpage 1.335 + 1.336 +\section{Graph creating and modifying routines} 1.337 + 1.338 +\subsection{glp\_create\_graph---create graph} 1.339 + 1.340 +\subsubsection*{Synopsis} 1.341 + 1.342 +\begin{verbatim} 1.343 +glp_graph *glp_create_graph(int v_size, int a_size); 1.344 +\end{verbatim} 1.345 + 1.346 +\subsubsection*{Description} 1.347 + 1.348 +The routine \verb|glp_create_graph| creates a new graph, which 1.349 +initially is\linebreak empty, i.e. has no vertices and arcs. 1.350 + 1.351 +The parameter \verb|v_size| specifies the size of vertex data blocks, 1.352 +in bytes, $0\leq v\_size\leq 256$. 1.353 + 1.354 +The parameter \verb|a_size| specifies the size of arc data blocks, in 1.355 +bytes, $0\leq a\_size\leq 256$. 1.356 + 1.357 +\subsubsection*{Returns} 1.358 + 1.359 +The routine returns a pointer to the graph created. 1.360 + 1.361 +\subsection{glp\_set\_graph\_name---assign (change) graph name} 1.362 + 1.363 +\subsubsection*{Synopsis} 1.364 + 1.365 +\begin{verbatim} 1.366 +void glp_set_graph_name(glp_graph *G, const char *name); 1.367 +\end{verbatim} 1.368 + 1.369 +\subsubsection*{Description} 1.370 + 1.371 +The routine \verb|glp_set_graph_name| assigns a symbolic name specified 1.372 +by the character string \verb|name| (1 to 255 chars) to the graph. 1.373 + 1.374 +If the parameter \verb|name| is \verb|NULL| or an empty string, the 1.375 +routine erases the existing symbolic name of the graph. 1.376 + 1.377 +\newpage 1.378 + 1.379 +\subsection{glp\_add\_vertices---add new vertices to graph} 1.380 + 1.381 +\subsubsection*{Synopsis} 1.382 + 1.383 +\begin{verbatim} 1.384 +int glp_add_vertices(glp_graph *G, int nadd); 1.385 +\end{verbatim} 1.386 + 1.387 +\subsubsection*{Description} 1.388 + 1.389 +The routine \verb|glp_add_vertices| adds \verb|nadd| vertices to the 1.390 +specified graph. New vertices are always added to the end of the vertex 1.391 +list, so ordinal numbers of existing vertices remain unchanged. Note 1.392 +that this operation may change the field \verb|v| in the struct 1.393 +\verb|glp_graph| (pointer to the vertex array) due to reallocation. 1.394 + 1.395 +Being added each new vertex is isolated, i.e. has no incident arcs. 1.396 + 1.397 +If the size of vertex data blocks specified on creating the graph is 1.398 +non-zero, the routine also allocates a memory block of that size for 1.399 +each new vertex added, fills it by binary zeros, and stores a pointer to 1.400 +it in the field \verb|data| of the struct \verb|glp_vertex|. Otherwise, 1.401 +if the block size is zero, the field \verb|data| is set to \verb|NULL|. 1.402 + 1.403 +\subsubsection*{Returns} 1.404 + 1.405 +The routine \verb|glp_add_vertices| returns the ordinal number of the 1.406 +first new vertex added to the graph. 1.407 + 1.408 +\subsection{glp\_set\_vertex\_name---assign (change) vertex name} 1.409 + 1.410 +\subsubsection*{Synopsis} 1.411 + 1.412 +\begin{verbatim} 1.413 +void glp_set_vertex_name(glp_graph *G, int i, const char *name); 1.414 +\end{verbatim} 1.415 + 1.416 +\subsubsection*{Description} 1.417 + 1.418 +The routine \verb|glp_set_vertex_name| assigns a given symbolic name 1.419 +(1 up to 255 characters) to \verb|i|-th vertex of the specified graph. 1.420 + 1.421 +If the parameter \verb|name| is \verb|NULL| or empty string, the 1.422 +routine erases an existing name of \verb|i|-th vertex. 1.423 + 1.424 +\newpage 1.425 + 1.426 +\subsection{glp\_add\_arc---add new arc to graph} 1.427 + 1.428 +\subsubsection*{Synopsis} 1.429 + 1.430 +\begin{verbatim} 1.431 +glp_arc *glp_add_arc(glp_graph *G, int i, int j); 1.432 +\end{verbatim} 1.433 + 1.434 +\subsubsection*{Description} 1.435 + 1.436 +The routine \verb|glp_add_arc| adds one new arc to the specified graph. 1.437 + 1.438 +The parameters \verb|i| and \verb|j| specify the ordinal numbers of, 1.439 +resp., tail and head endpoints (vertices) of the arc. Note that 1.440 +self-loops and multiple arcs are allowed. 1.441 + 1.442 +If the size of arc data blocks specified on creating the graph is 1.443 +non-zero, the routine also allocates a memory block of that size, fills 1.444 +it by binary zeros, and stores a pointer to it in the field \verb|data| 1.445 +of the struct \verb|glp_arc|. Otherwise, if the block size is zero, the 1.446 +field \verb|data| is set to \verb|NULL|. 1.447 + 1.448 +\subsection{glp\_del\_vertices---delete vertices from graph} 1.449 + 1.450 +\subsubsection*{Synopsis} 1.451 + 1.452 +\begin{verbatim} 1.453 +void glp_del_vertices(glp_graph *G, int ndel, const int num[]); 1.454 +\end{verbatim} 1.455 + 1.456 +\subsubsection*{Description} 1.457 + 1.458 +The routine \verb|glp_del_vertices| deletes vertices along with all 1.459 +incident arcs from the specified graph. Ordinal numbers of vertices to 1.460 +be deleted should be placed in locations \verb|num[1]|, \dots, 1.461 +\verb|num[ndel]|, \verb|ndel| $>0$. 1.462 + 1.463 +Note that deleting vertices involves changing ordinal numbers of other 1.464 +vertices remaining in the graph. New ordinal numbers of the remaining 1.465 +vertices are assigned under the assumption that the original order of 1.466 +vertices is not changed. 1.467 + 1.468 +\subsection{glp\_del\_arc---delete arc from graph} 1.469 + 1.470 +\subsubsection*{Synopsis} 1.471 + 1.472 +\begin{verbatim} 1.473 +void glp_del_arc(glp_graph *G, glp_arc *a); 1.474 +\end{verbatim} 1.475 + 1.476 +\subsubsection*{Description} 1.477 + 1.478 +The routine \verb|glp_del_arc| deletes an arc from the specified graph. 1.479 +The arc to be deleted must exist. 1.480 + 1.481 +\subsection{glp\_erase\_graph---erase graph content} 1.482 + 1.483 +\subsubsection*{Synopsis} 1.484 + 1.485 +\begin{verbatim} 1.486 +void glp_erase_graph(glp_graph *G, int v_size, int a_size); 1.487 +\end{verbatim} 1.488 + 1.489 +\subsubsection*{Description} 1.490 + 1.491 +The routine \verb|glp_erase_graph| erases the content of the specified 1.492 +graph. The effect of this operation is the same as if the graph would be 1.493 +deleted with the routine \verb|glp_delete_graph| and then created anew 1.494 +with the routine \verb|glp_create_graph|, with exception that the handle 1.495 +(pointer) to the graph remains valid. 1.496 + 1.497 +The parameters \verb|v_size| and \verb|a_size| have the same meaning as 1.498 +for the routine \verb|glp_create_graph|. 1.499 + 1.500 +\subsection{glp\_delete\_graph---delete graph} 1.501 + 1.502 +\subsubsection*{Synopsis} 1.503 + 1.504 +\begin{verbatim} 1.505 +void glp_delete_graph(glp_graph *G); 1.506 +\end{verbatim} 1.507 + 1.508 +\subsubsection*{Description} 1.509 + 1.510 +The routine \verb|glp_delete_graph| deletes the specified graph and 1.511 +frees all the memory allocated to this program object. 1.512 + 1.513 +\newpage 1.514 + 1.515 +\section{Graph searching routines} 1.516 + 1.517 +\subsection{glp\_create\_v\_index---create vertex name index} 1.518 + 1.519 +\subsubsection*{Synopsis} 1.520 + 1.521 +\begin{verbatim} 1.522 +void glp_create_v_index(glp_graph *G); 1.523 +\end{verbatim} 1.524 + 1.525 +\subsubsection*{Description} 1.526 + 1.527 +The routine \verb|glp_create_v_index| creates the name index for the 1.528 +specified graph. The name index is an auxiliary data structure, which 1.529 +is intended to quickly (i.e. for logarithmic time) find vertices by 1.530 +their names. 1.531 + 1.532 +This routine can be called at any time. If the name index already 1.533 +exists, the routine does nothing. 1.534 + 1.535 +\subsection{glp\_find\_vertex---find vertex by its name} 1.536 + 1.537 +\subsubsection*{Synopsis} 1.538 + 1.539 +\begin{verbatim} 1.540 +int glp_find_vertex(glp_graph *G, const char *name); 1.541 +\end{verbatim} 1.542 + 1.543 +\subsubsection*{Returns} 1.544 + 1.545 +The routine \verb|glp_find_vertex| returns the ordinal number of 1.546 +a vertex, which is assigned (by the routine \verb|glp_set_vertex_name|) 1.547 +the specified symbolic \verb|name|. If no such vertex exists, the 1.548 +routine returns 0. 1.549 + 1.550 +\subsection{glp\_delete\_v\_index---delete vertex name index} 1.551 + 1.552 +\subsubsection*{Synopsis} 1.553 + 1.554 +\begin{verbatim} 1.555 +void glp_delete_v_index(glp_graph *G); 1.556 +\end{verbatim} 1.557 + 1.558 +\subsubsection*{Description} 1.559 + 1.560 +The routine \verb|glp_delete_v_index| deletes the name index previously 1.561 +created by the routine \verb|glp_create_v_index| and frees the memory 1.562 +allocated to this auxiliary data structure. 1.563 + 1.564 +This routine can be called at any time. If the name index does not 1.565 +exist, the routine does nothing. 1.566 + 1.567 +\newpage 1.568 + 1.569 +\section{Graph reading/writing routines} 1.570 + 1.571 +\subsection{glp\_read\_graph---read graph from plain text file} 1.572 + 1.573 +\subsubsection*{Synopsis} 1.574 + 1.575 +\begin{verbatim} 1.576 +int glp_read_graph(glp_graph *G, const char *fname); 1.577 +\end{verbatim} 1.578 + 1.579 +\subsubsection*{Description} 1.580 + 1.581 +The routine \verb|glp_read_graph| reads a graph from a plain text file, 1.582 +whose name is specified by the parameter \verb|fname|. Note that before 1.583 +reading data the current content of the graph object is completely 1.584 +erased with the routine \verb|glp_erase_graph|. 1.585 + 1.586 +For the file format see description of the routine 1.587 +\verb|glp_write_graph|. 1.588 + 1.589 +\subsubsection*{Returns} 1.590 + 1.591 +If the operation was successful, the routine returns zero. Otherwise 1.592 +it prints an error message and returns non-zero. 1.593 + 1.594 +\subsection{glp\_write\_graph---write graph to plain text file} 1.595 + 1.596 +\subsubsection*{Synopsis} 1.597 + 1.598 +\begin{verbatim} 1.599 +int glp_write_graph(glp_graph *G, const char *fname); 1.600 +\end{verbatim} 1.601 + 1.602 +\subsubsection*{Description} 1.603 + 1.604 +The routine \verb|glp_write_graph| writes the graph to a plain text 1.605 +file, whose name is specified by the parameter \verb|fname|. 1.606 + 1.607 +\subsubsection*{Returns} 1.608 + 1.609 +If the operation was successful, the routine returns zero. Otherwise 1.610 +it prints an error message and returns non-zero. 1.611 + 1.612 +\subsubsection*{File format} 1.613 + 1.614 +The file created by the routine \verb|glp_write_graph| is a plain text 1.615 +file, which contains the following information: 1.616 + 1.617 +\begin{verbatim} 1.618 + nv na 1.619 + i[1] j[1] 1.620 + i[2] j[2] 1.621 + . . . 1.622 + i[na] j[na] 1.623 +\end{verbatim} 1.624 + 1.625 +\noindent 1.626 +where: 1.627 + 1.628 +\noindent 1.629 +\verb|nv| is the number of vertices (nodes); 1.630 + 1.631 +\noindent 1.632 +\verb|na| is the number of arcs; 1.633 + 1.634 +\noindent 1.635 +\verb|i[k]|, $k=1,\dots,na$, is the index of tail vertex of arc $k$; 1.636 + 1.637 +\noindent 1.638 +\verb|j[k]|, $k=1,\dots,na$, is the index of head vertex of arc $k$. 1.639 + 1.640 +\subsection{glp\_read\_ccdata---read graph from text file in DIMACS 1.641 +clique/coloring format} 1.642 + 1.643 +\subsubsection*{Synopsis} 1.644 + 1.645 +\begin{verbatim} 1.646 +int glp_read_ccdata(glp_graph *G, int v_wgt, 1.647 + const char *fname); 1.648 +\end{verbatim} 1.649 + 1.650 +\subsubsection*{Description} 1.651 + 1.652 +The routine {\it glp\_read\_ccdata} reads a graph from a text file in 1.653 +DIMACS clique/coloring format. (Though this format is originally 1.654 +designed to represent data for the minimal vertex coloring and maximal 1.655 +clique problems, it may be used to represent general undirected and 1.656 +directed graphs, because the routine allows reading self-loops and 1.657 +multiple edges/arcs keeping the order of vertices specified for each 1.658 +edge/arc of the graph.) 1.659 + 1.660 +The parameter $G$ specifies the graph object to be read in. Note that 1.661 +before reading data the current content of the graph object is 1.662 +completely erased with the routine {\it glp\_erase\_graph}. 1.663 + 1.664 +The parameter {\it v\_wgt} specifies an offset of the field of type 1.665 +{\bf double} in the vertex data block, to which the routine stores the 1.666 +vertex weight. If {\it v\_wgt} $<0$, the vertex weights are not stored. 1.667 + 1.668 +The character string {\it fname} specifies the name of a text file to 1.669 +be read in. (If the file name ends with the suffix `\verb|.gz|', the 1.670 +file is assumed to be compressed, in which case the routine decompresses 1.671 +it ``on the fly''.) 1.672 + 1.673 +\subsubsection*{Returns} 1.674 + 1.675 +If the operation was successful, the routine returns zero. Otherwise, 1.676 +it prints an error message and returns non-zero. 1.677 + 1.678 +\subsubsection*{DIMACS clique/coloring format\footnote{This material is 1.679 +based on the paper ``Clique and Coloring Problems Graph Format'', which 1.680 +is publically available at 1.681 +{\tt http://dimacs.rutgers.edu/Challenges/}.}} 1.682 + 1.683 +The DIMACS input file is a plain ASCII text file. It contains 1.684 +{\it lines} of several types described below. A line is terminated with 1.685 +an end-of-line character. Fields in each line are separated by at least 1.686 +one blank space. Each line begins with a one-character designator to 1.687 +identify the line type. 1.688 + 1.689 +Note that DIMACS requires all numerical quantities to be integers in 1.690 +the range $[-2^{31},2^{31}-1]$ while GLPK allows the quantities to be 1.691 +floating-point numbers. 1.692 + 1.693 +\paragraph{Comment lines.} Comment lines give human-readable information 1.694 +about the file and are ignored by programs. Comment lines can appear 1.695 +anywhere in the file. Each comment line begins with a lower-case 1.696 +character \verb|c|. 1.697 + 1.698 +\begin{verbatim} 1.699 + c This is a comment line 1.700 +\end{verbatim} 1.701 + 1.702 +\paragraph{Problem line.} There is one problem line per data file. The 1.703 +problem line must appear before any node or edge descriptor lines. It 1.704 +has the following format: 1.705 + 1.706 +\begin{verbatim} 1.707 + p edge NODES EDGES 1.708 +\end{verbatim} 1.709 + 1.710 +\noindent 1.711 +The lower-case letter \verb|p| signifies that this is a problem line. 1.712 +The four-character problem designator \verb|edge| identifies the file 1.713 +as containing data for the minimal vertex coloring or maximal clique 1.714 +problem. The \verb|NODES| field contains an integer value specifying 1.715 +the number of vertices in the graph. The \verb|EDGES| field contains an 1.716 +integer value specifying the number of edges (arcs) in the graph. 1.717 + 1.718 +\paragraph{Vertex descriptors.} These lines give the weight assigned to 1.719 +a vertex of the graph. There is one vertex descriptor line for each 1.720 +vertex, with the following format. Vertices without a descriptor take on 1.721 +a default value of 1. 1.722 + 1.723 +\begin{verbatim} 1.724 + n ID VALUE 1.725 +\end{verbatim} 1.726 + 1.727 +\noindent 1.728 +The lower-case character \verb|n| signifies that this is a vertex 1.729 +descriptor line. The \verb|ID| field gives a vertex identification 1.730 +number, an integer between 1 and $n$, where $n$ is the number of 1.731 +vertices in the graph. The \verb|VALUE| field gives a vertex weight, 1.732 +which can either positive or negative (or zero). 1.733 + 1.734 +\paragraph{Edge descriptors.} There is one edge descriptor line for 1.735 +each edge (arc) of the graph, each with the following format: 1.736 + 1.737 +\begin{verbatim} 1.738 + e I J 1.739 +\end{verbatim} 1.740 + 1.741 +\noindent 1.742 +The lower-case character \verb|e| signifies that this is an edge 1.743 +descriptor line. For an edge (arc) $(i,j)$ the fields \verb|I| and 1.744 +\verb|J| specify its endpoints. 1.745 + 1.746 +\paragraph{Example.} The following example of an undirected graph: 1.747 + 1.748 +\bigskip 1.749 + 1.750 +\noindent\hfil 1.751 +\xymatrix %@C=32pt 1.752 +{&{v_1}\ar@{-}[ldd]\ar@{-}[dd]\ar@{-}[rd]\ar@{-}[rr]&&{v_2}\ar@{-}[ld] 1.753 +\ar@{-}[dd]\ar@{-}[rdd]&\\ 1.754 +&&{v_7}\ar@{-}[ld]\ar@{-}[rd]&&\\ 1.755 +{v_6}\ar@{-}[r]\ar@{-}[rdd]&{v_{10}}\ar@{-}[rr]\ar@{-}[rd]\ar@{-}[dd]&& 1.756 +{v_8}\ar@{-}[ld]\ar@{-}[dd]\ar@{-}[r]&{v_3}\ar@{-}[ldd]\\ 1.757 +&&{v_9}\ar@{-}[ld]\ar@{-}[rd]&&\\ 1.758 +&{v_5}\ar@{-}[rr]&&{v_4}&\\ 1.759 +} 1.760 + 1.761 +\bigskip 1.762 + 1.763 +\noindent 1.764 +might be coded in DIMACS clique/coloring format as follows: 1.765 + 1.766 +\begin{footnotesize} 1.767 +\begin{verbatim} 1.768 +c sample.col 1.769 +c 1.770 +c This is an example of the vertex coloring problem data 1.771 +c in DIMACS format. 1.772 +c 1.773 +p edge 10 21 1.774 +c 1.775 +e 1 2 1.776 +e 1 6 1.777 +e 1 7 1.778 +e 1 10 1.779 +e 2 3 1.780 +e 2 7 1.781 +e 2 8 1.782 +e 3 4 1.783 +e 3 8 1.784 +e 4 5 1.785 +e 4 8 1.786 +e 4 9 1.787 +e 5 6 1.788 +e 5 9 1.789 +e 5 10 1.790 +e 6 10 1.791 +e 7 8 1.792 +e 7 10 1.793 +e 8 9 1.794 +e 8 10 1.795 +e 9 10 1.796 +c 1.797 +c eof 1.798 +\end{verbatim} 1.799 +\end{footnotesize} 1.800 + 1.801 +\subsection{glp\_write\_ccdata---write graph to text file in DIMACS 1.802 +clique/coloring format} 1.803 + 1.804 +\subsubsection*{Synopsis} 1.805 + 1.806 +\begin{verbatim} 1.807 +int glp_write_ccdata(glp_graph *G, int v_wgt, 1.808 + const char *fname); 1.809 +\end{verbatim} 1.810 + 1.811 +\subsection*{Description} 1.812 + 1.813 +The routine {\it glp\_write\_ccdata} writes the graph object specified 1.814 +by the parameter $G$ to a text file in DIMACS clique/coloring format. 1.815 +(Though this format is originally designed to represent data for the 1.816 +minimal vertex coloring and maximal clique problems, it may be used to 1.817 +represent general undirected and directed graphs, because the routine 1.818 +allows writing self-loops and multiple edges/arcs keeping the order of 1.819 +vertices specified for each edge/arc of the graph.) 1.820 + 1.821 +The parameter {\it v\_wgt} specifies an offset of the field of type 1.822 +{\bf double} in the vertex data block, which contains the vertex weight. 1.823 +If {\it v\_wgt} $<0$, it is assumed that the weight of each vertex is 1. 1.824 + 1.825 +The character string {\it fname} specifies a name of the text file to be 1.826 +written out. (If the file name ends with suffix `\verb|.gz|', the file 1.827 +is assumed to be compressed, in which case the routine performs 1.828 +automatic compression on writing it.) 1.829 + 1.830 +\subsubsection*{Returns} 1.831 + 1.832 +If the operation was successful, the routine returns zero. Otherwise, 1.833 +it prints an error message and returns non-zero. 1.834 + 1.835 +\newpage 1.836 + 1.837 +\section{Graph analysis routines} 1.838 + 1.839 +\subsection{glp\_weak\_comp---find all weakly connected components of 1.840 +graph} 1.841 + 1.842 +\subsubsection*{Synopsis} 1.843 + 1.844 +\begin{verbatim} 1.845 +int glp_weak_comp(glp_graph *G, int v_num); 1.846 +\end{verbatim} 1.847 + 1.848 +\subsubsection*{Description} 1.849 + 1.850 +The routine \verb|glp_weak_comp| finds all weakly connected components 1.851 +of the specified graph. 1.852 + 1.853 +The parameter \verb|v_num| specifies an offset of the field of type 1.854 +\verb|int| in the vertex data block, to which the routine stores the 1.855 +number of a weakly connected component containing that vertex. If 1.856 +\verb|v_num| $<0$, no component numbers are stored. 1.857 + 1.858 +The components are numbered in arbitrary order from 1 to \verb|nc|, 1.859 +where \verb|nc| is the total number of components found, 1.860 +$0\leq$ \verb|nc| $\leq|V|$. 1.861 + 1.862 +\subsubsection*{Returns} 1.863 + 1.864 +The routine returns \verb|nc|, the total number of components found. 1.865 + 1.866 +\subsection{glp\_strong\_comp---find all strongly connected components 1.867 +of graph} 1.868 + 1.869 +\subsubsection*{Synopsis} 1.870 + 1.871 +\begin{verbatim} 1.872 +int glp_strong_comp(glp_graph *G, int v_num); 1.873 +\end{verbatim} 1.874 + 1.875 +\subsubsection*{Description} 1.876 + 1.877 +The routine \verb|glp_strong_comp| finds all strongly connected 1.878 +components of the specified graph. 1.879 + 1.880 +The parameter \verb|v_num| specifies an offset of the field of type 1.881 +\verb|int| in the vertex data block, to which the routine stores the 1.882 +number of a strongly connected component containing that vertex. If 1.883 +\verb|v_num| $<0$, no component numbers are stored. 1.884 + 1.885 +The components are numbered in arbitrary order from 1 to \verb|nc|, 1.886 +where \verb|nc| is the total number of components found, 1.887 +$0\leq$ \verb|nc| $\leq|V|$. However, the component numbering has the 1.888 +property that for every arc $(i\rightarrow j)$ in the graph the 1.889 +condition $num(i)\geq num(j)$ holds. 1.890 + 1.891 +\subsubsection*{Returns} 1.892 + 1.893 +The routine returns \verb|nc|, the total number of components found. 1.894 + 1.895 +\subsubsection*{References} 1.896 + 1.897 +I.~S.~Duff, J.~K.~Reid, Algorithm 529: Permutations to block triangular 1.898 +form, ACM Trans. on Math. Softw. 4 (1978), 189-92. 1.899 + 1.900 +\subsubsection*{Example} 1.901 + 1.902 +The following program reads a graph from a plain text file 1.903 +`\verb|graph.txt|' and finds all its strongly connected components. 1.904 + 1.905 +\begin{footnotesize} 1.906 +\begin{verbatim} 1.907 +#include <stddef.h> 1.908 +#include <stdio.h> 1.909 +#include <stdlib.h> 1.910 +#include <glpk.h> 1.911 + 1.912 +typedef struct { int num; } v_data; 1.913 + 1.914 +#define vertex(v) ((v_data *)((v)->data)) 1.915 + 1.916 +int main(void) 1.917 +{ glp_graph *G; 1.918 + int i, nc; 1.919 + G = glp_create_graph(sizeof(v_data), 0); 1.920 + glp_read_graph(G, "graph.txt"); 1.921 + nc = glp_strong_comp(G, offsetof(v_data, num)); 1.922 + printf("nc = %d\n", nc); 1.923 + for (i = 1; i <= G->nv; i++) 1.924 + printf("num[%d] = %d\n", i, vertex(G->v[i])->num); 1.925 + glp_delete_graph(G); 1.926 + return 0; 1.927 +} 1.928 +\end{verbatim} 1.929 +\end{footnotesize} 1.930 + 1.931 +\noindent 1.932 +If the file `\verb|graph.txt|' contains the graph shown below: 1.933 + 1.934 +\bigskip 1.935 + 1.936 +\noindent\hfil 1.937 +\xymatrix 1.938 +{1\ar[r]&2\ar[r]&3\ar[r]\ar[dd]&4\ar[dd]\\ 1.939 +5\ar[u]&6\ar[l]\\ 1.940 +7\ar[u]&&8\ar[lu]\ar[ll]\ar[r]&9\ar[r]&10\ar[r]\ar[d]&11\ar[d]\\ 1.941 +12\ar[u]\ar[rru]\ar@/_/[rr]&&13\ar[ll]\ar[u]\ar[rr]&&14\ar[lu]&15\ar[l] 1.942 +\\ 1.943 +} 1.944 + 1.945 +\bigskip\bigskip 1.946 + 1.947 +\noindent 1.948 +the program output may look like follows: 1.949 + 1.950 +\begin{footnotesize} 1.951 +\begin{verbatim} 1.952 +Reading graph from `graph.txt'... 1.953 +Graph has 15 vertices and 30 arcs 1.954 +31 lines were read 1.955 +nc = 4 1.956 +num[1] = 3 1.957 +num[2] = 3 1.958 +num[3] = 3 1.959 +num[4] = 2 1.960 +num[5] = 3 1.961 +num[6] = 3 1.962 +num[7] = 3 1.963 +num[8] = 3 1.964 +num[9] = 1 1.965 +num[10] = 1 1.966 +num[11] = 1 1.967 +num[12] = 4 1.968 +num[13] = 4 1.969 +num[14] = 1 1.970 +num[15] = 1 1.971 +\end{verbatim} 1.972 +\end{footnotesize} 1.973 + 1.974 +\subsection{glp\_top\_sort---topological sorting of acyclic digraph} 1.975 + 1.976 +\subsubsection*{Synopsis} 1.977 + 1.978 +\begin{verbatim} 1.979 +int glp_top_sort(glp_graph *G, int v_num); 1.980 +\end{verbatim} 1.981 + 1.982 +\subsubsection*{Description} 1.983 + 1.984 +The routine \verb|glp_top_sort| performs topological sorting of 1.985 +vertices of the specified acyclic digraph. 1.986 + 1.987 +The parameter \verb|v_num| specifies an offset of the field of type 1.988 +\verb|int| in the vertex data block, to which the routine stores the 1.989 +vertex number assigned. If \verb|v_num| $<0$, vertex numbers are not 1.990 +stored. 1.991 + 1.992 +The vertices are numbered from 1 to $n$, where $n$ is the total number 1.993 +of vertices in the graph. The vertex numbering has the property that 1.994 +for every arc $(i\rightarrow j)$ in the graph the condition 1.995 +$num(i)<num(j)$ holds. Special case $num(i)=0$ means that vertex $i$ is 1.996 +not assigned a number, because the graph is {\it not} acyclic. 1.997 + 1.998 +\subsubsection*{Returns} 1.999 + 1.1000 +If the graph is acyclic and therefore all the vertices have been 1.1001 +assigned numbers, the routine \verb|glp_top_sort| returns zero. 1.1002 +Otherwise, if the graph is not acyclic, the routine returns the number 1.1003 +of vertices which have not been numbered, i.e. for which $num(i)=0$. 1.1004 + 1.1005 +\subsubsection*{Example} 1.1006 + 1.1007 +The following program reads a digraph from a plain text file 1.1008 +`\verb|graph.txt|' and performs topological sorting of its vertices. 1.1009 + 1.1010 +\begin{footnotesize} 1.1011 +\begin{verbatim} 1.1012 +#include <stddef.h> 1.1013 +#include <stdio.h> 1.1014 +#include <stdlib.h> 1.1015 +#include <glpk.h> 1.1016 + 1.1017 +typedef struct { int num; } v_data; 1.1018 + 1.1019 +#define vertex(v) ((v_data *)((v)->data)) 1.1020 + 1.1021 +int main(void) 1.1022 +{ glp_graph *G; 1.1023 + int i, cnt; 1.1024 + G = glp_create_graph(sizeof(v_data), 0); 1.1025 + glp_read_graph(G, "graph.txt"); 1.1026 + cnt = glp_top_sort(G, offsetof(v_data, num)); 1.1027 + printf("cnt = %d\n", cnt); 1.1028 + for (i = 1; i <= G->nv; i++) 1.1029 + printf("num[%d] = %d\n", i, vertex(G->v[i])->num); 1.1030 + glp_delete_graph(G); 1.1031 + return 0; 1.1032 +} 1.1033 +\end{verbatim} 1.1034 +\end{footnotesize} 1.1035 + 1.1036 +\noindent 1.1037 +If the file `\verb|graph.txt|' contains the graph shown below: 1.1038 + 1.1039 +\bigskip 1.1040 + 1.1041 +\noindent\hfil 1.1042 +\xymatrix @=20pt 1.1043 +{ 1.1044 +1\ar[rrr]&&&2\ar[r]\ar[rddd]&3\ar[rd]&&&&\\ 1.1045 +&&&4\ar[ru]&&5\ar[r]&6\ar[rd]\ar[dd]&&\\ 1.1046 +7\ar[r]&8\ar[r]&9\ar[ruu]\ar[ru]\ar[r]\ar[rd]&10\ar[rr]\ar[rru]&& 1.1047 +11\ar[ru]&&12\ar[r]&13\\ 1.1048 +&&&14\ar[r]&15\ar[rrru]\ar[rr]&&16\ar[rru]\ar[rr]&&17\\ 1.1049 +} 1.1050 + 1.1051 +\bigskip\bigskip 1.1052 + 1.1053 +\noindent 1.1054 +the program output may look like follows: 1.1055 + 1.1056 +\begin{footnotesize} 1.1057 +\begin{verbatim} 1.1058 +Reading graph from `graph.txt'... 1.1059 +Graph has 17 vertices and 23 arcs 1.1060 +24 lines were read 1.1061 +cnt = 0 1.1062 +num[1] = 8 1.1063 +num[2] = 9 1.1064 +num[3] = 10 1.1065 +num[4] = 4 1.1066 +num[5] = 11 1.1067 +num[6] = 12 1.1068 +num[7] = 1 1.1069 +num[8] = 2 1.1070 +num[9] = 3 1.1071 +num[10] = 5 1.1072 +num[11] = 6 1.1073 +num[12] = 14 1.1074 +num[13] = 16 1.1075 +num[14] = 7 1.1076 +num[15] = 13 1.1077 +num[16] = 15 1.1078 +num[17] = 17 1.1079 +\end{verbatim} 1.1080 +\end{footnotesize} 1.1081 + 1.1082 +\noindent 1.1083 +The output corresponds to the following vertex numbering: 1.1084 + 1.1085 +\bigskip 1.1086 + 1.1087 +\noindent\hfil 1.1088 +\xymatrix @=20pt 1.1089 +{ 1.1090 +8\ar[rrr]&&&9\ar[r]\ar[rddd]&10\ar[rd]&&&&\\ 1.1091 +&&&4\ar[ru]&&11\ar[r]&12\ar[rd]\ar[dd]&&\\ 1.1092 +1\ar[r]&2\ar[r]&3\ar[ruu]\ar[ru]\ar[r]\ar[rd]&5\ar[rr]\ar[rru]&& 1.1093 +6\ar[ru]&&14\ar[r]&16\\ 1.1094 +&&&7\ar[r]&13\ar[rrru]\ar[rr]&&15\ar[rru]\ar[rr]&&17\\ 1.1095 +} 1.1096 + 1.1097 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.1098 + 1.1099 +\chapter{Network optimization API routines} 1.1100 + 1.1101 +\section{Minimum cost flow problem} 1.1102 + 1.1103 +\subsection{Background} 1.1104 + 1.1105 +The {\it minimum cost flow problem} (MCFP) is stated as follows. Let 1.1106 +there be given a directed graph (flow network) $G=(V,A)$, where $V$ is 1.1107 +a set of vertices (nodes), and $A\subseteq V\times V$ is a set of arcs. 1.1108 +Let for each node $i\in V$ there be given a quantity $b_i$ having the 1.1109 +following meaning: 1.1110 + 1.1111 +if $b_i>0$, then $|b_i|$ is a {\it supply} at node $i$, which shows 1.1112 +how many flow units are {\it generated} at node $i$ (or, equivalently, 1.1113 +entering the network through node $i$ from the outside); 1.1114 + 1.1115 +if $b_i<0$, then $|b_i|$ is a {\it demand} at node $i$, which shows how 1.1116 +many flow units are {\it lost} at node $i$ (or, equivalently, leaving 1.1117 +the network through node $i$ to the outside); 1.1118 + 1.1119 +if $b_i=0$, then $i$ is a {\it transshipment} node, at which the flow 1.1120 +is conserved, i.e. neither generated nor lost. 1.1121 + 1.1122 +Let also for each arc $a=(i,j)\in A$ there be given the following three 1.1123 +quantities: 1.1124 + 1.1125 +$l_{ij}$, a (non-negative) lower bound to the flow through arc $(i,j)$; 1.1126 + 1.1127 +$u_{ij}$, an upper bound to the flow through arc $(i,j)$, which is the 1.1128 +{\it arc capacity}; 1.1129 + 1.1130 +$c_{ij}$, a per-unit cost of the flow through arc $(i,j)$. 1.1131 + 1.1132 +The problem is to find flows $x_{ij}$ through every arc of the network, 1.1133 +which satisfy the specified bounds and the conservation constraints at 1.1134 +all nodes, and minimize the total flow cost. Here the conservation 1.1135 +constraint at a node means that the total flow entering this node 1.1136 +through its incoming arcs plus the supply at this node must be equal to 1.1137 +the total flow leaving this node through its outgoing arcs plus the 1.1138 +demand at this node. 1.1139 + 1.1140 +An example of the minimum cost flow problem is shown on Fig.~1. 1.1141 + 1.1142 +\bigskip 1.1143 + 1.1144 +\noindent\hfil 1.1145 +\xymatrix @C=48pt 1.1146 +{_{20}\ar@{~>}[d]& 1.1147 +v_2\ar[r]|{_{0,10,\$2}}\ar[dd]|{_{0,9,\$3}}& 1.1148 +v_3\ar[dd]|{_{2,12,\$1}}\ar[r]|{_{0,18,\$0}}& 1.1149 +v_8\ar[rd]|{_{0,20,\$9}}&\\ 1.1150 +v_1\ar[ru]|{_{0,14,\$0}}\ar[rd]|{_{0,23,\$0}}&&& 1.1151 +v_6\ar[d]|{_{0,7,\$0}}\ar[u]|{_{4,8,\$0}}& 1.1152 +v_9\ar@{~>}[d]\\ 1.1153 +&v_4\ar[r]|{_{0,26,\$0}}& 1.1154 +v_5\ar[luu]|{_{0,11,\$1}}\ar[ru]|{_{0,25,\$5}}\ar[r]|{_{0,4,\$7}}& 1.1155 +v_7\ar[ru]|{_{0,15,\$3}}&_{20}\\ 1.1156 +} 1.1157 + 1.1158 +\medskip 1.1159 + 1.1160 +\noindent\hfil 1.1161 +\begin{tabular}{ccc} 1.1162 +\xymatrix @C=48pt{v_i\ar[r]|{\ l,u,\$c\ }&v_j\\}& 1.1163 +\xymatrix{\hbox{\footnotesize supply}\ar@{~>}[r]&v_i\\}& 1.1164 +\xymatrix{v_i\ar@{~>}[r]&\hbox{\footnotesize demand}\\}\\ 1.1165 +\end{tabular} 1.1166 + 1.1167 +\bigskip 1.1168 + 1.1169 +\noindent\hfil 1.1170 +Fig.~1. An example of the minimum cost flow problem. 1.1171 + 1.1172 +\bigskip 1.1173 + 1.1174 +The minimum cost flow problem can be naturally formulated as the 1.1175 +following LP problem: 1.1176 + 1.1177 +\medskip 1.1178 + 1.1179 +\noindent 1.1180 +\hspace{.5in}minimize 1.1181 +$$z=\sum_{(i,j)\in A}c_{ij}x_{ij}\eqno(1)$$ 1.1182 +\hspace{.5in}subject to 1.1183 +$$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}=b_i\ \ \ \hbox 1.1184 +{for all}\ i\in V\eqno(2)$$ 1.1185 +$$l_{ij}\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A 1.1186 +\eqno(3)$$ 1.1187 + 1.1188 +\newpage 1.1189 + 1.1190 +\subsection{glp\_read\_mincost---read minimum cost flow problem\\data 1.1191 +in DIMACS format} 1.1192 + 1.1193 +\subsubsection*{Synopsis} 1.1194 + 1.1195 +\begin{verbatim} 1.1196 +int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, 1.1197 + int a_cap, int a_cost, const char *fname); 1.1198 +\end{verbatim} 1.1199 + 1.1200 +\subsubsection*{Description} 1.1201 + 1.1202 +The routine \verb|glp_read_mincost| reads the minimum cost flow problem 1.1203 +data from a text file in DIMACS format. 1.1204 + 1.1205 +The parameter \verb|G| specifies the graph object, to which the problem 1.1206 +data have to be stored. Note that before reading data the current 1.1207 +content of the graph object is completely erased with the routine 1.1208 +\verb|glp_erase_graph|. 1.1209 + 1.1210 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1211 +\verb|double| in the vertex data block, to which the routine stores 1.1212 +$b_i$, the supply/demand value. If \verb|v_rhs| $<0$, the value is not 1.1213 +stored. 1.1214 + 1.1215 +The parameter \verb|a_low| specifies an offset of the field of type 1.1216 +\verb|double| in the arc data block, to which the routine stores 1.1217 +$l_{ij}$, the lower bound to the arc flow. If \verb|a_low| $<0$, the 1.1218 +lower bound is not stored. 1.1219 + 1.1220 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1221 +\verb|double| in the arc data block, to which the routine stores 1.1222 +$u_{ij}$, the upper bound to the arc flow (the arc capacity). If 1.1223 +\verb|a_cap| $<0$, the upper bound is not stored. 1.1224 + 1.1225 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1226 +\verb|double| in the arc data block, to which the routine stores 1.1227 +$c_{ij}$, the per-unit cost of the arc flow. If \verb|a_cost| $<0$, the 1.1228 +cost is not stored. 1.1229 + 1.1230 +The character string \verb|fname| specifies the name of a text file to 1.1231 +be read in. (If the file name name ends with the suffix `\verb|.gz|', 1.1232 +the file is assumed to be compressed, in which case the routine 1.1233 +decompresses it ``on the fly''.) 1.1234 + 1.1235 +\subsubsection*{Returns} 1.1236 + 1.1237 +If the operation was successful, the routine returns zero. Otherwise, 1.1238 +it prints an error message and returns non-zero. 1.1239 + 1.1240 +\newpage 1.1241 + 1.1242 +\subsubsection*{Example} 1.1243 + 1.1244 +\begin{footnotesize} 1.1245 +\begin{verbatim} 1.1246 +typedef struct 1.1247 +{ /* vertex data block */ 1.1248 + ... 1.1249 + double rhs; 1.1250 + ... 1.1251 +} v_data; 1.1252 + 1.1253 +typedef struct 1.1254 +{ /* arc data block */ 1.1255 + ... 1.1256 + double low, cap, cost; 1.1257 + ... 1.1258 +} a_data; 1.1259 + 1.1260 +int main(void) 1.1261 +{ glp_graph *G; 1.1262 + int ret; 1.1263 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.1264 + ret = glp_read_mincost(G, offsetof(v_data, rhs), 1.1265 + offsetof(a_data, low), offsetof(a_data, cap), 1.1266 + offsetof(a_data, cost), "sample.min"); 1.1267 + if (ret != 0) goto ... 1.1268 + ... 1.1269 +} 1.1270 +\end{verbatim} 1.1271 +\end{footnotesize} 1.1272 + 1.1273 +\subsubsection*{DIMACS minimum cost flow problem format\footnote{This 1.1274 +material is based on the paper ``The First DIMACS International 1.1275 +Algorithm Implementation Challenge: Problem Definitions and 1.1276 +Specifications'', which is publically available at 1.1277 +{\tt http://dimacs.rutgers.edu/Challenges/}.}} 1.1278 +\label{subsecmincost} 1.1279 + 1.1280 +The DIMACS input file is a plain ASCII text file. It contains 1.1281 +{\it lines} of several types described below. A line is terminated with 1.1282 +an end-of-line character. Fields in each line are separated by at least 1.1283 +one blank space. Each line begins with a one-character designator to 1.1284 +identify the line type. 1.1285 + 1.1286 +Note that DIMACS requires all numerical quantities to be integers in 1.1287 +the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be 1.1288 +floating-point numbers. 1.1289 + 1.1290 +\newpage 1.1291 + 1.1292 +\paragraph{Comment lines.} Comment lines give human-readable information 1.1293 +about the file and are ignored by programs. Comment lines can appear 1.1294 +anywhere in the file. Each comment line begins with a lower-case 1.1295 +character \verb|c|. 1.1296 + 1.1297 +\begin{verbatim} 1.1298 + c This is a comment line 1.1299 +\end{verbatim} 1.1300 + 1.1301 +\paragraph{Problem line.} There is one problem line per data file. The 1.1302 +problem line must appear before any node or arc descriptor lines. It has 1.1303 +the following format: 1.1304 + 1.1305 +\begin{verbatim} 1.1306 + p min NODES ARCS 1.1307 +\end{verbatim} 1.1308 + 1.1309 +\noindent 1.1310 +The lower-case character \verb|p| signifies that this is a problem line. 1.1311 +The three-character problem designator \verb|min| identifies the file as 1.1312 +containing specification information for the minimum cost flow problem. 1.1313 +The \verb|NODES| field contains an integer value specifying the number 1.1314 +of nodes in the network. The \verb|ARCS| field contains an integer value 1.1315 +specifying the number of arcs in the network. 1.1316 + 1.1317 +\paragraph{Node descriptors.} All node descriptor lines must appear 1.1318 +before all arc descriptor lines. The node descriptor lines describe 1.1319 +supply and demand nodes, but not transshipment nodes. That is, only 1.1320 +nodes with non-zero node supply/demand values appear. There is one node 1.1321 +descriptor line for each such node, with the following format: 1.1322 + 1.1323 +\begin{verbatim} 1.1324 + n ID FLOW 1.1325 +\end{verbatim} 1.1326 + 1.1327 +\noindent 1.1328 +The lower-case character \verb|n| signifies that this is a node 1.1329 +descriptor line. The \verb|ID| field gives a node identification number, 1.1330 +an integer between 1 and \verb|NODES|. The \verb|FLOW| field gives the 1.1331 +amount of supply (if positive) or demand (if negative) at node 1.1332 +\verb|ID|. 1.1333 + 1.1334 +\paragraph{Arc descriptors.} There is one arc descriptor line for each 1.1335 +arc in the network. Arc descriptor lines are of the following format: 1.1336 + 1.1337 +\begin{verbatim} 1.1338 + a SRC DST LOW CAP COST 1.1339 +\end{verbatim} 1.1340 + 1.1341 +\noindent 1.1342 +The lower-case character \verb|a| signifies that this is an arc 1.1343 +descriptor line. For a directed arc $(i,j)$ the \verb|SRC| field gives 1.1344 +the identification number $i$ for the tail endpoint, and the \verb|DST| 1.1345 +field gives the identification number $j$ for the head endpoint. 1.1346 +Identification numbers are integers between 1 and \verb|NODES|. The 1.1347 +\verb|LOW| field specifies the minimum amount of flow that can be sent 1.1348 +along arc $(i,j)$, and the \verb|CAP| field gives the maximum amount of 1.1349 +flow that can be sent along arc $(i,j)$ in a feasible flow. The 1.1350 +\verb|COST| field contains the per-unit cost of flow sent along arc 1.1351 +$(i,j)$. 1.1352 + 1.1353 +\paragraph{Example.} Below here is an example of the data file in 1.1354 +DIMACS format corresponding to the minimum cost flow problem shown on 1.1355 +Fig~1. 1.1356 + 1.1357 +\begin{footnotesize} 1.1358 +\begin{verbatim} 1.1359 +c sample.min 1.1360 +c 1.1361 +c This is an example of the minimum cost flow problem data 1.1362 +c in DIMACS format. 1.1363 +c 1.1364 +p min 9 14 1.1365 +c 1.1366 +n 1 20 1.1367 +n 9 -20 1.1368 +c 1.1369 +a 1 2 0 14 0 1.1370 +a 1 4 0 23 0 1.1371 +a 2 3 0 10 2 1.1372 +a 2 4 0 9 3 1.1373 +a 3 5 2 12 1 1.1374 +a 3 8 0 18 0 1.1375 +a 4 5 0 26 0 1.1376 +a 5 2 0 11 1 1.1377 +a 5 6 0 25 5 1.1378 +a 5 7 0 4 7 1.1379 +a 6 7 0 7 0 1.1380 +a 6 8 4 8 0 1.1381 +a 7 9 0 15 3 1.1382 +a 8 9 0 20 9 1.1383 +c 1.1384 +c eof 1.1385 +\end{verbatim} 1.1386 +\end{footnotesize} 1.1387 + 1.1388 +\newpage 1.1389 + 1.1390 +\subsection{glp\_write\_mincost---write minimum cost flow problem\\data 1.1391 +in DIMACS format} 1.1392 + 1.1393 +\subsubsection*{Synopsis} 1.1394 + 1.1395 +\begin{verbatim} 1.1396 +int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, 1.1397 + int a_cap, int a_cost, const char *fname); 1.1398 +\end{verbatim} 1.1399 + 1.1400 +\subsubsection*{Description} 1.1401 + 1.1402 +The routine \verb|glp_write_mincost| writes the minimum cost flow 1.1403 +problem data to a text file in DIMACS format. 1.1404 + 1.1405 +The parameter \verb|G| is the graph (network) program object, which 1.1406 +specifies the minimum cost flow problem instance. 1.1407 + 1.1408 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1409 +\verb|double| in the vertex data block, which contains $b_i$, the 1.1410 +supply/demand value. If \verb|v_rhs| $<0$, it is assumed that $b_i=0$ 1.1411 +for all nodes. 1.1412 + 1.1413 +The parameter \verb|a_low| specifies an offset of the field of type 1.1414 +\verb|double| in the arc data block, which contains $l_{ij}$, the lower 1.1415 +bound to the arc flow. If \verb|a_low| $<0$, it is assumed that 1.1416 +$l_{ij}=0$ for all arcs. 1.1417 + 1.1418 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1419 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.1420 +bound to the arc flow (the arc capacity). If the upper bound is 1.1421 +specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. 1.1422 +the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that 1.1423 +$u_{ij}=1$ for all arcs. 1.1424 + 1.1425 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1426 +\verb|double| in the arc data block, which contains $c_{ij}$, the 1.1427 +per-unit cost of the arc flow. If \verb|a_cost| $<0$, it is assumed that 1.1428 +$c_{ij}=0$ for all arcs. 1.1429 + 1.1430 +The character string \verb|fname| specifies a name of the text file to 1.1431 +be written out. (If the file name ends with suffix `\verb|.gz|', the 1.1432 +file is assumed to be compressed, in which case the routine performs 1.1433 +automatic compression on writing it.) 1.1434 + 1.1435 +\subsubsection*{Returns} 1.1436 + 1.1437 +If the operation was successful, the routine returns zero. Otherwise, 1.1438 +it prints an error message and returns non-zero. 1.1439 + 1.1440 +\newpage 1.1441 + 1.1442 +\subsection{glp\_mincost\_lp---convert minimum cost flow problem\\to LP} 1.1443 + 1.1444 +\subsubsection*{Synopsis} 1.1445 + 1.1446 +\begin{verbatim} 1.1447 +void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, 1.1448 + int v_rhs, int a_low, int a_cap, int a_cost); 1.1449 +\end{verbatim} 1.1450 + 1.1451 +\subsubsection*{Description} 1.1452 + 1.1453 +The routine \verb|glp_mincost_lp| builds LP problem (1)---(3), which 1.1454 +corresponds to the specified minimum cost flow problem. 1.1455 + 1.1456 +The parameter \verb|lp| is the resultant LP problem object to be built. 1.1457 +Note that on entry its current content is erased with the routine 1.1458 +\verb|glp_erase_prob|. 1.1459 + 1.1460 +The parameter \verb|G| is the graph (network) program object, which 1.1461 +specifies the minimum cost flow problem instance. 1.1462 + 1.1463 +The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the 1.1464 +routine uses symbolic names of the graph object components to assign 1.1465 +symbolic names to the LP problem object components. If the flag is 1.1466 +\verb|GLP_OFF|, no symbolic names are assigned. 1.1467 + 1.1468 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1469 +\verb|double| in the vertex data block, which contains $b_i$, the 1.1470 +supply/demand value. If \verb|v_rhs| $<0$, it is assumed that $b_i=0$ 1.1471 +for all nodes. 1.1472 + 1.1473 +The parameter \verb|a_low| specifies an offset of the field of type 1.1474 +\verb|double| in the arc data block, which contains $l_{ij}$, the lower 1.1475 +bound to the arc flow. If \verb|a_low| $<0$, it is assumed that 1.1476 +$l_{ij}=0$ for all arcs. 1.1477 + 1.1478 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1479 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.1480 +bound to the arc flow (the arc capacity). If the upper bound is 1.1481 +specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. 1.1482 +the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that 1.1483 +$u_{ij}=1$ for all arcs. 1.1484 + 1.1485 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1486 +\verb|double| in the arc data block, which contains $c_{ij}$, the 1.1487 +per-unit cost of the arc flow. If \verb|a_cost| $<0$, it is assumed that 1.1488 +$c_{ij}=0$ for all arcs. 1.1489 + 1.1490 +\subsubsection*{Example} 1.1491 + 1.1492 +The example program below reads the minimum cost problem instance in 1.1493 +DIMACS format from file `\verb|sample.min|', converts the instance to 1.1494 +LP, and then writes the resultant LP in CPLEX format to file 1.1495 +`\verb|mincost.lp|'. 1.1496 + 1.1497 +\newpage 1.1498 + 1.1499 +\begin{footnotesize} 1.1500 +\begin{verbatim} 1.1501 +#include <stddef.h> 1.1502 +#include <glpk.h> 1.1503 + 1.1504 +typedef struct { double rhs; } v_data; 1.1505 +typedef struct { double low, cap, cost; } a_data; 1.1506 + 1.1507 +int main(void) 1.1508 +{ glp_graph *G; 1.1509 + glp_prob *lp; 1.1510 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.1511 + glp_read_mincost(G, offsetof(v_data, rhs), 1.1512 + offsetof(a_data, low), offsetof(a_data, cap), 1.1513 + offsetof(a_data, cost), "sample.min"); 1.1514 + lp = glp_create_prob(); 1.1515 + glp_mincost_lp(lp, G, GLP_ON, offsetof(v_data, rhs), 1.1516 + offsetof(a_data, low), offsetof(a_data, cap), 1.1517 + offsetof(a_data, cost)); 1.1518 + glp_delete_graph(G); 1.1519 + glp_write_lp(lp, NULL, "mincost.lp"); 1.1520 + glp_delete_prob(lp); 1.1521 + return 0; 1.1522 +} 1.1523 +\end{verbatim} 1.1524 +\end{footnotesize} 1.1525 + 1.1526 +If `\verb|sample.min|' is the example data file from the subsection 1.1527 +describing the routine \verb|glp_read_mincost|, file `\verb|mincost.lp|' 1.1528 +may look like follows: 1.1529 + 1.1530 +\begin{footnotesize} 1.1531 +\begin{verbatim} 1.1532 +Minimize 1.1533 + obj: + 3 x(2,4) + 2 x(2,3) + x(3,5) + 7 x(5,7) + 5 x(5,6) 1.1534 + + x(5,2) + 3 x(7,9) + 9 x(8,9) 1.1535 + 1.1536 +Subject To 1.1537 + r_1: + x(1,2) + x(1,4) = 20 1.1538 + r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0 1.1539 + r_3: + x(3,5) + x(3,8) - x(2,3) = 0 1.1540 + r_4: + x(4,5) - x(2,4) - x(1,4) = 0 1.1541 + r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0 1.1542 + r_6: + x(6,7) + x(6,8) - x(5,6) = 0 1.1543 + r_7: + x(7,9) - x(6,7) - x(5,7) = 0 1.1544 + r_8: + x(8,9) - x(6,8) - x(3,8) = 0 1.1545 + r_9: - x(8,9) - x(7,9) = -20 1.1546 + 1.1547 +Bounds 1.1548 + 0 <= x(1,4) <= 23 1.1549 + 0 <= x(1,2) <= 14 1.1550 + 0 <= x(2,4) <= 9 1.1551 + 0 <= x(2,3) <= 10 1.1552 + 0 <= x(3,8) <= 18 1.1553 + 2 <= x(3,5) <= 12 1.1554 + 0 <= x(4,5) <= 26 1.1555 + 0 <= x(5,7) <= 4 1.1556 + 0 <= x(5,6) <= 25 1.1557 + 0 <= x(5,2) <= 11 1.1558 + 4 <= x(6,8) <= 8 1.1559 + 0 <= x(6,7) <= 7 1.1560 + 0 <= x(7,9) <= 15 1.1561 + 0 <= x(8,9) <= 20 1.1562 + 1.1563 +End 1.1564 +\end{verbatim} 1.1565 +\end{footnotesize} 1.1566 + 1.1567 +\subsection{glp\_mincost\_okalg---solve minimum cost flow problem with 1.1568 +out-of-kilter algorithm} 1.1569 + 1.1570 +\subsubsection*{Synopsis} 1.1571 + 1.1572 +\begin{verbatim} 1.1573 +int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, 1.1574 + int a_cap, int a_cost, double *sol, int a_x, int v_pi); 1.1575 +\end{verbatim} 1.1576 + 1.1577 +\subsubsection*{Description} 1.1578 + 1.1579 +The routine \verb|glp_mincost_okalg| finds optimal solution to the 1.1580 +minimum cost flow problem with the out-of-kilter 1.1581 +algorithm.\footnote{GLPK implementation of the out-of-kilter algorithm 1.1582 +is based on the following book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, 1.1583 +``Flows in Networks,'' The RAND Corp., Report R-375-PR (August 1962), 1.1584 +Chap. III ``Minimal Cost Flow Problems,'' pp.~113-26.} Note that this 1.1585 +routine requires all the problem data to be integer-valued. 1.1586 + 1.1587 +The parameter \verb|G| is a graph (network) program object which 1.1588 +specifies the minimum cost flow problem instance to be solved. 1.1589 + 1.1590 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1591 +\verb|double| in the vertex data block, which contains $b_i$, the 1.1592 +supply/demand value. This value must be integer in the range 1.1593 +[$-$\verb|INT_MAX|, $+$\verb|INT_MAX|]. If \verb|v_rhs| $<0$, it is 1.1594 +assumed that $b_i=0$ for all nodes. 1.1595 + 1.1596 +The parameter \verb|a_low| specifies an offset of the field of type 1.1597 +\verb|double| in the arc data block, which contains $l_{ij}$, the lower 1.1598 +bound to the arc flow. This bound must be integer in the range 1.1599 +[$0$, \verb|INT_MAX|]. If \verb|a_low| $<0$, it is assumed that 1.1600 +$l_{ij}=0$ for all arcs. 1.1601 + 1.1602 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1603 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.1604 +bound to the arc flow (the arc capacity). This bound must be integer in 1.1605 +the range [$l_{ij}$, \verb|INT_MAX|]. If \verb|a_cap| $<0$, it is 1.1606 +assumed that $u_{ij}=1$ for all arcs. 1.1607 + 1.1608 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1609 +\verb|double| in the arc data block, which contains $c_{ij}$, the 1.1610 +per-unit cost of the arc flow. This value must be integer in the range 1.1611 +[$-$\verb|INT_MAX|, $+$\verb|INT_MAX|]. If \verb|a_cost| $<0$, it is 1.1612 +assumed that $c_{ij}=0$ for all arcs. 1.1613 + 1.1614 +The parameter \verb|sol| specifies a location, to which the routine 1.1615 +stores the objective value (that is, the total cost) found. If 1.1616 +\verb|sol| is NULL, the objective value is not stored. 1.1617 + 1.1618 +The parameter \verb|a_x| specifies an offset of the field of type 1.1619 +\verb|double| in the arc data block, to which the routine stores 1.1620 +$x_{ij}$, the arc flow found. If \verb|a_x| $<0$, the arc flow value is 1.1621 +not stored. 1.1622 + 1.1623 +The parameter \verb|v_pi| specifies an offset of the field of type 1.1624 +\verb|double| in the vertex data block, to which the routine stores 1.1625 +$\pi_i$, the node potential, which is the Lagrange multiplier for the 1.1626 +corresponding flow conservation equality constraint (see (2) in 1.1627 +Subsection ``Background''). If necessary, the application program may 1.1628 +use the node potentials to compute $\lambda_{ij}$, reduced costs of the 1.1629 +arc flows $x_{ij}$, which are the Lagrange multipliers for the arc flow 1.1630 +bound constraints (see (3) ibid.), using the following formula: 1.1631 +$$\lambda_{ij}=c_{ij}-(\pi_i-\pi_j),$$ 1.1632 +where $c_{ij}$ is the per-unit cost for arc $(i,j)$. 1.1633 + 1.1634 +Note that all solution components (the objective value, arc flows, and 1.1635 +node potentials) computed by the routine are always integer-valued. 1.1636 + 1.1637 +\subsubsection*{Returns} 1.1638 + 1.1639 +\def\arraystretch{1} 1.1640 + 1.1641 +\begin{tabular}{@{}p{25mm}p{97.3mm}@{}} 1.1642 +0 & Optimal solution found.\\ 1.1643 +\verb|GLP_ENOPFS| & No (primal) feasible solution exists.\\ 1.1644 +\verb|GLP_EDATA| & Unable to start the search, because some problem 1.1645 +data are either not integer-valued or out of range. This code is also 1.1646 +returned if the total supply, which is the sum of $b_i$ over all source 1.1647 +nodes (nodes with $b_i>0$), exceeds \verb|INT_MAX|.\\ 1.1648 +\end{tabular} 1.1649 + 1.1650 +\noindent 1.1651 +\begin{tabular}{@{}p{25mm}p{97.3mm}@{}} 1.1652 +\verb|GLP_ERANGE| & The search was prematurely terminated because of 1.1653 +integer overflow.\\ 1.1654 +\verb|GLP_EFAIL| & An error has been detected in the program logic. 1.1655 +(If this code is returned for your problem instance, please report to 1.1656 +\verb|<bug-glpk@gnu.org>|.)\\ 1.1657 +\end{tabular} 1.1658 + 1.1659 +\subsubsection*{Comments} 1.1660 + 1.1661 +By design the out-of-kilter algorithm is applicable only to networks, 1.1662 +where $b_i=0$ for {\it all} nodes, i.e. actually this algorithm finds a 1.1663 +minimal cost {\it circulation}. Due to this requirement the routine 1.1664 +\verb|glp_mincost_okalg| converts the original network to a network 1.1665 +suitable for the out-of-kilter algorithm in the following 1.1666 +way:\footnote{The conversion is performed internally and does not change 1.1667 +the original network program object passed to the routine.} 1.1668 + 1.1669 +1) it adds two auxiliary nodes $s$ and $t$; 1.1670 + 1.1671 +2) for each original node $i$ with $b_i>0$ the routine adds auxiliary 1.1672 +supply arc $(s\rightarrow i)$, flow $x_{si}$ through which is costless 1.1673 +($c_{si}=0$) and fixed to $+b_i$ ($l_{si}=u_{si}=+b_i$); 1.1674 + 1.1675 +3) for each original node $i$ with $b_i<0$ the routine adds auxiliary 1.1676 +demand arc $(i\rightarrow t)$, flow $x_{it}$ through which is costless 1.1677 +($c_{it}=0$) and fixed to $-b_i$ ($l_{it}=u_{it}=-b_i$); 1.1678 + 1.1679 +4) finally, the routine adds auxiliary feedback arc $(t\rightarrow s)$, 1.1680 +flow $x_{ts}$ through which is also costless ($c_{ts}=0$) and fixed to 1.1681 +$F$ ($l_{ts}=u_{ts}=F$), where $\displaystyle F=\sum_{b_i>0}b_i$ is the 1.1682 +total supply. 1.1683 + 1.1684 +\subsubsection*{Example} 1.1685 + 1.1686 +The example program below reads the minimum cost problem instance in 1.1687 +DIMACS format from file `\verb|sample.min|', solves it by using the 1.1688 +routine \verb|glp_mincost_okalg|, and writes the solution found to the 1.1689 +standard output. 1.1690 + 1.1691 +\begin{footnotesize} 1.1692 +\begin{verbatim} 1.1693 +#include <stddef.h> 1.1694 +#include <stdio.h> 1.1695 +#include <stdlib.h> 1.1696 +#include <glpk.h> 1.1697 + 1.1698 +typedef struct { double rhs, pi; } v_data; 1.1699 +typedef struct { double low, cap, cost, x; } a_data; 1.1700 + 1.1701 +#define node(v) ((v_data *)((v)->data)) 1.1702 +#define arc(a) ((a_data *)((a)->data)) 1.1703 + 1.1704 +int main(void) 1.1705 +{ glp_graph *G; 1.1706 + glp_vertex *v, *w; 1.1707 + glp_arc *a; 1.1708 + int i, ret; 1.1709 + double sol; 1.1710 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.1711 + glp_read_mincost(G, offsetof(v_data, rhs), 1.1712 + offsetof(a_data, low), offsetof(a_data, cap), 1.1713 + offsetof(a_data, cost), "sample.min"); 1.1714 + ret = glp_mincost_okalg(G, offsetof(v_data, rhs), 1.1715 + offsetof(a_data, low), offsetof(a_data, cap), 1.1716 + offsetof(a_data, cost), &sol, offsetof(a_data, x), 1.1717 + offsetof(v_data, pi)); 1.1718 + printf("ret = %d; sol = %5g\n", ret, sol); 1.1719 + for (i = 1; i <= G->nv; i++) 1.1720 + { v = G->v[i]; 1.1721 + printf("node %d: pi = %5g\n", i, node(v)->pi); 1.1722 + for (a = v->out; a != NULL; a = a->t_next) 1.1723 + { w = a->head; 1.1724 + printf("arc %d->%d: x = %5g; lambda = %5g\n", 1.1725 + v->i, w->i, arc(a)->x, 1.1726 + arc(a)->cost - (node(v)->pi - node(w)->pi)); 1.1727 + } 1.1728 + } 1.1729 + glp_delete_graph(G); 1.1730 + return 0; 1.1731 +} 1.1732 +\end{verbatim} 1.1733 +\end{footnotesize} 1.1734 + 1.1735 +If `\verb|sample.min|' is the example data file from the subsection 1.1736 +describing the routine \verb|glp_read_mincost|, the output may look like 1.1737 +follows: 1.1738 + 1.1739 +\begin{footnotesize} 1.1740 +\begin{verbatim} 1.1741 +Reading min-cost flow problem data from `sample.min'... 1.1742 +Flow network has 9 nodes and 14 arcs 1.1743 +24 lines were read 1.1744 +ret = 0; sol = 213 1.1745 +node 1: pi = -12 1.1746 +arc 1->4: x = 13; lambda = 0 1.1747 +arc 1->2: x = 7; lambda = 0 1.1748 +node 2: pi = -12 1.1749 +arc 2->4: x = 0; lambda = 3 1.1750 +arc 2->3: x = 7; lambda = 0 1.1751 +node 3: pi = -14 1.1752 +arc 3->8: x = 5; lambda = 0 1.1753 +arc 3->5: x = 2; lambda = 3 1.1754 +node 4: pi = -12 1.1755 +arc 4->5: x = 13; lambda = 0 1.1756 +node 5: pi = -12 1.1757 +arc 5->7: x = 4; lambda = -1 1.1758 +arc 5->6: x = 11; lambda = 0 1.1759 +arc 5->2: x = 0; lambda = 1 1.1760 +node 6: pi = -17 1.1761 +arc 6->8: x = 4; lambda = 3 1.1762 +arc 6->7: x = 7; lambda = -3 1.1763 +node 7: pi = -20 1.1764 +arc 7->9: x = 11; lambda = 0 1.1765 +node 8: pi = -14 1.1766 +arc 8->9: x = 9; lambda = 0 1.1767 +node 9: pi = -23 1.1768 +\end{verbatim} 1.1769 +\end{footnotesize} 1.1770 + 1.1771 +\subsection{glp\_netgen---Klingman's network problem generator} 1.1772 + 1.1773 +\subsubsection*{Synopsis} 1.1774 + 1.1775 +\begin{verbatim} 1.1776 +int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, 1.1777 + const int parm[1+15]); 1.1778 +\end{verbatim} 1.1779 + 1.1780 +\subsubsection*{Description} 1.1781 + 1.1782 +The routine \verb|glp_netgen| is a GLPK version of the network problem 1.1783 +generator developed by Dr.~Darwin~Klingman.\footnote{D.~Klingman, 1.1784 +A.~Napier, and J.~Stutz. NETGEN: A program for generating large scale 1.1785 +capacitated assignment, transportation, and minimum cost flow networks. 1.1786 +Management Science 20 (1974), 814-20.} It can create capacitated and 1.1787 +uncapacitated minimum cost flow (or transshipment), transportation, and 1.1788 +assignment problems. 1.1789 + 1.1790 +The parameter \verb|G| specifies the graph object, to which the 1.1791 +generated problem data have to be stored. Note that on entry the graph 1.1792 +object is erased with the routine \verb|glp_erase_graph|. 1.1793 + 1.1794 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1795 +\verb|double| in the vertex data block, to which the routine stores the 1.1796 +supply or demand value. If \verb|v_rhs| $<0$, the value is not stored. 1.1797 + 1.1798 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1799 +\verb|double| in the arc data block, to which the routine stores the 1.1800 +arc capacity. If \verb|a_cap| $<0$, the capacity is not stored. 1.1801 + 1.1802 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1803 +\verb|double| in the arc data block, to which the routine stores the 1.1804 +per-unit cost if the arc flow. If \verb|a_cost| $<0$, the cost is not 1.1805 +stored. 1.1806 + 1.1807 +The array \verb|parm| contains description of the network to be 1.1808 +generated: 1.1809 + 1.1810 +\begin{tabular}{@{}lll@{}} 1.1811 +\verb|parm[0] |& ¬ used\\ 1.1812 +\verb|parm[1] |&\verb|iseed |&8-digit positive random number seed\\ 1.1813 +\verb|parm[2] |&\verb|nprob |&8-digit problem id number\\ 1.1814 +\verb|parm[3] |&\verb|nodes |&total number of nodes\\ 1.1815 +\verb|parm[4] |&\verb|nsorc |&total number of source nodes\\ 1.1816 +&&(including transshipment nodes)\\ 1.1817 +\verb|parm[5] |&\verb|nsink |&total number of sink nodes\\ 1.1818 +&&(including transshipment nodes)\\ 1.1819 +\verb|parm[6] |&\verb|iarcs |&number of arc\\ 1.1820 +\verb|parm[7] |&\verb|mincst|&minimum cost for arcs\\ 1.1821 +\verb|parm[8] |&\verb|maxcst|&maximum cost for arcs\\ 1.1822 +\verb|parm[9] |&\verb|itsup |&total supply\\ 1.1823 +\end{tabular} 1.1824 + 1.1825 +\begin{tabular}{@{}lll@{}} 1.1826 +\verb|parm[10]|&\verb|ntsorc|&number of transshipment source nodes\\ 1.1827 +\verb|parm[11]|&\verb|ntsink|&number of transshipment sink nodes\\ 1.1828 +\verb|parm[12]|&\verb|iphic |&percentage of skeleton arcs to be given 1.1829 +the maxi-\\&&mum cost\\ 1.1830 +\verb|parm[13]|&\verb|ipcap |&percentage of arcs to be capacitated\\ 1.1831 +\verb|parm[14]|&\verb|mincap|&minimum upper bound for capacitated arcs\\ 1.1832 +\verb|parm[15]|&\verb|maxcap|&maximum upper bound for capacitated arcs\\ 1.1833 +\end{tabular} 1.1834 + 1.1835 +\subsubsection*{Notes} 1.1836 + 1.1837 +\noindent\indent 1.1838 +1. The routine generates a transportation problem if: 1.1839 +$${\tt nsorc}+{\tt nsink}={\tt nodes}, 1.1840 +\ {\tt ntsorc}=0,\ \mbox{and}\ {\tt ntsink}=0.$$ 1.1841 + 1.1842 +2. The routine generates an assignment problem if the requirements for 1.1843 +a transportation problem are met and: 1.1844 +$${\tt nsorc}={\tt nsink}\ \mbox{and}\ {\tt itsup}={\tt nsorc}.$$ 1.1845 + 1.1846 +3. The routine always generates connected graphs. So, if the number of 1.1847 +requested arcs has been reached and the generated instance is not fully 1.1848 +connected, the routine generates a few remaining arcs to ensure 1.1849 +connectedness. Thus, the actual number of arcs generated by the routine 1.1850 +may be greater than the requested number of arcs. 1.1851 + 1.1852 +\subsubsection*{Returns} 1.1853 + 1.1854 +If the instance was successfully generated, the routine 1.1855 +\verb|glp_netgen| returns zero; otherwise, if specified parameters are 1.1856 +inconsistent, the routine returns a non-zero error code. 1.1857 + 1.1858 +\subsection{glp\_gridgen---grid-like network problem generator} 1.1859 + 1.1860 +\subsubsection*{Synopsis} 1.1861 + 1.1862 +\begin{verbatim} 1.1863 +int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, 1.1864 + const int parm[1+14]); 1.1865 +\end{verbatim} 1.1866 + 1.1867 +\subsubsection*{Description} 1.1868 + 1.1869 +The routine \verb|glp_gridgen| is a GLPK version of the grid-like 1.1870 +network problem generator developed by Yusin Lee and Jim 1.1871 +Orlin.\footnote{Y.~Lee and J.~Orlin. GRIDGEN generator., 1991. The 1.1872 +original code is publically available from 1.1873 +{\tt<ftp://dimacs.rutgers.edu/pub/netflow/generators/network/gridgen>}.} 1.1874 + 1.1875 +The parameter \verb|G| specifies the graph object, to which the 1.1876 +generated problem data have to be stored. Note that on entry the graph 1.1877 +object is erased with the routine \verb|glp_erase_graph|. 1.1878 + 1.1879 +The parameter \verb|v_rhs| specifies an offset of the field of type 1.1880 +\verb|double| in the vertex data block, to which the routine stores the 1.1881 +supply or demand value. If \verb|v_rhs| $<0$, the value is not stored. 1.1882 + 1.1883 +The parameter \verb|a_cap| specifies an offset of the field of type 1.1884 +\verb|double| in the arc data block, to which the routine stores the 1.1885 +arc capacity. If \verb|a_cap| $<0$, the capacity is not stored. 1.1886 + 1.1887 +The parameter \verb|a_cost| specifies an offset of the field of type 1.1888 +\verb|double| in the arc data block, to which the routine stores the 1.1889 +per-unit cost if the arc flow. If \verb|a_cost| $<0$, the cost is not 1.1890 +stored. 1.1891 + 1.1892 +The array \verb|parm| contains parameters of the network to be 1.1893 +generated: 1.1894 + 1.1895 +\begin{tabular}{@{}ll@{}} 1.1896 +\verb|parm[0] |¬ used\\ 1.1897 +\verb|parm[1] |&two-ways arcs indicator:\\ 1.1898 + &1 --- if links in both direction should be generated\\ 1.1899 + &0 --- otherwise\\ 1.1900 +\verb|parm[2] |&random number seed (a positive integer)\\ 1.1901 +\verb|parm[3] |&number of nodes (the number of nodes generated might 1.1902 +be\\&slightly different to make the network a grid)\\ 1.1903 +\verb|parm[4] |&grid width\\ 1.1904 +\verb|parm[5] |&number of sources\\ 1.1905 +\verb|parm[6] |&number of sinks\\ 1.1906 +\verb|parm[7] |&average degree\\ 1.1907 +\verb|parm[8] |&total flow\\ 1.1908 +\verb|parm[9] |&distribution of arc costs:\\ 1.1909 + &1 --- uniform\\ 1.1910 + &2 --- exponential\\ 1.1911 +\verb|parm[10]|&lower bound for arc cost (uniform)\\ 1.1912 + &$100\lambda$ (exponential)\\ 1.1913 +\verb|parm[11]|&upper bound for arc cost (uniform)\\ 1.1914 + ¬ used (exponential)\\ 1.1915 +\verb|parm[12]|&distribution of arc capacities:\\ 1.1916 + &1 --- uniform\\ 1.1917 + &2 --- exponential\\ 1.1918 +\verb|parm[13]|&lower bound for arc capacity (uniform)\\ 1.1919 + &$100\lambda$ (exponential)\\ 1.1920 +\verb|parm[14]|&upper bound for arc capacity (uniform)\\ 1.1921 + ¬ used (exponential)\\ 1.1922 +\end{tabular} 1.1923 + 1.1924 +\subsubsection*{Returns} 1.1925 + 1.1926 +If the instance was successfully generated, the routine 1.1927 +\verb|glp_gridgen| returns zero; otherwise, if specified parameters are 1.1928 +inconsistent, the routine returns a non-zero error code. 1.1929 + 1.1930 +\subsubsection*{Comments\footnote{This material is based on comments 1.1931 +to the original version of GRIDGEN.}} 1.1932 + 1.1933 +This network generator generates a grid-like network plus a super node. 1.1934 +In additional to the arcs connecting the nodes in the grid, there is an 1.1935 +arc from each supply node to the super node and from the super node to 1.1936 +each demand node to guarantee feasiblity. These arcs have very high 1.1937 +costs and very big capacities. 1.1938 + 1.1939 +The idea of this network generator is as follows: First, a grid of 1.1940 +$n_1\times n_2$ is generated. For example, $5\times 3$. The nodes are 1.1941 +numbered as 1 to 15, and the supernode is numbered as $n_1\times n_2+1$. 1.1942 +Then arcs between adjacent nodes are generated. For these arcs, the user 1.1943 +is allowed to specify either to generate two-way arcs or one-way arcs. 1.1944 +If two-way arcs are to be generated, two arcs, one in each direction, 1.1945 +will be generated between each adjacent node pairs. Otherwise, only one 1.1946 +arc will be generated. If this is the case, the arcs will be generated 1.1947 +in alterntive directions as shown below. 1.1948 + 1.1949 +\bigskip 1.1950 + 1.1951 +\noindent\hfil 1.1952 +\xymatrix 1.1953 +{1\ar[r]\ar[d]&2\ar[r]&3\ar[r]\ar[d]&4\ar[r]&5\ar[d]\\ 1.1954 +6\ar[d]&7\ar[l]\ar[u]&8\ar[l]\ar[d]&9\ar[l]\ar[u]&10\ar[l]\ar[d]\\ 1.1955 +11\ar[r]&12\ar[r]\ar[u]&13\ar[r]&14\ar[r]\ar[u]&15\\ 1.1956 +} 1.1957 + 1.1958 +\bigskip 1.1959 + 1.1960 +Then the arcs between the super node and the source/sink nodes are added 1.1961 +as mentioned before. If the number of arcs still doesn't reach the 1.1962 +requirement, additional arcs will be added by uniformly picking random 1.1963 +node pairs. There is no checking to prevent multiple arcs between any 1.1964 +pair of nodes. However, there will be no self-arcs (arcs that poins back 1.1965 +to its tail node) in the network. 1.1966 + 1.1967 +The source and sink nodes are selected uniformly in the network, and 1.1968 +the imbalances of each source/sink node are also assigned by uniform 1.1969 +distribution. 1.1970 + 1.1971 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.1972 + 1.1973 +\newpage 1.1974 + 1.1975 +\section{Maximum flow problem} 1.1976 + 1.1977 +\subsection{Background} 1.1978 + 1.1979 +The {\it maximum flow problem} (MAXFLOW) is stated as follows. Let 1.1980 +there be given a directed graph (flow network) $G=(V,A)$, where $V$ is 1.1981 +a set of vertices (nodes), and $A\subseteq V\times V$ is a set of arcs. 1.1982 +Let also for each arc $a=(i,j)\in A$ there be given its capacity 1.1983 +$u_{ij}$. The problem is, for given {\it source} node $s\in V$ and 1.1984 +{\it sink} node $t\in V$, to find flows $x_{ij}$ through every arc of 1.1985 +the network, which satisfy the specified arc capacities and the 1.1986 +conservation constraints at all nodes, and maximize the total flow $F$ 1.1987 +through the network from $s$ to $t$. Here the conservation constraint 1.1988 +at a node means that the total flow entering this node through its 1.1989 +incoming arcs (plus $F$, if it is the source node) must be equal to the 1.1990 +total flow leaving this node through its outgoing arcs (plus $F$, if it 1.1991 +is the sink node). 1.1992 + 1.1993 +An example of the maximum flow problem, where $s=v_1$ and $t=v_9$, is 1.1994 +shown on Fig.~2. 1.1995 + 1.1996 +\bigskip 1.1997 + 1.1998 +\noindent\hfil 1.1999 +\xymatrix @C=48pt 1.2000 +{_{F}\ar@{~>}[d]& 1.2001 +v_2\ar[r]|{_{10}}\ar[dd]|{_{9}}& 1.2002 +v_3\ar[dd]|{_{12}}\ar[r]|{_{18}}& 1.2003 +v_8\ar[rd]|{_{20}}&\\ 1.2004 +v_1\ar[ru]|{_{14}}\ar[rd]|{_{23}}&&& 1.2005 +v_6\ar[d]|{_{7}}\ar[u]|{_{8}}& 1.2006 +v_9\ar@{~>}[d]\\ 1.2007 +&v_4\ar[r]|{_{26}}& 1.2008 +v_5\ar[luu]|{_{11}}\ar[ru]|{_{25}}\ar[r]|{_{4}}& 1.2009 +v_7\ar[ru]|{_{15}}&_{F}\\ 1.2010 +} 1.2011 + 1.2012 +\bigskip 1.2013 + 1.2014 +\noindent\hfil 1.2015 +Fig.~2. An example of the maximum flow problem. 1.2016 + 1.2017 +\bigskip 1.2018 + 1.2019 +The maximum flow problem can be naturally formulated as the following 1.2020 +LP problem: 1.2021 + 1.2022 +\medskip 1.2023 + 1.2024 +\noindent 1.2025 +\hspace{.5in}maximize 1.2026 +$$F\eqno(4)$$ 1.2027 +\hspace{.5in}subject to 1.2028 +$$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}=\left\{ 1.2029 +\begin{array}{@{\ }rl} 1.2030 ++F,&\hbox{for}\ i=s\\ 1.2031 + 0,&\hbox{for all}\ i\in V\backslash\{s,t\}\\ 1.2032 +-F,&\hbox{for}\ i=t\\ 1.2033 +\end{array} 1.2034 +\right.\eqno(5) 1.2035 +$$ 1.2036 +$$0\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A 1.2037 +\eqno(6)$$ 1.2038 + 1.2039 +\medskip 1.2040 + 1.2041 +\noindent 1.2042 +where $F\geq 0$ is an additional variable playing the role of the 1.2043 +objective. 1.2044 + 1.2045 +\newpage 1.2046 + 1.2047 +Another LP formulation of the maximum flow problem, which does not 1.2048 +include the variable $F$, is the following: 1.2049 + 1.2050 +\medskip 1.2051 + 1.2052 +\noindent 1.2053 +\hspace{.5in}maximize 1.2054 +$$z=\sum_{(s,j)\in A}x_{sj}-\sum_{(j,s)\in A}x_{js}\ (=F)\eqno(7)$$ 1.2055 +\hspace{.5in}subject to 1.2056 +$$\sum_{(i,j)\in A}x_{ij}-\sum_{(j,i)\in A}x_{ji}\left\{ 1.2057 +\begin{array}{@{\ }rl} 1.2058 +\geq 0,&\hbox{for}\ i=s\\ 1.2059 +=0,&\hbox{for all}\ i\in V\backslash\{s,t\}\\ 1.2060 +\leq 0,&\hbox{for}\ i=t\\ 1.2061 +\end{array} 1.2062 +\right.\eqno(8) 1.2063 +$$ 1.2064 +$$0\leq x_{ij}\leq u_{ij}\ \ \ \hbox{for all}\ (i,j)\in A 1.2065 +\eqno(9)$$ 1.2066 + 1.2067 +\subsection{glp\_read\_maxflow---read maximum flow problem data\\in 1.2068 +DIMACS format} 1.2069 + 1.2070 +\subsubsection*{Synopsis} 1.2071 + 1.2072 +\begin{verbatim} 1.2073 +int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap, 1.2074 + const char *fname); 1.2075 +\end{verbatim} 1.2076 + 1.2077 +\subsubsection*{Description} 1.2078 + 1.2079 +The routine \verb|glp_read_maxflow| reads the maximum flow problem 1.2080 +data from a text file in DIMACS format. 1.2081 + 1.2082 +The parameter \verb|G| specifies the graph object, to which the problem 1.2083 +data have to be stored. Note that before reading data the current 1.2084 +content of the graph object is completely erased with the routine 1.2085 +\verb|glp_erase_graph|. 1.2086 + 1.2087 +The pointer \verb|s| specifies a location, to which the routine stores 1.2088 +the ordinal number of the source node. If \verb|s| is \verb|NULL|, the 1.2089 +source node number is not stored. 1.2090 + 1.2091 +The pointer \verb|t| specifies a location, to which the routine stores 1.2092 +the ordinal number of the sink node. If \verb|t| is \verb|NULL|, the 1.2093 +sink node number is not stored. 1.2094 + 1.2095 +The parameter \verb|a_cap| specifies an offset of the field of type 1.2096 +\verb|double| in the arc data block, to which the routine stores 1.2097 +$u_{ij}$, the arc capacity. If \verb|a_cap| $<0$, the arc capacity is 1.2098 +not stored. 1.2099 + 1.2100 +The character string \verb|fname| specifies the name of a text file to 1.2101 +be read in. (If the file name name ends with the suffix `\verb|.gz|', 1.2102 +the file is assumed to be compressed, in which case the routine 1.2103 +decompresses it ``on the fly''.) 1.2104 + 1.2105 +\subsubsection*{Returns} 1.2106 + 1.2107 +If the operation was successful, the routine returns zero. Otherwise, 1.2108 +it prints an error message and returns non-zero. 1.2109 + 1.2110 +\subsubsection*{Example} 1.2111 + 1.2112 +\begin{footnotesize} 1.2113 +\begin{verbatim} 1.2114 +typedef struct 1.2115 +{ /* arc data block */ 1.2116 + ... 1.2117 + double cap; 1.2118 + ... 1.2119 +} a_data; 1.2120 + 1.2121 +int main(void) 1.2122 +{ glp_graph *G; 1.2123 + int s, t, ret; 1.2124 + G = glp_create_graph(..., sizeof(a_data)); 1.2125 + ret = glp_read_maxflow(G, &s, &t, offsetof(a_data, cap), 1.2126 + "sample.max"); 1.2127 + if (ret != 0) goto ... 1.2128 + ... 1.2129 +} 1.2130 +\end{verbatim} 1.2131 +\end{footnotesize} 1.2132 + 1.2133 +\subsubsection*{DIMACS maximum flow problem format\footnote{This 1.2134 +material is based on the paper ``The First DIMACS International 1.2135 +Algorithm Implementation Challenge: Problem Definitions and 1.2136 +Specifications'', which is publically available at 1.2137 +{\tt http://dimacs.rutgers.edu/Challenges/}.}} 1.2138 +\label{subsecmaxflow} 1.2139 + 1.2140 +The DIMACS input file is a plain ASCII text file. It contains 1.2141 +{\it lines} of several types described below. A line is terminated with 1.2142 +an end-of-line character. Fields in each line are separated by at least 1.2143 +one blank space. Each line begins with a one-character designator to 1.2144 +identify the line type. 1.2145 + 1.2146 +Note that DIMACS requires all numerical quantities to be integers in 1.2147 +the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be 1.2148 +floating-point numbers. 1.2149 + 1.2150 +\paragraph{Comment lines.} Comment lines give human-readable information 1.2151 +about the file and are ignored by programs. Comment lines can appear 1.2152 +anywhere in the file. Each comment line begins with a lower-case 1.2153 +character \verb|c|. 1.2154 + 1.2155 +\begin{verbatim} 1.2156 + c This is a comment line 1.2157 +\end{verbatim} 1.2158 + 1.2159 +\newpage 1.2160 + 1.2161 +\paragraph{Problem line.} There is one problem line per data file. The 1.2162 +problem line must appear before any node or arc descriptor lines. It has 1.2163 +the following format: 1.2164 + 1.2165 +\begin{verbatim} 1.2166 + p max NODES ARCS 1.2167 +\end{verbatim} 1.2168 + 1.2169 +\noindent 1.2170 +The lower-case character \verb|p| signifies that this is a problem line. 1.2171 +The three-character problem designator \verb|max| identifies the file as 1.2172 +containing specification information for the maximum flow problem. The 1.2173 +\verb|NODES| field contains an integer value specifying the number of 1.2174 +nodes in the network. The \verb|ARCS| field contains an integer value 1.2175 +specifying the number of arcs in the network. 1.2176 + 1.2177 +\paragraph{Node descriptors.} Two node descriptor lines for the source 1.2178 +and sink nodes must appear before all arc descriptor lines. They may 1.2179 +appear in either order, each with the following format: 1.2180 + 1.2181 +\begin{verbatim} 1.2182 + n ID WHICH 1.2183 +\end{verbatim} 1.2184 + 1.2185 +\noindent 1.2186 +The lower-case character \verb|n| signifies that this a node descriptor 1.2187 +line. The \verb|ID| field gives a node identification number, an integer 1.2188 +between 1 and \verb|NODES|. The \verb|WHICH| field gives either a 1.2189 +lower-case \verb|s| or \verb|t|, designating the source and sink, 1.2190 +respectively. 1.2191 + 1.2192 +\paragraph{Arc descriptors.} There is one arc descriptor line for each 1.2193 +arc in the network. Arc descriptor lines are of the following format: 1.2194 + 1.2195 +\begin{verbatim} 1.2196 + a SRC DST CAP 1.2197 +\end{verbatim} 1.2198 + 1.2199 +\noindent 1.2200 +The lower-case character \verb|a| signifies that this is an arc 1.2201 +descriptor line. For a directed arc $(i,j)$ the \verb|SRC| field gives 1.2202 +the identification number $i$ for the tail endpoint, and the \verb|DST| 1.2203 +field gives the identification number $j$ for the head endpoint. 1.2204 +Identification numbers are integers between 1 and \verb|NODES|. The 1.2205 +\verb|CAP| field gives the arc capacity, i.e. maximum amount of flow 1.2206 +that can be sent along arc $(i,j)$ in a feasible flow. 1.2207 + 1.2208 +\paragraph{Example.} Below here is an example of the data file in 1.2209 +DIMACS format corresponding to the maximum flow problem shown on Fig~2. 1.2210 + 1.2211 +\newpage 1.2212 + 1.2213 +\begin{footnotesize} 1.2214 +\begin{verbatim} 1.2215 +c sample.max 1.2216 +c 1.2217 +c This is an example of the maximum flow problem data 1.2218 +c in DIMACS format. 1.2219 +c 1.2220 +p max 9 14 1.2221 +c 1.2222 +n 1 s 1.2223 +n 9 t 1.2224 +c 1.2225 +a 1 2 14 1.2226 +a 1 4 23 1.2227 +a 2 3 10 1.2228 +a 2 4 9 1.2229 +a 3 5 12 1.2230 +a 3 8 18 1.2231 +a 4 5 26 1.2232 +a 5 2 11 1.2233 +a 5 6 25 1.2234 +a 5 7 4 1.2235 +a 6 7 7 1.2236 +a 6 8 8 1.2237 +a 7 9 15 1.2238 +a 8 9 20 1.2239 +c 1.2240 +c eof 1.2241 +\end{verbatim} 1.2242 +\end{footnotesize} 1.2243 + 1.2244 +\subsection{glp\_write\_maxflow---write maximum flow problem data\\ 1.2245 +in DIMACS format} 1.2246 + 1.2247 +\subsubsection*{Synopsis} 1.2248 + 1.2249 +\begin{verbatim} 1.2250 +int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap, 1.2251 + const char *fname); 1.2252 +\end{verbatim} 1.2253 + 1.2254 +\subsubsection*{Description} 1.2255 + 1.2256 +The routine \verb|glp_write_maxflow| writes the maximum flow problem 1.2257 +data to a text file in DIMACS format. 1.2258 + 1.2259 +The parameter \verb|G| is the graph (network) program object, which 1.2260 +specifies the maximum flow problem instance. 1.2261 + 1.2262 +The parameter \verb|s| specifies the ordinal number of the source node. 1.2263 + 1.2264 +The parameter \verb|t| specifies the ordinal number of the sink node. 1.2265 + 1.2266 +The parameter \verb|a_cap| specifies an offset of the field of type 1.2267 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.2268 +bound to the arc flow (the arc capacity). If the upper bound is 1.2269 +specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. 1.2270 +the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that 1.2271 +$u_{ij}=1$ for all arcs. 1.2272 + 1.2273 +The character string \verb|fname| specifies a name of the text file to 1.2274 +be written out. (If the file name ends with suffix `\verb|.gz|', the 1.2275 +file is assumed to be compressed, in which case the routine performs 1.2276 +automatic compression on writing it.) 1.2277 + 1.2278 +\subsubsection*{Returns} 1.2279 + 1.2280 +If the operation was successful, the routine returns zero. Otherwise, 1.2281 +it prints an error message and returns non-zero. 1.2282 + 1.2283 +\subsection{glp\_maxflow\_lp---convert maximum flow problem to LP} 1.2284 + 1.2285 +\subsubsection*{Synopsis} 1.2286 + 1.2287 +\begin{verbatim} 1.2288 +void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, 1.2289 + int s, int t, int a_cap); 1.2290 +\end{verbatim} 1.2291 + 1.2292 +\subsubsection*{Description} 1.2293 + 1.2294 +The routine \verb|glp_maxflow_lp| builds LP problem (7)---(9), which 1.2295 +corresponds to the specified maximum flow problem. 1.2296 + 1.2297 +The parameter \verb|lp| is the resultant LP problem object to be built. 1.2298 +Note that on entry its current content is erased with the routine 1.2299 +\verb|glp_erase_prob|. 1.2300 + 1.2301 +The parameter \verb|G| is the graph (network) program object, which 1.2302 +specifies the maximum flow problem instance. 1.2303 + 1.2304 +The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the 1.2305 +routine uses symbolic names of the graph object components to assign 1.2306 +symbolic names to the LP problem object components. If the flag is 1.2307 +\verb|GLP_OFF|, no symbolic names are assigned. 1.2308 + 1.2309 +The parameter \verb|s| specifies the ordinal number of the source node. 1.2310 + 1.2311 +The parameter \verb|t| specifies the ordinal number of the sink node. 1.2312 + 1.2313 +The parameter \verb|a_cap| specifies an offset of the field of type 1.2314 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.2315 +bound to the arc flow (the arc capacity). If the upper bound is 1.2316 +specified as \verb|DBL_MAX|, it is assumed that $u_{ij}=\infty$, i.e. 1.2317 +the arc is uncapacitated. If \verb|a_cap| $<0$, it is assumed that 1.2318 +$u_{ij}=1$ for all arcs. 1.2319 + 1.2320 +\subsubsection*{Example} 1.2321 + 1.2322 +The example program below reads the maximum flow problem in DIMACS 1.2323 +format from file `\verb|sample.max|', converts the instance to LP, and 1.2324 +then writes the resultant LP in CPLEX format to file 1.2325 +`\verb|maxflow.lp|'. 1.2326 + 1.2327 +\begin{footnotesize} 1.2328 +\begin{verbatim} 1.2329 +#include <stddef.h> 1.2330 +#include <glpk.h> 1.2331 + 1.2332 +int main(void) 1.2333 +{ glp_graph *G; 1.2334 + glp_prob *lp; 1.2335 + int s, t; 1.2336 + G = glp_create_graph(0, sizeof(double)); 1.2337 + glp_read_maxflow(G, &s, &t, 0, "sample.max"); 1.2338 + lp = glp_create_prob(); 1.2339 + glp_maxflow_lp(lp, G, GLP_ON, s, t, 0); 1.2340 + glp_delete_graph(G); 1.2341 + glp_write_lp(lp, NULL, "maxflow.lp"); 1.2342 + glp_delete_prob(lp); 1.2343 + return 0; 1.2344 +} 1.2345 +\end{verbatim} 1.2346 +\end{footnotesize} 1.2347 + 1.2348 +If `\verb|sample.max|' is the example data file from the previous 1.2349 +subsection, the output `\verb|maxflow.lp|' may look like follows: 1.2350 + 1.2351 +\begin{footnotesize} 1.2352 +\begin{verbatim} 1.2353 +Maximize 1.2354 + obj: + x(1,4) + x(1,2) 1.2355 + 1.2356 +Subject To 1.2357 + r_1: + x(1,2) + x(1,4) >= 0 1.2358 + r_2: - x(5,2) + x(2,3) + x(2,4) - x(1,2) = 0 1.2359 + r_3: + x(3,5) + x(3,8) - x(2,3) = 0 1.2360 + r_4: + x(4,5) - x(2,4) - x(1,4) = 0 1.2361 + r_5: + x(5,2) + x(5,6) + x(5,7) - x(4,5) - x(3,5) = 0 1.2362 + r_6: + x(6,7) + x(6,8) - x(5,6) = 0 1.2363 + r_7: + x(7,9) - x(6,7) - x(5,7) = 0 1.2364 + r_8: + x(8,9) - x(6,8) - x(3,8) = 0 1.2365 + r_9: - x(8,9) - x(7,9) <= 0 1.2366 + 1.2367 +Bounds 1.2368 + 0 <= x(1,4) <= 23 1.2369 + 0 <= x(1,2) <= 14 1.2370 + 0 <= x(2,4) <= 9 1.2371 + 0 <= x(2,3) <= 10 1.2372 + 0 <= x(3,8) <= 18 1.2373 + 0 <= x(3,5) <= 12 1.2374 + 0 <= x(4,5) <= 26 1.2375 + 0 <= x(5,7) <= 4 1.2376 + 0 <= x(5,6) <= 25 1.2377 + 0 <= x(5,2) <= 11 1.2378 + 0 <= x(6,8) <= 8 1.2379 + 0 <= x(6,7) <= 7 1.2380 + 0 <= x(7,9) <= 15 1.2381 + 0 <= x(8,9) <= 20 1.2382 + 1.2383 +End 1.2384 +\end{verbatim} 1.2385 +\end{footnotesize} 1.2386 + 1.2387 +\subsection{glp\_maxflow\_ffalg---solve maximum flow problem with 1.2388 +Ford-Fulkerson algorithm} 1.2389 + 1.2390 +\subsubsection*{Synopsis} 1.2391 + 1.2392 +\begin{verbatim} 1.2393 +int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, 1.2394 + double *sol, int a_x, int v_cut); 1.2395 +\end{verbatim} 1.2396 + 1.2397 +\subsubsection*{Description} 1.2398 + 1.2399 +The routine \verb|glp_mincost_ffalg| finds optimal solution to the 1.2400 +maximum flow problem with the Ford-Fulkerson algorithm.\footnote{GLPK 1.2401 +implementation of the Ford-Fulkerson algorithm is based on the following 1.2402 +book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, ``Flows in Networks,'' The 1.2403 +RAND Corp., Report\linebreak R-375-PR (August 1962), Chap. I 1.2404 +``Static Maximal Flow,'' pp.~30-33.} Note that this routine requires all 1.2405 +the problem data to be integer-valued. 1.2406 + 1.2407 +The parameter \verb|G| is a graph (network) program object which 1.2408 +specifies the maximum flow problem instance to be solved. 1.2409 + 1.2410 +The parameter $s$ specifies the ordinal number of the source node. 1.2411 + 1.2412 +The parameter $t$ specifies the ordinal number of the sink node. 1.2413 + 1.2414 +The parameter \verb|a_cap| specifies an offset of the field of type 1.2415 +\verb|double| in the arc data block, which contains $u_{ij}$, the upper 1.2416 +bound to the arc flow (the arc capacity). This bound must be integer in 1.2417 +the range [0, \verb|INT_MAX|]. If \verb|a_cap| $<0$, it is assumed that 1.2418 +$u_{ij}=1$ for all arcs. 1.2419 + 1.2420 +The parameter \verb|sol| specifies a location, to which the routine 1.2421 +stores the objective value (that is, the total flow from $s$ to $t$) 1.2422 +found. If \verb|sol| is NULL, the objective value is not stored. 1.2423 + 1.2424 +The parameter \verb|a_x| specifies an offset of the field of type 1.2425 +\verb|double| in the arc data block, to which the routine stores 1.2426 +$x_{ij}$, the arc flow found. If \verb|a_x| $<0$, the arc flow values 1.2427 +are not stored. 1.2428 + 1.2429 +The parameter \verb|v_cut| specifies an offset of the field of type 1.2430 +\verb|int| in the vertex data block, to which the routine stores node 1.2431 +flags corresponding to the optimal solution found: if the node flag is 1.2432 +1, the node is labelled, and if the node flag is 0, the node is 1.2433 +unlabelled. The calling program may use these node flags to determine 1.2434 +the {\it minimal cut}, which is a subset of arcs whose one endpoint is 1.2435 +labelled and other is not. If \verb|v_cut| $<0$, the node flags are not 1.2436 +stored. 1.2437 + 1.2438 +Note that all solution components (the objective value and arc flows) 1.2439 +computed by the routine are always integer-valued. 1.2440 + 1.2441 +\subsubsection*{Returns} 1.2442 + 1.2443 +\def\arraystretch{1} 1.2444 + 1.2445 +\begin{tabular}{@{}p{25mm}p{97.3mm}@{}} 1.2446 +0 & Optimal solution found.\\ 1.2447 +\verb|GLP_EDATA| & Unable to start the search, because some problem 1.2448 +data are either not integer-valued or out of range.\\ 1.2449 +\end{tabular} 1.2450 + 1.2451 +\subsubsection*{Example} 1.2452 + 1.2453 +The example program shown below reads the maximum flow problem instance 1.2454 +in DIMACS format from file `\verb|sample.max|', solves it using the 1.2455 +routine \verb|glp_maxflow_ffalg|, and write the solution found to the 1.2456 +standard output. 1.2457 + 1.2458 +\begin{footnotesize} 1.2459 +\begin{verbatim} 1.2460 +#include <stddef.h> 1.2461 +#include <stdio.h> 1.2462 +#include <stdlib.h> 1.2463 +#include <glpk.h> 1.2464 + 1.2465 +typedef struct { int cut; } v_data; 1.2466 +typedef struct { double cap, x; } a_data; 1.2467 + 1.2468 +#define node(v) ((v_data *)((v)->data)) 1.2469 +#define arc(a) ((a_data *)((a)->data)) 1.2470 + 1.2471 +int main(void) 1.2472 +{ glp_graph *G; 1.2473 + glp_vertex *v, *w; 1.2474 + glp_arc *a; 1.2475 + int i, s, t, ret; 1.2476 + double sol; 1.2477 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.2478 + glp_read_maxflow(G, &s, &t, offsetof(a_data, cap), 1.2479 + "sample.max"); 1.2480 + ret = glp_maxflow_ffalg(G, s, t, offsetof(a_data, cap), 1.2481 + &sol, offsetof(a_data, x), offsetof(v_data, cut)); 1.2482 + printf("ret = %d; sol = %5g\n", ret, sol); 1.2483 + for (i = 1; i <= G->nv; i++) 1.2484 + { v = G->v[i]; 1.2485 + for (a = v->out; a != NULL; a = a->t_next) 1.2486 + { w = a->head; 1.2487 + printf("x[%d->%d] = %5g (%d)\n", v->i, w->i, 1.2488 + arc(a)->x, node(v)->cut ^ node(w)->cut); 1.2489 + } 1.2490 + } 1.2491 + glp_delete_graph(G); 1.2492 + return 0; 1.2493 +} 1.2494 +\end{verbatim} 1.2495 +\end{footnotesize} 1.2496 + 1.2497 +If `\verb|sample.max|' is the example data file from the subsection 1.2498 +describing the routine \verb|glp_read_maxflow|, the output may look like 1.2499 +follows: 1.2500 + 1.2501 +\begin{footnotesize} 1.2502 +\begin{verbatim} 1.2503 +Reading maximum flow problem data from `sample.max'... 1.2504 +Flow network has 9 nodes and 14 arcs 1.2505 +24 lines were read 1.2506 +ret = 0; sol = 29 1.2507 +x[1->4] = 19 (0) 1.2508 +x[1->2] = 10 (0) 1.2509 +x[2->4] = 0 (0) 1.2510 +x[2->3] = 10 (1) 1.2511 +x[3->8] = 10 (0) 1.2512 +x[3->5] = 0 (1) 1.2513 +x[4->5] = 19 (0) 1.2514 +x[5->7] = 4 (1) 1.2515 +x[5->6] = 15 (0) 1.2516 +x[5->2] = 0 (0) 1.2517 +x[6->8] = 8 (1) 1.2518 +x[6->7] = 7 (1) 1.2519 +x[7->9] = 11 (0) 1.2520 +x[8->9] = 18 (0) 1.2521 +\end{verbatim} 1.2522 +\end{footnotesize} 1.2523 + 1.2524 +\newpage 1.2525 + 1.2526 +\subsection{glp\_rmfgen---Goldfarb's maximum flow problem generator} 1.2527 + 1.2528 +\subsubsection*{Synopsis} 1.2529 + 1.2530 +\begin{verbatim} 1.2531 +int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap, 1.2532 + const int parm[1+5]); 1.2533 +\end{verbatim} 1.2534 + 1.2535 +\subsubsection*{Description} 1.2536 + 1.2537 +The routine \verb|glp_rmfgen| is a GLPK version of the maximum flow 1.2538 +problem generator developed by D.~Goldfarb and 1.2539 +M.~Grigoriadis.\footnote{D.~Goldfarb and M.~D.~Grigoriadis, 1.2540 +``A computational comparison of the Dinic and network simplex methods 1.2541 +for maximum flow.'' Annals of Op. Res. 13 (1988), 1.2542 +pp.~83-123.}$^{,}$\footnote{U.~Derigs and W.~Meier, ``Implementing 1.2543 +Goldberg's max-flow algorithm: A computational investigation.'' 1.2544 +Zeitschrift f\"ur Operations Research 33 (1989), 1.2545 +pp.~383-403.}$^{,}$\footnote{The original code of RMFGEN implemented by 1.2546 +Tamas Badics is publically available from 1.2547 +{\tt <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>}.} 1.2548 + 1.2549 +The parameter \verb|G| specifies the graph object, to which the 1.2550 +generated problem data have to be stored. Note that on entry the graph 1.2551 +object is erased with the routine \verb|glp_erase_graph|. 1.2552 + 1.2553 +The pointers \verb|s| and \verb|t| specify locations, to which the 1.2554 +routine stores the source and sink node numbers, respectively. If 1.2555 +\verb|s| or \verb|t| is \verb|NULL|, corresponding node number is not 1.2556 +stored. 1.2557 + 1.2558 +The parameter \verb|a_cap| specifies an offset of the field of type 1.2559 +\verb|double| in the arc data block, to which the routine stores the arc 1.2560 +capacity. If \verb|a_cap| $<0$, the capacity is not stored. 1.2561 + 1.2562 +The array \verb|parm| contains description of the network to be 1.2563 +generated: 1.2564 + 1.2565 +\begin{tabular}{@{}lll@{}} 1.2566 +\verb|parm[0]|& ¬ used\\ 1.2567 +\verb|parm[1]|&\verb|seed|&random number seed (a positive integer)\\ 1.2568 +\verb|parm[2]|&\verb|a |&frame size\\ 1.2569 +\verb|parm[3]|&\verb|b |&depth\\ 1.2570 +\verb|parm[4]|&\verb|c1 |&minimal arc capacity\\ 1.2571 +\verb|parm[5]|&\verb|c2 |&maximal arc capacity\\ 1.2572 +\end{tabular} 1.2573 + 1.2574 +\subsubsection*{Returns} 1.2575 + 1.2576 +If the instance was successfully generated, the routine 1.2577 +\verb|glp_netgen| returns zero; otherwise, if specified parameters are 1.2578 +inconsistent, the routine returns a non-zero error code. 1.2579 + 1.2580 +\newpage 1.2581 + 1.2582 +\subsubsection*{Comments\footnote{This material is based on comments 1.2583 +to the original version of RMFGEN.}} 1.2584 + 1.2585 +The generated network is as follows. It has $b$ pieces of frames of 1.2586 +size $a\times a$. (So alltogether the number of vertices is 1.2587 +$a\times a\times b$.) 1.2588 + 1.2589 +In each frame all the vertices are connected with their neighbours 1.2590 +(forth and back). In addition the vertices of a frame are connected 1.2591 +one to one with the vertices of next frame using a random permutation 1.2592 +of those vertices. 1.2593 + 1.2594 +The source is the lower left vertex of the first frame, the sink is 1.2595 +the upper right vertex of the $b$-th frame. 1.2596 + 1.2597 +\begin{verbatim} 1.2598 + t 1.2599 + +-------+ 1.2600 + | .| 1.2601 + | . | 1.2602 + / | / | 1.2603 + +-------+/ -+ b 1.2604 + | | |/. 1.2605 + a | -v- |/ 1.2606 + | | |/ 1.2607 + +-------+ 1 1.2608 + s a 1.2609 +\end{verbatim} 1.2610 + 1.2611 +The capacities are randomly chosen integers from the range of 1.2612 +$[c_1,c_2]$ in the case of interconnecting edges, and $c_2\cdot a^2$ 1.2613 +for the in-frame edges. 1.2614 + 1.2615 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.2616 + 1.2617 +\newpage 1.2618 + 1.2619 +\section{Assignment problem} 1.2620 + 1.2621 +\subsection{Background} 1.2622 + 1.2623 +Let there be given an undirected bipartite graph $G=(R\cup S,E)$, where 1.2624 +$R$ and $S$ are disjoint sets of vertices (nodes), and 1.2625 +$E\subseteq R\times S$ is a set of edges. Let also for each edge 1.2626 +$e=(i,j)\in E$ there be given its cost $c_{ij}$. A {\it matching} 1.2627 +(which in case of bipartite graph is also called {\it assignment}) 1.2628 +$M\subseteq E$ in $G$ is a set of pairwise non-adjacent edges, that is, 1.2629 +no two edges in $M$ share a common vertex. A matching, which matches 1.2630 +all vertices of the graph, is called a {\it perfect matching}. 1.2631 +Obviously, a perfect matching in bipartite graph $G=(R\cup S,E)$ 1.2632 +defines some bijection $R\leftrightarrow S$. 1.2633 + 1.2634 +The {\it assignment problem} has two different variants. In the first 1.2635 +variant the problem is to find matching (assignment) $M$, which 1.2636 +maximizes the sum: 1.2637 +$$\sum_{(i,j)\in M}c_{ij}\eqno(10)$$ 1.2638 +(so this variant is also called the {\it maximum weighted bipartite 1.2639 +matching problem} or, if all $c_{ij}=1$, the {\it maximum cardinality 1.2640 +bipartite matching problem}). In the second, classic variant the 1.2641 +problem is to find {\it perfect} matching (assignment) $M$, which 1.2642 +minimizes or maximizes the sum (10). 1.2643 + 1.2644 +An example of the assignment problem, which is the maximum weighted 1.2645 +bipartite matching problem, is shown on Fig. 3. 1.2646 + 1.2647 +The maximum weighted bipartite matching problem can be naturally 1.2648 +formulated as the following LP problem: 1.2649 + 1.2650 +\medskip 1.2651 + 1.2652 +\noindent 1.2653 +\hspace{.5in}maximize 1.2654 +$$z=\sum_{(i,j)\in E}c_{ij}x_{ij}\eqno(11)$$ 1.2655 +\hspace{.5in}subject to 1.2656 +$$\sum_{(i,j)\in E}x_{ij}\leq 1\ \ \ \hbox{for all}\ i\in R\eqno(12)$$ 1.2657 +$$\sum_{(i,j)\in E}x_{ij}\leq 1\ \ \ \hbox{for all}\ j\in S\eqno(13)$$ 1.2658 +$$\ \ \ \ \ \ \ \ 0\leq x_{ij}\leq 1\ \ \ \hbox{for all}\ (i,j)\in E 1.2659 +\eqno(14)$$ 1.2660 + 1.2661 +\medskip 1.2662 + 1.2663 +\noindent 1.2664 +where $x_{ij}=1$ means that $(i,j)\in M$, and $x_{ij}=0$ means that 1.2665 +$(i,j)\notin M$.\footnote{The constraint matrix of LP formulation 1.2666 +(11)---(14) is totally unimodular, due to which $x_{ij}\in\{0,1\}$ for 1.2667 +any basic solution.} 1.2668 + 1.2669 +\newpage 1.2670 + 1.2671 +\bigskip 1.2672 + 1.2673 +\noindent\hfil 1.2674 +\xymatrix @C=48pt 1.2675 +{v_1\ar@{-}[rr]|{_{13}}\ar@{-}[rrd]|{_{21}}\ar@{-}[rrddd]|(.2){_{20}}&& 1.2676 +v_9\\ 1.2677 +v_2\ar@{-}[rr]|{_{12}}\ar@{-}[rrdd]|(.3){_{8}} 1.2678 +\ar@{-}[rrddd]|(.4){_{26}}&&v_{10}\\ 1.2679 +v_3\ar@{-}[rr]|(.2){_{22}}\ar@{-}[rrdd]|(.3){_{11}}&&v_{11}\\ 1.2680 +v_4\ar@{-}[rruuu]|(.6){_{12}}\ar@{-}[rr]|(.2){_{36}} 1.2681 +\ar@{-}[rrdd]|(.7){_{25}}&&v_{12}\\ 1.2682 +v_5\ar@{-}[rruu]|(.42){_{41}}\ar@{-}[rru]|(.4){_{40}} 1.2683 +\ar@{-}[rr]|(.75){_{11}}\ar@{-}[rrd]|(.6){_{4}}\ar@{-}[rrdd]|{_{8}} 1.2684 +\ar@{-}[rrddd]|{_{35}}\ar@{-}[rrdddd]|{_{32}}&&v_{13}\\ 1.2685 +v_6\ar@{-}[rruuuuu]|(.7){_{13}}&&v_{14}\\ 1.2686 +v_7\ar@{-}[rruuuuu]|(.15){_{19}}&&v_{15}\\ 1.2687 +v_8\ar@{-}[rruuuuuu]|(.25){_{39}}\ar@{-}[rruuuuu]|(.65){_{15}}&& 1.2688 +v_{16}\\ 1.2689 +&&v_{17}\\ 1.2690 +} 1.2691 + 1.2692 +\bigskip 1.2693 + 1.2694 +\noindent\hfil 1.2695 +Fig.~3. An example of the assignment problem. 1.2696 + 1.2697 +\bigskip 1.2698 + 1.2699 +Similarly, the perfect assignment problem can be naturally formulated 1.2700 +as the following LP problem: 1.2701 + 1.2702 +\medskip 1.2703 + 1.2704 +\noindent 1.2705 +\hspace{.5in}minimize (or maximize) 1.2706 +$$z=\sum_{(i,j)\in E}c_{ij}x_{ij}\eqno(15)$$ 1.2707 +\hspace{.5in}subject to 1.2708 +$$\sum_{(i,j)\in E}x_{ij}=1\ \ \ \hbox{for all}\ i\in R\eqno(16)$$ 1.2709 +$$\sum_{(i,j)\in E}x_{ij}=1\ \ \ \hbox{for all}\ j\in S\eqno(17)$$ 1.2710 +$$\ \ \ \ \ \ \ \ 0\leq x_{ij}\leq 1\ \ \ \hbox{for all}\ (i,j)\in E 1.2711 +\eqno(18)$$ 1.2712 + 1.2713 +\medskip 1.2714 + 1.2715 +\noindent 1.2716 +where variables $x_{ij}$ have the same meaning as for (11)---(14) 1.2717 +above. 1.2718 + 1.2719 +\newpage 1.2720 + 1.2721 +In GLPK an undirected bipartite graph $G=(R\cup S,E)$ is represented as 1.2722 +directed graph $\overline{G}=(V,A)$, where $V=R\cup S$ and 1.2723 +$A=\{(i,j):(i,j)\in E\}$, i.e. every edge $(i,j)\in E$ in $G$ 1.2724 +corresponds to arc $(i\rightarrow j)\in A$ in $\overline{G}$. 1.2725 + 1.2726 +\subsection{glp\_read\_asnprob---read assignment problem data in\\DIMACS 1.2727 +format} 1.2728 + 1.2729 +\subsubsection*{Synopsis} 1.2730 + 1.2731 +\begin{verbatim} 1.2732 +int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, 1.2733 + const char *fname); 1.2734 +\end{verbatim} 1.2735 + 1.2736 +\subsubsection*{Description} 1.2737 + 1.2738 +The routine \verb|glp_read_asnprob| reads the assignment problem data 1.2739 +from a text file in DIMACS format. 1.2740 + 1.2741 +The parameter \verb|G| specifies the graph object, to which the problem 1.2742 +data have to be stored. Note that before reading data the current 1.2743 +content of the graph object is completely erased with the routine 1.2744 +\verb|glp_erase_graph|. 1.2745 + 1.2746 +The parameter \verb|v_set| specifies an offset of the field of type 1.2747 +\verb|int| in the vertex data block, to which the routine stores the 1.2748 +node set indicator: 1.2749 + 1.2750 +0 --- the node is in set $R$; 1.2751 + 1.2752 +1 --- the node is in set $S$. 1.2753 + 1.2754 +\noindent 1.2755 +If \verb|v_set| $<0$, the node set indicator is not stored. 1.2756 + 1.2757 +The parameter \verb|a_cost| specifies an offset of the field of type 1.2758 +\verb|double| in the arc data block, to which the routine stores the 1.2759 +edge cost $c_{ij}$. If \verb|a_cost| $<0$, the edge cost is not stored. 1.2760 + 1.2761 +The character string \verb|fname| specifies the name of a text file to 1.2762 +be read in. (If the file name name ends with the suffix `\verb|.gz|', 1.2763 +the file is assumed to be compressed, in which case the routine 1.2764 +decompresses it ``on the fly''.) 1.2765 + 1.2766 +\subsubsection*{Returns} 1.2767 + 1.2768 +If the operation was successful, the routine returns zero. Otherwise, 1.2769 +it prints an error message and returns non-zero. 1.2770 + 1.2771 +\newpage 1.2772 + 1.2773 +\subsubsection*{Example} 1.2774 + 1.2775 +\begin{footnotesize} 1.2776 +\begin{verbatim} 1.2777 +typedef struct 1.2778 +{ /* vertex data block */ 1.2779 + ... 1.2780 + int set; 1.2781 + ... 1.2782 +} v_data; 1.2783 + 1.2784 +typedef struct 1.2785 +{ /* arc data block */ 1.2786 + ... 1.2787 + double cost; 1.2788 + ... 1.2789 +} a_data; 1.2790 + 1.2791 +int main(void) 1.2792 +{ glp_graph *G; 1.2793 + int ret; 1.2794 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.2795 + ret = glp_read_asnprob(G, offsetof(v_data, set), 1.2796 + offsetof(a_data, cost), "sample.asn"); 1.2797 + if (ret != 0) goto ... 1.2798 + ... 1.2799 +} 1.2800 +\end{verbatim} 1.2801 +\end{footnotesize} 1.2802 + 1.2803 +\subsubsection*{DIMACS assignment problem format\footnote{This 1.2804 +material is based on the paper ``The First DIMACS International 1.2805 +Algorithm Implementation Challenge: Problem Definitions and 1.2806 +Specifications'', which is publically available at 1.2807 +{\tt http://dimacs.rutgers.edu/Challenges/}.}} 1.2808 +\label{subsecasnprob} 1.2809 + 1.2810 +The DIMACS input file is a plain ASCII text file. It contains 1.2811 +{\it lines} of several types described below. A line is terminated with 1.2812 +an end-of-line character. Fields in each line are separated by at least 1.2813 +one blank space. Each line begins with a one-character designator to 1.2814 +identify the line type. 1.2815 + 1.2816 +Note that DIMACS requires all numerical quantities to be integers in 1.2817 +the range $[-2^{31},\ 2^{31}-1]$ while GLPK allows the quantities to be 1.2818 +floating-point numbers. 1.2819 + 1.2820 +\paragraph{Comment lines.} Comment lines give human-readable information 1.2821 +about the file and are ignored by programs. Comment lines can appear 1.2822 +anywhere in the file. Each comment line begins with a lower-case 1.2823 +character \verb|c|. 1.2824 + 1.2825 +\begin{verbatim} 1.2826 + c This is a comment line 1.2827 +\end{verbatim} 1.2828 + 1.2829 +\newpage 1.2830 + 1.2831 +\paragraph{Problem line.} There is one problem line per data file. The 1.2832 +problem line must appear before any node or arc descriptor lines. It has 1.2833 +the following format: 1.2834 + 1.2835 +\begin{verbatim} 1.2836 + p asn NODES EDGES 1.2837 +\end{verbatim} 1.2838 + 1.2839 +\noindent 1.2840 +The lower-case character \verb|p| signifies that this is a problem line. 1.2841 +The three-character problem designator \verb|asn| identifies the file as 1.2842 +containing specification information for the assignment problem. 1.2843 +The \verb|NODES| field contains an integer value specifying the total 1.2844 +number of nodes in the graph (i.e. in both sets $R$ and $S$). The 1.2845 +\verb|EDGES| field contains an integer value specifying the number of 1.2846 +edges in the graph. 1.2847 + 1.2848 +\paragraph{Node descriptors.} All node descriptor lines must appear 1.2849 +before all edge descriptor lines. The node descriptor lines lists the 1.2850 +nodes in set $R$ only, and all other nodes are assumed to be in set 1.2851 +$S$. There is one node descriptor line for each such node, with the 1.2852 +following format: 1.2853 + 1.2854 +\begin{verbatim} 1.2855 + n ID 1.2856 +\end{verbatim} 1.2857 + 1.2858 +\noindent 1.2859 +The lower-case character \verb|n| signifies that this is a node 1.2860 +descriptor line. The \verb|ID| field gives a node identification number, 1.2861 +an integer between 1 and \verb|NODES|. 1.2862 + 1.2863 +\paragraph{Edge descriptors.} There is one edge descriptor line for 1.2864 +each edge in the graph. Edge descriptor lines are of the following 1.2865 +format: 1.2866 + 1.2867 +\begin{verbatim} 1.2868 + a SRC DST COST 1.2869 +\end{verbatim} 1.2870 + 1.2871 +\noindent 1.2872 +The lower-case character \verb|a| signifies that this is an edge 1.2873 +descriptor line. For each edge $(i,j)$, where $i\in R$ and $j\in S$, 1.2874 +the \verb|SRC| field gives the identification number of vertex $i$, and 1.2875 +the \verb|DST| field gives the identification number of vertex $j$. 1.2876 +Identification numbers are integers between 1 and \verb|NODES|. The 1.2877 +\verb|COST| field contains the cost of edge $(i,j)$. 1.2878 + 1.2879 +\paragraph{Example.} Below here is an example of the data file in 1.2880 +DIMACS format corresponding to the assignment problem shown on Fig~3. 1.2881 + 1.2882 +\newpage 1.2883 + 1.2884 +\begin{footnotesize} 1.2885 +\begin{verbatim} 1.2886 +c sample.asn 1.2887 +c 1.2888 +c This is an example of the assignment problem data 1.2889 +c in DIMACS format. 1.2890 +c 1.2891 +p asn 17 22 1.2892 +c 1.2893 +n 1 1.2894 +n 2 1.2895 +n 3 1.2896 +n 4 1.2897 +n 5 1.2898 +n 6 1.2899 +n 7 1.2900 +n 8 1.2901 +c 1.2902 +a 1 9 13 1.2903 +a 1 10 21 1.2904 +a 1 12 20 1.2905 +a 2 10 12 1.2906 +a 2 12 8 1.2907 +a 2 13 26 1.2908 +a 3 11 22 1.2909 +a 3 13 11 1.2910 +a 4 9 12 1.2911 +a 4 12 36 1.2912 +a 4 14 25 1.2913 +a 5 11 41 1.2914 +a 5 12 40 1.2915 +a 5 13 11 1.2916 +a 5 14 4 1.2917 +a 5 15 8 1.2918 +a 5 16 35 1.2919 +a 5 17 32 1.2920 +a 6 9 13 1.2921 +a 7 10 19 1.2922 +a 8 10 39 1.2923 +a 8 11 15 1.2924 +c 1.2925 +c eof 1.2926 +\end{verbatim} 1.2927 +\end{footnotesize} 1.2928 + 1.2929 +\newpage 1.2930 + 1.2931 +\subsection{glp\_write\_asnprob---write assignment problem data in\\ 1.2932 +DIMACS format} 1.2933 + 1.2934 +\subsubsection*{Synopsis} 1.2935 + 1.2936 +\begin{verbatim} 1.2937 +int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, 1.2938 + const char *fname); 1.2939 +\end{verbatim} 1.2940 + 1.2941 +\subsubsection*{Description} 1.2942 + 1.2943 +The routine \verb|glp_write_asnprob| writes the assignment problem data 1.2944 +to a text file in DIMACS format. 1.2945 + 1.2946 +The parameter \verb|G| is the graph program object, which specifies the 1.2947 +assignment problem instance. 1.2948 + 1.2949 +The parameter \verb|v_set| specifies an offset of the field of type 1.2950 +\verb|int| in the vertex data block, which contains the node set 1.2951 +indicator: 1.2952 + 1.2953 +0 --- the node is in set $R$; 1.2954 + 1.2955 +1 --- the node is in set $S$. 1.2956 + 1.2957 +\noindent 1.2958 +If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs 1.2959 +is in set $R$, and a node having no outgoing arcs is in set $S$. 1.2960 + 1.2961 +The parameter \verb|a_cost| specifies an offset of the field of type 1.2962 +\verb|double| in the arc data block, which contains $c_{ij}$, the edge 1.2963 +cost. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ for all 1.2964 +edges. 1.2965 + 1.2966 +The character string \verb|fname| specifies a name of the text file to 1.2967 +be written out. (If the file name ends with suffix `\verb|.gz|', the 1.2968 +file is assumed to be compressed, in which case the routine performs 1.2969 +automatic compression on writing it.) 1.2970 + 1.2971 +\subsubsection*{Note} 1.2972 + 1.2973 +The routine \verb|glp_write_asnprob| does not check that the specified 1.2974 +graph object correctly represents a bipartite graph. To make sure that 1.2975 +the problem data are correct, use the routine \verb|glp_check_asnprob|. 1.2976 + 1.2977 +\subsubsection*{Returns} 1.2978 + 1.2979 +If the operation was successful, the routine returns zero. Otherwise, 1.2980 +it prints an error message and returns non-zero. 1.2981 + 1.2982 +\newpage 1.2983 + 1.2984 +\subsection{glp\_check\_asnprob---check correctness of assignment 1.2985 +problem data} 1.2986 + 1.2987 +\subsubsection*{Synopsis} 1.2988 + 1.2989 +\begin{verbatim} 1.2990 +int glp_check_asnprob(glp_graph *G, int v_set); 1.2991 +\end{verbatim} 1.2992 + 1.2993 +\subsubsection*{Description} 1.2994 + 1.2995 +The routine \verb|glp_check_asnprob| checks that the specified graph 1.2996 +object \verb|G| correctly represents a bipartite graph. 1.2997 + 1.2998 +The parameter \verb|v_set| specifies an offset of the field of type 1.2999 +\verb|int| in the vertex data block, which contains the node set 1.3000 +indicator: 1.3001 + 1.3002 +0 --- the node is in set $R$; 1.3003 + 1.3004 +1 --- the node is in set $S$. 1.3005 + 1.3006 +\noindent 1.3007 +If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs 1.3008 +is in set $R$, and a node having no outgoing arcs is in set $S$. 1.3009 + 1.3010 +\subsubsection*{Returns} 1.3011 + 1.3012 +The routine \verb|glp_check_asnprob| may return the following codes: 1.3013 + 1.3014 +0 --- the data are correct; 1.3015 + 1.3016 +1 --- the set indicator of some node is 0, however, that node has one 1.3017 +or more incoming arcs; 1.3018 + 1.3019 +2 --- the set indicator of some node is 1, however, that node has one 1.3020 +or more outgoing arcs; 1.3021 + 1.3022 +3 --- the set indicator of some node is invalid (neither 0 nor 1); 1.3023 + 1.3024 +4 --- some node has both incoming and outgoing arcs. 1.3025 + 1.3026 +\subsection{glp\_asnprob\_lp---convert assignment problem to LP} 1.3027 + 1.3028 +\subsubsection*{Synopsis} 1.3029 + 1.3030 +\begin{verbatim} 1.3031 +int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, 1.3032 + int names, int v_set, int a_cost); 1.3033 +\end{verbatim} 1.3034 + 1.3035 +\subsubsection*{Description} 1.3036 + 1.3037 +The routine \verb|glp_asnprob_lp| builds LP problem, which corresponds 1.3038 +to the specified assignment problem. 1.3039 + 1.3040 +The parameter \verb|lp| is the resultant LP problem object to be built. 1.3041 +Note that on entry its current content is erased with the routine 1.3042 +\verb|glp_erase_prob|. 1.3043 + 1.3044 +The parameter \verb|form| defines which LP formulation should be used: 1.3045 + 1.3046 +\verb|GLP_ASN_MIN| --- perfect matching (15)---(18), minimization; 1.3047 + 1.3048 +\verb|GLP_ASN_MAX| --- perfect matching (15)---(18), maximization; 1.3049 + 1.3050 +\verb|GLP_ASN_MMP| --- maximum weighted matching (11)---(14). 1.3051 + 1.3052 +The parameter \verb|G| is the graph program object, which specifies the 1.3053 +assignment problem instance. 1.3054 + 1.3055 +The parameter \verb|names| is a flag. If it is \verb|GLP_ON|, the 1.3056 +routine uses symbolic names of the graph object components to assign 1.3057 +symbolic names to the LP problem object components. If the \verb|flag| 1.3058 +is \verb|GLP_OFF|, no symbolic names are assigned. 1.3059 + 1.3060 +The parameter \verb|v_set| specifies an offset of the field of type 1.3061 +\verb|int| in the vertex data block, which contains the node set 1.3062 +indicator: 1.3063 + 1.3064 +0 --- the node is in set $R$; 1.3065 + 1.3066 +1 --- the node is in set $S$. 1.3067 + 1.3068 +\noindent 1.3069 +If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs 1.3070 +is in set $R$, and a node having no outgoing arcs is in set $S$. 1.3071 + 1.3072 +The parameter \verb|a_cost| specifies an offset of the field of type 1.3073 +\verb|double| in the arc data block, which contains $c_{ij}$, the edge 1.3074 +cost. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ for all 1.3075 +edges. 1.3076 + 1.3077 +\subsubsection*{Returns} 1.3078 + 1.3079 +If the LP problem has been successfully built, the routine 1.3080 +\verb|glp_asnprob_lp| returns zero, otherwise, non-zero (see the 1.3081 +routine \verb|glp_check_asnprob|). 1.3082 + 1.3083 +\subsubsection*{Example} 1.3084 + 1.3085 +The example program below reads the assignment problem instance in 1.3086 +DIMACS format from file `\verb|sample.asn|', converts the instance to 1.3087 +LP (11)---(14), and writes the resultant LP in CPLEX format to file 1.3088 +`\verb|matching.lp|'. 1.3089 + 1.3090 +\begin{footnotesize} 1.3091 +\begin{verbatim} 1.3092 +#include <stddef.h> 1.3093 +#include <glpk.h> 1.3094 + 1.3095 +typedef struct { int set; } v_data; 1.3096 +typedef struct { double cost; } a_data; 1.3097 + 1.3098 +int main(void) 1.3099 +{ glp_graph *G; 1.3100 + glp_prob *P; 1.3101 + G = glp_create_graph(sizeof(v_data), sizeof(a_data)); 1.3102 + glp_read_asnprob(G, offsetof(v_data, set), 1.3103 + offsetof(a_data, cost), "sample.asn"); 1.3104 + P = glp_create_prob(); 1.3105 + glp_asnprob_lp(P, GLP_ASN_MMP, G, GLP_ON, 1.3106 + offsetof(v_data, set), offsetof(a_data, cost)); 1.3107 + glp_delete_graph(G); 1.3108 + glp_write_lp(P, NULL, "matching.lp"); 1.3109 + glp_delete_prob(P); 1.3110 + return 0; 1.3111 +} 1.3112 +\end{verbatim} 1.3113 +\end{footnotesize} 1.3114 + 1.3115 +If `\verb|sample.asn|' is the example data file from the subsection 1.3116 +describing the routine \verb|glp_read_asnprob|, file 1.3117 +`\verb|matching.lp|' may look like follows: 1.3118 + 1.3119 +\begin{footnotesize} 1.3120 +\begin{verbatim} 1.3121 +Maximize 1.3122 + obj: + 20 x(1,12) + 21 x(1,10) + 13 x(1,9) + 26 x(2,13) + 8 x(2,12) 1.3123 + + 12 x(2,10) + 11 x(3,13) + 22 x(3,11) + 25 x(4,14) + 36 x(4,12) 1.3124 + + 12 x(4,9) + 32 x(5,17) + 35 x(5,16) + 8 x(5,15) + 4 x(5,14) 1.3125 + + 11 x(5,13) + 40 x(5,12) + 41 x(5,11) + 13 x(6,9) + 19 x(7,10) 1.3126 + + 15 x(8,11) + 39 x(8,10) 1.3127 + 1.3128 +Subject To 1.3129 + r_1: + x(1,9) + x(1,10) + x(1,12) <= 1 1.3130 + r_2: + x(2,10) + x(2,12) + x(2,13) <= 1 1.3131 + r_3: + x(3,11) + x(3,13) <= 1 1.3132 + r_4: + x(4,9) + x(4,12) + x(4,14) <= 1 1.3133 + r_5: + x(5,11) + x(5,12) + x(5,13) + x(5,14) + x(5,15) + x(5,16) 1.3134 + + x(5,17) <= 1 1.3135 + r_6: + x(6,9) <= 1 1.3136 + r_7: + x(7,10) <= 1 1.3137 + r_8: + x(8,10) + x(8,11) <= 1 1.3138 + r_9: + x(6,9) + x(4,9) + x(1,9) <= 1 1.3139 + r_10: + x(8,10) + x(7,10) + x(2,10) + x(1,10) <= 1 1.3140 + r_11: + x(8,11) + x(5,11) + x(3,11) <= 1 1.3141 + r_12: + x(5,12) + x(4,12) + x(2,12) + x(1,12) <= 1 1.3142 + r_13: + x(5,13) + x(3,13) + x(2,13) <= 1 1.3143 + r_14: + x(5,14) + x(4,14) <= 1 1.3144 + r_15: + x(5,15) <= 1 1.3145 + r_16: + x(5,16) <= 1 1.3146 + r_17: + x(5,17) <= 1 1.3147 + 1.3148 +Bounds 1.3149 + 0 <= x(1,12) <= 1 1.3150 + 0 <= x(1,10) <= 1 1.3151 + 0 <= x(1,9) <= 1 1.3152 + 0 <= x(2,13) <= 1 1.3153 + 0 <= x(2,12) <= 1 1.3154 + 0 <= x(2,10) <= 1 1.3155 + 0 <= x(3,13) <= 1 1.3156 + 0 <= x(3,11) <= 1 1.3157 + 0 <= x(4,14) <= 1 1.3158 + 0 <= x(4,12) <= 1 1.3159 + 0 <= x(4,9) <= 1 1.3160 + 0 <= x(5,17) <= 1 1.3161 + 0 <= x(5,16) <= 1 1.3162 + 0 <= x(5,15) <= 1 1.3163 + 0 <= x(5,14) <= 1 1.3164 + 0 <= x(5,13) <= 1 1.3165 + 0 <= x(5,12) <= 1 1.3166 + 0 <= x(5,11) <= 1 1.3167 + 0 <= x(6,9) <= 1 1.3168 + 0 <= x(7,10) <= 1 1.3169 + 0 <= x(8,11) <= 1 1.3170 + 0 <= x(8,10) <= 1 1.3171 + 1.3172 +End 1.3173 +\end{verbatim} 1.3174 +\end{footnotesize} 1.3175 + 1.3176 +\subsection{glp\_asnprob\_okalg---solve assignment problem with 1.3177 +out-of-kilter algorithm} 1.3178 + 1.3179 +\subsubsection*{Synopsis} 1.3180 + 1.3181 +\begin{verbatim} 1.3182 +int glp_asnprob_okalg(int form, glp_graph *G, int v_set, 1.3183 + int a_cost, double *sol, int a_x); 1.3184 +\end{verbatim} 1.3185 + 1.3186 +\subsubsection*{Description} 1.3187 + 1.3188 +The routine \verb|glp_mincost_okalg| finds optimal solution to the 1.3189 +assignment problem with the out-of-kilter 1.3190 +algorithm.\footnote{GLPK implementation of the out-of-kilter algorithm 1.3191 +is based on the following book: L.~R.~Ford,~Jr., and D.~R.~Fulkerson, 1.3192 +``Flows in Networks,'' The RAND Corp., Report R-375-PR (August 1962), 1.3193 +Chap. III ``Minimal Cost Flow Problems,'' pp.~113-26.} Note that this 1.3194 +routine requires all the problem data to be integer-valued. 1.3195 + 1.3196 +The parameter \verb|form| defines which LP formulation should be used: 1.3197 + 1.3198 +\verb|GLP_ASN_MIN| --- perfect matching (15)---(18), minimization; 1.3199 + 1.3200 +\verb|GLP_ASN_MAX| --- perfect matching (15)---(18), maximization; 1.3201 + 1.3202 +\verb|GLP_ASN_MMP| --- maximum weighted matching (11)---(14). 1.3203 + 1.3204 +The parameter \verb|G| is the graph program object, which specifies the 1.3205 +assignment problem instance. 1.3206 + 1.3207 +The parameter \verb|v_set| specifies an offset of the field of type 1.3208 +\verb|int| in the vertex data block, which contains the node set 1.3209 +indicator: 1.3210 + 1.3211 +0 --- the node is in set $R$; 1.3212 + 1.3213 +1 --- the node is in set $S$. 1.3214 + 1.3215 +\newpage 1.3216 + 1.3217 +\noindent 1.3218 +If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs 1.3219 +is in set $R$, and a node having no outgoing arcs is in set $S$. 1.3220 + 1.3221 +The parameter \verb|a_cost| specifies an offset of the field of type 1.3222 +\verb|double| in the arc data block, which contains $c_{ij}$, the edge 1.3223 +cost. This value must be integer in the range [\verb|-INT_MAX|, 1.3224 +\verb|+INT_MAX|]. If \verb|a_cost| $<0$, it is assumed that $c_{ij}=1$ 1.3225 +for all edges. 1.3226 + 1.3227 +The parameter \verb|sol| specifies a location, to which the routine 1.3228 +stores the objective value (that is, the total cost) found. 1.3229 +If \verb|sol| is \verb|NULL|, the objective value is not stored. 1.3230 + 1.3231 +The parameter \verb|a_x| specifies an offset of the field of type 1.3232 +\verb|int| in the arc data block, to which the routine stores $x_{ij}$. 1.3233 +If \verb|a_x| $<0$, this value is not stored. 1.3234 + 1.3235 +\subsubsection*{Returns} 1.3236 + 1.3237 +\def\arraystretch{1} 1.3238 + 1.3239 +\begin{tabular}{@{}p{25mm}p{97.3mm}@{}} 1.3240 +0 & Optimal solution found.\\ 1.3241 +\verb|GLP_ENOPFS| & No (primal) feasible solution exists.\\ 1.3242 +\verb|GLP_EDATA| & Unable to start the search, because the assignment 1.3243 +problem data are either incorrect (this error is detected by the 1.3244 +routine \verb|glp_check_asnprob|), not integer-valued or out of range.\\ 1.3245 +\verb|GLP_ERANGE| & The search was prematurely terminated because of 1.3246 +integer overflow.\\ 1.3247 +\verb|GLP_EFAIL| & An error has been detected in the program logic. 1.3248 +(If this code is returned for your problem instance, please report to 1.3249 +\verb|<bug-glpk@gnu.org>|.)\\ 1.3250 +\end{tabular} 1.3251 + 1.3252 +\subsubsection*{Comments} 1.3253 + 1.3254 +Since the out-of-kilter algorithm is designed to find a minimal cost 1.3255 +circulation, the routine \verb|glp_asnprob_okalg| converts the original 1.3256 +graph to a network suitable for this algorithm in the following 1.3257 +way:\footnote{The conversion is performed internally and does not change 1.3258 +the original graph program object passed to the routine.} 1.3259 + 1.3260 +1) it replaces each edge $(i,j)$ by arc $(i\rightarrow j)$, 1.3261 +flow $x_{ij}$ through which has zero lower bound ($l_{ij}=0$), unity 1.3262 +upper bound ($u_{ij}=1$), and per-unit cost $+c_{ij}$ (in case of 1.3263 +\verb|GLP_ASN_MIN|), or $-c_{ij}$ (in case of \verb|GLP_ASN_MAX| and 1.3264 +\verb|GLP_ASN_MMP|); 1.3265 + 1.3266 +2) then it adds one auxiliary feedback node $k$; 1.3267 + 1.3268 +\newpage 1.3269 + 1.3270 +3) for each original node $i\in R$ the routine adds auxiliary supply 1.3271 +arc $(k\rightarrow i)$, flow $x_{ki}$ through which is costless 1.3272 +($c_{ki}=0$) and either fixed at 1 ($l_{ki}=u_{ki}=1$, in case of 1.3273 +\verb|GLP_ASN_MIN| and \verb|GLP_ASN_MAX|) or has zero lower bound and 1.3274 +unity upper bound ($l_{ij}=0$, $u_{ij}=1$, in case of 1.3275 +\verb|GLP_ASN_MMP|); 1.3276 + 1.3277 +4) similarly, for each original node $j\in S$ the routine adds 1.3278 +auxiliary demand arc $(j\rightarrow k)$, flow $x_{jk}$ through which is 1.3279 +costless ($c_{jk}=0$) and either fixed at 1 ($l_{jk}=u_{jk}=1$, in case 1.3280 +of \verb|GLP_ASN_MIN| and \verb|GLP_ASN_MAX|) or has zero lower bound 1.3281 +and unity upper bound ($l_{jk}=0$, $u_{jk}=1$, in case of 1.3282 +\verb|GLP_ASN_MMP|). 1.3283 + 1.3284 +\subsubsection*{Example} 1.3285 + 1.3286 +The example program shown below reads the assignment problem instance 1.3287 +in DIMACS format from file `\verb|sample.asn|', solves it by using the 1.3288 +routine \verb|glp_asnprob_okalg|, and writes the solution found to the 1.3289 +standard output. 1.3290 + 1.3291 +\begin{footnotesize} 1.3292 +\begin{verbatim} 1.3293 +#include <stddef.h> 1.3294 +#include <stdio.h> 1.3295 +#include <stdlib.h> 1.3296 +#include <glpk.h> 1.3297 + 1.3298 +typedef struct { int set; } v_data; 1.3299 +typedef struct { double cost; int x; } e_data; 1.3300 + 1.3301 +#define node(v) ((v_data *)((v)->data)) 1.3302 +#define edge(e) ((e_data *)((e)->data)) 1.3303 + 1.3304 +int main(void) 1.3305 +{ glp_graph *G; 1.3306 + glp_vertex *v; 1.3307 + glp_arc *e; 1.3308 + int i, ret; 1.3309 + double sol; 1.3310 + G = glp_create_graph(sizeof(v_data), sizeof(e_data)); 1.3311 + glp_read_asnprob(G, offsetof(v_data, set), 1.3312 + offsetof(e_data, cost), "sample.asn"); 1.3313 + ret = glp_asnprob_okalg(GLP_ASN_MMP, G, 1.3314 + offsetof(v_data, set), offsetof(e_data, cost), &sol, 1.3315 + offsetof(e_data, x)); 1.3316 + printf("ret = %d; sol = %5g\n", ret, sol); 1.3317 + for (i = 1; i <= G->nv; i++) 1.3318 + { v = G->v[i]; 1.3319 + for (e = v->out; e != NULL; e = e->t_next) 1.3320 + printf("edge %2d %2d: x = %d; c = %g\n", 1.3321 + e->tail->i, e->head->i, edge(e)->x, edge(e)->cost); 1.3322 + } 1.3323 + glp_delete_graph(G); 1.3324 + return 0; 1.3325 +} 1.3326 +\end{verbatim} 1.3327 +\end{footnotesize} 1.3328 + 1.3329 +If `\verb|sample.asn|' is the example data file from the subsection 1.3330 +describing the routine \verb|glp_read_asnprob|, the output may look 1.3331 +like follows: 1.3332 + 1.3333 +\begin{footnotesize} 1.3334 +\begin{verbatim} 1.3335 +Reading assignment problem data from `sample.asn'... 1.3336 +Assignment problem has 8 + 9 = 17 nodes and 22 arcs 1.3337 +38 lines were read 1.3338 +ret = 0; sol = 180 1.3339 +edge 1 12: x = 1; c = 20 1.3340 +edge 1 10: x = 0; c = 21 1.3341 +edge 1 9: x = 0; c = 13 1.3342 +edge 2 13: x = 1; c = 26 1.3343 +edge 2 12: x = 0; c = 8 1.3344 +edge 2 10: x = 0; c = 12 1.3345 +edge 3 13: x = 0; c = 11 1.3346 +edge 3 11: x = 1; c = 22 1.3347 +edge 4 14: x = 1; c = 25 1.3348 +edge 4 12: x = 0; c = 36 1.3349 +edge 4 9: x = 0; c = 12 1.3350 +edge 5 17: x = 0; c = 32 1.3351 +edge 5 16: x = 1; c = 35 1.3352 +edge 5 15: x = 0; c = 8 1.3353 +edge 5 14: x = 0; c = 4 1.3354 +edge 5 13: x = 0; c = 11 1.3355 +edge 5 12: x = 0; c = 40 1.3356 +edge 5 11: x = 0; c = 41 1.3357 +edge 6 9: x = 1; c = 13 1.3358 +edge 7 10: x = 0; c = 19 1.3359 +edge 8 11: x = 0; c = 15 1.3360 +edge 8 10: x = 1; c = 39 1.3361 +\end{verbatim} 1.3362 +\end{footnotesize} 1.3363 + 1.3364 +\newpage 1.3365 + 1.3366 +\subsection{glp\_asnprob\_hall---find bipartite matching of maximum 1.3367 +cardinality} 1.3368 + 1.3369 +\subsubsection*{Synopsis} 1.3370 + 1.3371 +\begin{verbatim} 1.3372 +int glp_asnprob_hall(glp_graph *G, int v_set, int a_x); 1.3373 +\end{verbatim} 1.3374 + 1.3375 +\subsubsection*{Description} 1.3376 + 1.3377 +The routine \verb|glp_asnprob_hall| finds a matching of maximal 1.3378 +cardinality in the specified bipartite graph. It uses a version of the 1.3379 +Fortran routine \verb|MC21A| developed by 1.3380 +I.~S.~Duff\footnote{I.~S.~Duff, Algorithm 575: Permutations for 1.3381 +zero-free diagonal, ACM Trans. on Math. Softw. 7 (1981), pp.~387-390.}, 1.3382 +which implements Hall's algorithm.\footnote{M.~Hall, ``An Algorithm for 1.3383 +Distinct Representatives,'' Am. Math. Monthly 63 (1956), pp.~716-717.} 1.3384 + 1.3385 +The parameter \verb|G| is a pointer to the graph program object. 1.3386 + 1.3387 +The parameter \verb|v_set| specifies an offset of the field of type 1.3388 +\verb|int| in the vertex data block, which contains the node set 1.3389 +indicator: 1.3390 + 1.3391 +0 --- the node is in set $R$; 1.3392 + 1.3393 +1 --- the node is in set $S$. 1.3394 + 1.3395 +\noindent 1.3396 +If \verb|v_set| $<0$, it is assumed that a node having no incoming arcs 1.3397 +is in set $R$, and a node having no outgoing arcs is in set $S$. 1.3398 + 1.3399 +The parameter \verb|a_x| specifies an offset of the field of type 1.3400 +\verb|int| in the arc data block, to which the routine stores $x_{ij}$. 1.3401 +If \verb|a_x| $<0$, this value is not stored. 1.3402 + 1.3403 +\subsubsection*{Returns} 1.3404 + 1.3405 +The routine \verb|glp_asnprob_hall| returns the cardinality of the 1.3406 +matching found. However, if the specified graph is incorrect (as 1.3407 +detected by the routine \verb|glp_check_asnprob|), this routine returns 1.3408 +a negative value. 1.3409 + 1.3410 +\subsubsection*{Comments} 1.3411 + 1.3412 +The same solution may be obtained with the routine 1.3413 +\verb|glp_asnprob_okalg| (for LP formulation \verb|GLP_ASN_MMP| and 1.3414 +all edge costs equal to 1). However, the routine \verb|glp_asnprob_hall| 1.3415 +is much faster. 1.3416 + 1.3417 +\newpage 1.3418 + 1.3419 +\subsubsection*{Example} 1.3420 + 1.3421 +The example program shown below reads the assignment problem instance 1.3422 +in DIMACS format from file `\verb|sample.asn|', finds a bipartite 1.3423 +matching of maximal cardinality by using the routine 1.3424 +\verb|glp_asnprob_hall|, and writes the solution found to the standard 1.3425 +output. 1.3426 + 1.3427 +\begin{footnotesize} 1.3428 +\begin{verbatim} 1.3429 +#include <stddef.h> 1.3430 +#include <stdio.h> 1.3431 +#include <stdlib.h> 1.3432 +#include <glpk.h> 1.3433 + 1.3434 +typedef struct { int set; } v_data; 1.3435 +typedef struct { int x; } e_data; 1.3436 + 1.3437 +#define node(v) ((v_data *)((v)->data)) 1.3438 +#define edge(e) ((e_data *)((e)->data)) 1.3439 + 1.3440 +int main(void) 1.3441 +{ glp_graph *G; 1.3442 + glp_vertex *v; 1.3443 + glp_arc *e; 1.3444 + int i, card; 1.3445 + G = glp_create_graph(sizeof(v_data), sizeof(e_data)); 1.3446 + glp_read_asnprob(G, offsetof(v_data, set), -1, 1.3447 + "sample.asn"); 1.3448 + card = glp_asnprob_hall(G, offsetof(v_data, set), 1.3449 + offsetof(e_data, x)); 1.3450 + printf("card = %d\n", card); 1.3451 + for (i = 1; i <= G->nv; i++) 1.3452 + { v = G->v[i]; 1.3453 + for (e = v->out; e != NULL; e = e->t_next) 1.3454 + printf("edge %2d %2d: x = %d\n", 1.3455 + e->tail->i, e->head->i, edge(e)->x); 1.3456 + } 1.3457 + glp_delete_graph(G); 1.3458 + return 0; 1.3459 +} 1.3460 +\end{verbatim} 1.3461 +\end{footnotesize} 1.3462 + 1.3463 +If `\verb|sample.asn|' is the example data file from the subsection 1.3464 +describing the routine \verb|glp_read_asnprob|, the output may look 1.3465 +like follows: 1.3466 + 1.3467 +\begin{footnotesize} 1.3468 +\begin{verbatim} 1.3469 +Reading assignment problem data from `sample.asn'... 1.3470 +Assignment problem has 8 + 9 = 17 nodes and 22 arcs 1.3471 +38 lines were read 1.3472 +card = 7 1.3473 +edge 1 12: x = 1 1.3474 +edge 1 10: x = 0 1.3475 +edge 1 9: x = 0 1.3476 +edge 2 13: x = 1 1.3477 +edge 2 12: x = 0 1.3478 +edge 2 10: x = 0 1.3479 +edge 3 13: x = 0 1.3480 +edge 3 11: x = 1 1.3481 +edge 4 14: x = 1 1.3482 +edge 4 12: x = 0 1.3483 +edge 4 9: x = 0 1.3484 +edge 5 17: x = 1 1.3485 +edge 5 16: x = 0 1.3486 +edge 5 15: x = 0 1.3487 +edge 5 14: x = 0 1.3488 +edge 5 13: x = 0 1.3489 +edge 5 12: x = 0 1.3490 +edge 5 11: x = 0 1.3491 +edge 6 9: x = 1 1.3492 +edge 7 10: x = 1 1.3493 +edge 8 11: x = 0 1.3494 +edge 8 10: x = 0 1.3495 +\end{verbatim} 1.3496 +\end{footnotesize} 1.3497 + 1.3498 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.3499 + 1.3500 +\newpage 1.3501 + 1.3502 +\section{Critical path problem} 1.3503 + 1.3504 +\subsection{Background} 1.3505 + 1.3506 +The {\it critical path problem} (CPP) is stated as follows. Let there 1.3507 +be given a project $J$, which a set of jobs (tasks, activities, etc.). 1.3508 +Performing each job $i\in J$ requires time $t_i\geq 0$. Besides, over 1.3509 +the set $J$ there is given a precedence relation $R\subseteq J\times J$, 1.3510 +where $(i,j)\in R$ means that job $i$ immediately precedes job $j$, i.e. 1.3511 +performing job $j$ cannot start until job $i$ has been completely 1.3512 +performed. The problem is to find starting times $x_i$ for each job 1.3513 +$i\in J$, which satisfy to the precedence relation and minimize the 1.3514 +total duration (makespan) of the project. 1.3515 + 1.3516 +The following is an example of the critical path problem: 1.3517 + 1.3518 +\begin{center} 1.3519 +\begin{tabular}{|c|l|c|c|} 1.3520 +\hline 1.3521 +Job&Desription&Time&Predecessors\\ 1.3522 +\hline 1.3523 +A&Excavate&3&---\\ 1.3524 +B&Lay foundation&4&A\\ 1.3525 +C&Rough plumbing&3&B\\ 1.3526 +D&Frame&10&B\\ 1.3527 +E&Finish exterior&8&D\\ 1.3528 +F&Install HVAC&4&D\\ 1.3529 +G&Rough electric&6&D\\ 1.3530 +H&Sheet rock&8&C, E, F, G\\ 1.3531 +I&Install cabinets&5&H\\ 1.3532 +J&Paint&5&H\\ 1.3533 +K&Final plumbing&4&I\\ 1.3534 +L&Final electric&2&J\\ 1.3535 +M&Install flooring&4&K, L\\ 1.3536 +\hline 1.3537 +\end{tabular} 1.3538 +\end{center} 1.3539 + 1.3540 +Obviously, the project along with the precedence relation can be 1.3541 +represented as a directed graph $G=(J,R)$ called {\it project network}, 1.3542 +where each node $i\in J$ corresponds to a job, and arc 1.3543 +$(i\rightarrow j)\in R$ means that job $i$ immediately precedes job 1.3544 +$j$.\footnote{There exists another network representation of the 1.3545 +critical path problem, where jobs correspond to arcs while nodes 1.3546 +correspond to events introduced to express the precedence relation. 1.3547 +That representation, however, is much less convenient than the one, 1.3548 +where jobs are represented as nodes of the network.} The project network 1.3549 +for the example above is shown on Fig.~4. 1.3550 + 1.3551 +May note that the project network must be acyclic; otherwise, it would 1.3552 +be impossible to satisfy to the precedence relation for any job that 1.3553 +belongs to a cycle. 1.3554 + 1.3555 +\newpage 1.3556 + 1.3557 +\xymatrix 1.3558 +{&&&C|3\ar[rd]&&I|5\ar[r]&K|4\ar[rd]&\\ 1.3559 +A|3\ar[r]&B|4\ar[rru]\ar[rd]&&E|8\ar[r]&H|8\ar[ru]\ar[rd]&&&M|4\\ 1.3560 +&&D|10\ar[ru]\ar[r]\ar[rd]&F|4\ar[ru]&&J|5\ar[r]&L|2\ar[ru]&\\ 1.3561 +&&&G|6\ar[ruu]&&&&\\ 1.3562 +} 1.3563 + 1.3564 +\bigskip 1.3565 + 1.3566 +\noindent\hfil 1.3567 +Fig.~4. An example of the project network. 1.3568 + 1.3569 +\bigskip 1.3570 + 1.3571 +The critical path problem can be naturally formulated as the following 1.3572 +LP problem: 1.3573 + 1.3574 +\medskip 1.3575 + 1.3576 +\noindent 1.3577 +\hspace{.5in}minimize 1.3578 +$$z\eqno(19)$$ 1.3579 +\hspace{.5in}subject to 1.3580 +$$x_i+t_i\leq z\ \ \ \hbox{for all}\ i\in J\ \ \ \ \eqno(20)$$ 1.3581 +$$x_i+t_i\leq x_j\ \ \ \hbox{for all}\ (i,j)\in R\eqno(21)$$ 1.3582 +$$x_i\geq 0\ \ \ \ \ \ \ \hbox{for all}\ i\in J\ \ \eqno(22)$$ 1.3583 + 1.3584 +The inequality constraints (21), which are active in the optimal 1.3585 +solution, define so called {\it critical path} having the following 1.3586 +property: the minimal project duration $z$ can be decreased only by 1.3587 +decreasing the times $t_j$ for jobs on the critical path, and delaying 1.3588 +any critical job delays the entire project. 1.3589 + 1.3590 +\subsection{glp\_cpp---solve critical path problem} 1.3591 + 1.3592 +\subsubsection{Synopsis} 1.3593 + 1.3594 +\begin{verbatim} 1.3595 +double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls); 1.3596 +\end{verbatim} 1.3597 + 1.3598 +\subsubsection{Description} 1.3599 + 1.3600 +The routine \verb|glp_cpp| solves the critical path problem represented 1.3601 +in the form of the project network. 1.3602 + 1.3603 +The parameter \verb|G| is a pointer to the graph object, which 1.3604 +specifies the project network. This graph must be acyclic. Multiple 1.3605 +arcs are allowed being considered as single arcs. 1.3606 + 1.3607 +The parameter \verb|v_t| specifies an offset of the field of type 1.3608 +\verb|double| in the vertex data block, which contains time $t_i\geq 0$ 1.3609 +needed to perform corresponding job $j\in J$. If \verb|v_t| $<0$, it is 1.3610 +assumed that $t_i=1$ for all jobs. 1.3611 + 1.3612 +The parameter \verb|v_es| specifies an offset of the field of type 1.3613 +\verb|double| in the vertex data block, to which the routine stores 1.3614 +the {\it earliest start time} for corresponding job. If \verb|v_es| 1.3615 +$<0$, this time is not stored. 1.3616 + 1.3617 +The parameter \verb|v_ls| specifies an offset of the field of type 1.3618 +\verb|double| in the vertex data block, to which the routine stores 1.3619 +the {\it latest start time} for corresponding job. If \verb|v_ls| 1.3620 +$<0$, this time is not stored. 1.3621 + 1.3622 +The difference between the latest and earliest start times of some job 1.3623 +is called its {\it time reserve}. Delaying a job within its time reserve 1.3624 +does not affect the project duration, so if the time reserve is zero, 1.3625 +the corresponding job is critical. 1.3626 + 1.3627 +\subsubsection{Returns} 1.3628 + 1.3629 +The routine \verb|glp_cpp| returns the minimal project duration, i.e. 1.3630 +minimal time needed to perform all jobs in the project. 1.3631 + 1.3632 +\subsubsection{Example} 1.3633 + 1.3634 +The example program below solves the critical path problem shown on 1.3635 +Fig.~4 by using the routine \verb|glp_cpp| and writes the solution found 1.3636 +to the standard output. 1.3637 + 1.3638 +\begin{footnotesize} 1.3639 +\begin{verbatim} 1.3640 +#include <stddef.h> 1.3641 +#include <stdio.h> 1.3642 +#include <stdlib.h> 1.3643 +#include <glpk.h> 1.3644 + 1.3645 +typedef struct { double t, es, ls; } v_data; 1.3646 + 1.3647 +#define node(v) ((v_data *)((v)->data)) 1.3648 + 1.3649 +int main(void) 1.3650 +{ glp_graph *G; 1.3651 + int i; 1.3652 + double t, es, ef, ls, lf, total; 1.3653 + G = glp_create_graph(sizeof(v_data), 0); 1.3654 + glp_add_vertices(G, 13); 1.3655 + node(G->v[1])->t = 3; /* A: Excavate */ 1.3656 + node(G->v[2])->t = 4; /* B: Lay foundation */ 1.3657 + node(G->v[3])->t = 3; /* C: Rough plumbing */ 1.3658 + node(G->v[4])->t = 10; /* D: Frame */ 1.3659 + node(G->v[5])->t = 8; /* E: Finish exterior */ 1.3660 + node(G->v[6])->t = 4; /* F: Install HVAC */ 1.3661 + node(G->v[7])->t = 6; /* G: Rough elecrtic */ 1.3662 + node(G->v[8])->t = 8; /* H: Sheet rock */ 1.3663 + node(G->v[9])->t = 5; /* I: Install cabinets */ 1.3664 + node(G->v[10])->t = 5; /* J: Paint */ 1.3665 + node(G->v[11])->t = 4; /* K: Final plumbing */ 1.3666 + node(G->v[12])->t = 2; /* L: Final electric */ 1.3667 + node(G->v[13])->t = 4; /* M: Install flooring */ 1.3668 + glp_add_arc(G, 1, 2); /* A precedes B */ 1.3669 + glp_add_arc(G, 2, 3); /* B precedes C */ 1.3670 + glp_add_arc(G, 2, 4); /* B precedes D */ 1.3671 + glp_add_arc(G, 4, 5); /* D precedes E */ 1.3672 + glp_add_arc(G, 4, 6); /* D precedes F */ 1.3673 + glp_add_arc(G, 4, 7); /* D precedes G */ 1.3674 + glp_add_arc(G, 3, 8); /* C precedes H */ 1.3675 + glp_add_arc(G, 5, 8); /* E precedes H */ 1.3676 + glp_add_arc(G, 6, 8); /* F precedes H */ 1.3677 + glp_add_arc(G, 7, 8); /* G precedes H */ 1.3678 + glp_add_arc(G, 8, 9); /* H precedes I */ 1.3679 + glp_add_arc(G, 8, 10); /* H precedes J */ 1.3680 + glp_add_arc(G, 9, 11); /* I precedes K */ 1.3681 + glp_add_arc(G, 10, 12); /* J precedes L */ 1.3682 + glp_add_arc(G, 11, 13); /* K precedes M */ 1.3683 + glp_add_arc(G, 12, 13); /* L precedes M */ 1.3684 + total = glp_cpp(G, offsetof(v_data, t), offsetof(v_data, es), 1.3685 + offsetof(v_data, ls)); 1.3686 + printf("Minimal project duration is %.2f\n\n", total); 1.3687 + printf("Job Time ES EF LS LF\n"); 1.3688 + printf("--- ------ ------ ------ ------ ------\n"); 1.3689 + for (i = 1; i <= G->nv; i++) 1.3690 + { t = node(G->v[i])->t; 1.3691 + es = node(G->v[i])->es; 1.3692 + ef = es + node(G->v[i])->t; 1.3693 + ls = node(G->v[i])->ls; 1.3694 + lf = ls + node(G->v[i])->t; 1.3695 + printf("%3d %6.2f %s %6.2f %6.2f %6.2f %6.2f\n", 1.3696 + i, t, ls - es < 0.001 ? "*" : " ", es, ef, ls, lf); 1.3697 + } 1.3698 + glp_delete_graph(G); 1.3699 + return 0; 1.3700 +} 1.3701 +\end{verbatim} 1.3702 +\end{footnotesize} 1.3703 + 1.3704 +The output from the example program shown below includes job number, 1.3705 +the time needed to perform a job, earliest start time (\verb|ES|), 1.3706 +earliest finish time (\verb|EF|), latest start time (\verb|LS|), and 1.3707 +latest finish time (\verb|LF|) for each job in the project. Critical 1.3708 +jobs are marked by asterisks. 1.3709 + 1.3710 +\newpage 1.3711 + 1.3712 +\begin{footnotesize} 1.3713 +\begin{verbatim} 1.3714 +Minimal project duration is 46.00 1.3715 + 1.3716 +Job Time ES EF LS LF 1.3717 +--- ------ ------ ------ ------ ------ 1.3718 + 1 3.00 * 0.00 3.00 0.00 3.00 1.3719 + 2 4.00 * 3.00 7.00 3.00 7.00 1.3720 + 3 3.00 7.00 10.00 22.00 25.00 1.3721 + 4 10.00 * 7.00 17.00 7.00 17.00 1.3722 + 5 8.00 * 17.00 25.00 17.00 25.00 1.3723 + 6 4.00 17.00 21.00 21.00 25.00 1.3724 + 7 6.00 17.00 23.00 19.00 25.00 1.3725 + 8 8.00 * 25.00 33.00 25.00 33.00 1.3726 + 9 5.00 * 33.00 38.00 33.00 38.00 1.3727 + 10 5.00 33.00 38.00 35.00 40.00 1.3728 + 11 4.00 * 38.00 42.00 38.00 42.00 1.3729 + 12 2.00 38.00 40.00 40.00 42.00 1.3730 + 13 4.00 * 42.00 46.00 42.00 46.00 1.3731 +\end{verbatim} 1.3732 +\end{footnotesize} 1.3733 + 1.3734 +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1.3735 + 1.3736 +\chapter{Graph Optimization API Routines} 1.3737 + 1.3738 +\section{Maximum clique problem} 1.3739 + 1.3740 +\subsection{Background} 1.3741 + 1.3742 +The {\it maximum clique problem (MCP)} is a classic combinatorial 1.3743 +optimization problem. Given an undirected graph $G=(V,E)$, where $V$ is 1.3744 +a set of vertices, and $E$ is a set of edges, this problem is to find 1.3745 +the largest {\it clique} $C\subseteq G$, i.e. the largest induced 1.3746 +complete subgraph. A generalization of this problem is the {\it maximum 1.3747 +weight clique problem (MWCP)}, which is to find a clique $C\subseteq G$ 1.3748 +of the largest weight $\displaystyle\sum_{v\in C}w(v)\rightarrow\max$, 1.3749 +where $w(v)$ is a weight of vertex $v\in V$. 1.3750 + 1.3751 +An example of the maximum weight clique problem is shown on Fig.~5. 1.3752 + 1.3753 +\begin{figure} 1.3754 +\noindent\hfil 1.3755 +\begin{tabular}{c} 1.3756 +{\xymatrix %@C=16pt 1.3757 +{&&&{v_1}\ar@{-}[lllddd]\ar@{-}[llddddd]\ar@{-}[dddddd] 1.3758 +\ar@{-}[rrrddd]&&&\\ 1.3759 +&{v_2}\ar@{-}[rrrr]\ar@{-}[rrrrdddd]\ar@{-}[rrddddd]\ar@{-}[dddd]&&&& 1.3760 +{v_3}\ar@{-}[llllldd]\ar@{-}[lllldddd]\ar@{-}[dddd]&\\ 1.3761 +&&&&&&\\ 1.3762 +{v_4}\ar@{-}[rrrrrr]\ar@{-}[rrrddd]&&&&&&{v_5}\ar@{-}[lllddd] 1.3763 +\ar@{-}[ldd]\\ 1.3764 +&&&&&&\\ 1.3765 +&{v_6}\ar@{-}[rrrr]&&&&{v_7}&\\ 1.3766 +&&&{v_8}&&&\\ 1.3767 +}} 1.3768 +\end{tabular} 1.3769 +\begin{tabular}{r@{\ }c@{\ }l} 1.3770 +$w(v_1)$&=&3\\$w(v_2)$&=&4\\$w(v_3)$&=&8\\$w(v_4)$&=&1\\ 1.3771 +$w(v_5)$&=&5\\$w(v_6)$&=&2\\$w(v_7)$&=&1\\$w(v_8)$&=&3\\ 1.3772 +\end{tabular} 1.3773 + 1.3774 +\begin{center} 1.3775 +Fig.~5. An example of the maximum weight clique problem. 1.3776 +\end{center} 1.3777 +\end{figure} 1.3778 + 1.3779 +\subsection{glp\_wclique\_exact---find maximum weight clique with exact 1.3780 +algorithm} 1.3781 + 1.3782 +\subsubsection*{Synopsis} 1.3783 + 1.3784 +\begin{verbatim} 1.3785 +int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, 1.3786 + int v_set); 1.3787 +\end{verbatim} 1.3788 + 1.3789 +\subsection*{Description} 1.3790 + 1.3791 +The routine {\it glp\_wclique\_exact} finds a maximum weight clique in 1.3792 +the specified undirected graph with the exact algorithm developed by 1.3793 +Patric \"Osterg{\aa}rd.\footnote{P.~R.~J.~\"Osterg{\aa}rd, A new 1.3794 +algorithm for the maximum-weight clique problem, Nordic J. of Computing, 1.3795 +Vol.~8, No.~4, 2001, pp.~424--36.} 1.3796 + 1.3797 +The parameter $G$ is the program object, which specifies an undirected 1.3798 +graph. Each arc $(x\rightarrow y)$ in $G$ is considered as edge 1.3799 +$(x,y)$, self-loops are ignored, and multiple edges, if present, are 1.3800 +replaced (internally) by simple edges. 1.3801 + 1.3802 +The parameter {\it v\_wgt} specifies an offset of the field of type 1.3803 +{\bf double} in the vertex data block, which contains a weight of 1.3804 +corresponding vertex. Vertex weights must be integer-valued in the 1.3805 +range $[0,$ {\it INT\_MAX}$]$. If {\it v\_wgt} $<0$, it is assumed that 1.3806 +all vertices of the graph have the weight 1. 1.3807 + 1.3808 +The parameter {\it sol} specifies a location, to which the routine 1.3809 +stores the weight of the clique found (the clique weight is the sum 1.3810 +of weights of all vertices included in the clique.) If {\it sol} is 1.3811 +{\it NULL}, the solution is not stored. 1.3812 + 1.3813 +The parameter {\it v\_set} specifies an offset of the field of type 1.3814 +{\bf int} in the vertex data block, to which the routines stores a 1.3815 +vertex flag: 1 means that the corresponding vertex is included in the 1.3816 +clique found, and 0 otherwise. If {\it v\_set} $<0$, vertex flags are 1.3817 +not stored. 1.3818 + 1.3819 +\subsubsection*{Returns} 1.3820 + 1.3821 +\def\arraystretch{1} 1.3822 + 1.3823 +\begin{tabular}{@{}p{25mm}p{97.3mm}@{}} 1.3824 +0 & Optimal solution found.\\ 1.3825 +\verb|GLP_EDATA| & Unable to start the search, because some vertex 1.3826 +weights are either not integer-valued or out of range. This code is 1.3827 +also returned if the sum of weights of all vertices exceeds 1.3828 +{\it INT\_MAX}. \\ 1.3829 +\end{tabular} 1.3830 + 1.3831 +\subsubsection*{Notes} 1.3832 + 1.3833 +\noindent\indent 1.3834 +1. The routine {\it glp\_wclique\_exact} finds exact solution. Since 1.3835 +both MCP and MWCP problems are NP-complete, the algorithm may require 1.3836 +exponential time in worst cases. 1.3837 + 1.3838 +2. Internally the specified graph is converted to an adjacency matrix 1.3839 +in {\it dense} format. This requires about $|V|^2/16$ bytes of memory, 1.3840 +where $|V|$ is the number of vertices in the graph. 1.3841 + 1.3842 +\subsubsection*{Example} 1.3843 + 1.3844 +The example program shown below reads a MWCP instance in DIMACS 1.3845 +clique/coloring format from file `\verb|sample.clq|', finds the clique 1.3846 +of largest weight, and writes the solution found to the standard output. 1.3847 + 1.3848 +\begin{footnotesize} 1.3849 +\begin{verbatim} 1.3850 +#include <stddef.h> 1.3851 +#include <stdio.h> 1.3852 +#include <stdlib.h> 1.3853 +#include <glpk.h> 1.3854 + 1.3855 +typedef struct { double wgt; int set; } v_data; 1.3856 + 1.3857 +#define vertex(v) ((v_data *)((v)->data)) 1.3858 + 1.3859 +int main(void) 1.3860 +{ glp_graph *G; 1.3861 + glp_vertex *v; 1.3862 + int i, ret; 1.3863 + double sol; 1.3864 + G = glp_create_graph(sizeof(v_data), 0); 1.3865 + glp_read_ccdata(G, offsetof(v_data, wgt), "sample.clq"); 1.3866 + ret = glp_wclique_exact(G, offsetof(v_data, wgt), &sol, 1.3867 + offsetof(v_data, set)); 1.3868 + printf("ret = %d; sol = %g\n", ret, sol); 1.3869 + for (i = 1; i <= G->nv; i++) 1.3870 + { v = G->v[i]; 1.3871 + printf("vertex %d: weight = %g, flag = %d\n", 1.3872 + i, vertex(v)->wgt, vertex(v)->set); 1.3873 + } 1.3874 + glp_delete_graph(G); 1.3875 + return 0; 1.3876 +} 1.3877 +\end{verbatim} 1.3878 +\end{footnotesize} 1.3879 + 1.3880 +\noindent 1.3881 +For the example shown on Fig.~5 the data file may look like follows: 1.3882 + 1.3883 +\begin{footnotesize} 1.3884 +\begin{verbatim} 1.3885 +c sample.clq 1.3886 +c 1.3887 +c This is an example of the maximum weight clique 1.3888 +c problem in DIMACS clique/coloring format. 1.3889 +c 1.3890 +p edge 8 16 1.3891 +n 1 3 1.3892 +n 2 4 1.3893 +n 3 8 1.3894 +n 5 5 1.3895 +n 6 2 1.3896 +n 8 3 1.3897 +e 1 4 1.3898 +e 1 5 1.3899 +e 1 6 1.3900 +e 1 8 1.3901 +e 2 3 1.3902 +e 2 6 1.3903 +e 2 7 1.3904 +e 2 8 1.3905 +e 3 4 1.3906 +e 3 6 1.3907 +e 3 7 1.3908 +e 4 5 1.3909 +e 4 8 1.3910 +e 5 7 1.3911 +e 5 8 1.3912 +e 6 7 1.3913 +c 1.3914 +c eof 1.3915 +\end{verbatim} 1.3916 +\end{footnotesize} 1.3917 + 1.3918 +\noindent 1.3919 +The corresponding output from the example program is the following: 1.3920 + 1.3921 +\begin{footnotesize} 1.3922 +\begin{verbatim} 1.3923 +Reading graph from `sample.clq'... 1.3924 +Graph has 8 vertices and 16 edges 1.3925 +28 lines were read 1.3926 +ret = 0; sol = 15 1.3927 +vertex 1: weight = 3, flag = 0 1.3928 +vertex 2: weight = 4, flag = 1 1.3929 +vertex 3: weight = 8, flag = 1 1.3930 +vertex 4: weight = 1, flag = 0 1.3931 +vertex 5: weight = 5, flag = 0 1.3932 +vertex 6: weight = 2, flag = 1 1.3933 +vertex 7: weight = 1, flag = 1 1.3934 +vertex 8: weight = 3, flag = 0 1.3935 +\end{verbatim} 1.3936 +\end{footnotesize} 1.3937 + 1.3938 +\end{document}