lemon-project-template-glpk
diff deps/glpk/examples/dea.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/examples/dea.mod Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,222 @@ 1.4 +/* Data Envelopment Analysis (DEA) 1.5 + * 1.6 + * DEA quantifies the relative efficiency of decision making units (DMUs) by 1.7 + * finding the efficient frontier in multiple input multiple output data. The 1.8 + * inputs are resources (eg. number of employees, available machines, ...), 1.9 + * the outputs are productive outputs (eg. contracts made, total sales, ...). 1.10 + * The method is non-parametric. More details are available in the paper 1.11 + * below. 1.12 + * 1.13 + * Models according to: Seiford, Threall, "Recent developments in DEA", 1990. 1.14 + * 1.15 + * Implementation: Sebastian Nowozin <nowozin@gmail.com> 1.16 + */ 1.17 + 1.18 +### SETS ### 1.19 + 1.20 +set dmus; # Decision Making Units (DMU) 1.21 +set inputs; # Input parameters 1.22 +set outputs; # Output parameters 1.23 + 1.24 + 1.25 +### PARAMETERS ### 1.26 + 1.27 +param input_data{dmus,inputs} >= 0; 1.28 +param output_data{dmus,outputs} >= 0; 1.29 + 1.30 + 1.31 +### PROGRAM ### 1.32 + 1.33 +var theta{dmus} >= 0; 1.34 +var lambda{dmus,dmus} >= 0; 1.35 + 1.36 +minimize inefficiency: sum{td in dmus} theta[td]; 1.37 + 1.38 +s.t. output_lower_limit{o in outputs, td in dmus}: 1.39 + sum{d in dmus} lambda[d,td]*output_data[d,o] >= output_data[td,o]; 1.40 +s.t. input_upper_limit{i in inputs, td in dmus}: 1.41 + sum{d in dmus} lambda[d,td]*input_data[d,i] <= theta[td]*input_data[td,i]; 1.42 + 1.43 + s.t. PI1{td in dmus}: 1.44 + sum{d in dmus} lambda[d,td] = 1; 1.45 +/* 1.46 +possibilities: 1.47 + i) (no constraint) 1.48 + ii) s.t. PI1{td in dmus}: 1.49 + sum{d in dmus} lambda[d,td] <= 1; 1.50 + iii) s.t. PI1{td in dmus}: 1.51 + sum{d in dmus} lambda[d,td] >= 1; 1.52 +*/ 1.53 + 1.54 + 1.55 +### SOLVE AND PRINT SOLUTION ### 1.56 + 1.57 +solve; 1.58 + 1.59 +printf "DMU\tEfficiency\n"; 1.60 +for {td in dmus} { 1.61 + printf "%s\t%1.4f\n", td, theta[td]; 1.62 +} 1.63 + 1.64 +### DATA ### 1.65 + 1.66 +data; 1.67 + 1.68 +set dmus := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1.69 + 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 1.70 + 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1.71 + 61 62 63 64 65 66 67 68 69 ; 1.72 +set inputs := AvgInventory LaborCost OperatingCost Population ; 1.73 +set outputs := PrescrVol kDollarValue ; 1.74 + 1.75 +param input_data default 0.0 : 1.76 + 1.77 + AvgInventory LaborCost OperatingCost Population := 1.78 + 1.79 +1 8000 17030 1280 1410 1.80 +2 9000 25890 2779 1523 1.81 +3 13694 29076 2372 1354 1.82 +4 4250 17506 1385 822 1.83 +5 6500 23208 639 746 1.84 +6 7000 12946 802 1281 1.85 +7 4500 18001 1130 1016 1.86 +8 5000 14473 1097 1070 1.87 +9 27000 31760 5559 1694 1.88 +10 21560 50972 15010 1910 1.89 +11 15000 39523 4799 1745 1.90 +12 8500 13076 3489 1353 1.91 +13 35000 35427 1704 500 1.92 +14 18000 27554 2882 1016 1.93 +15 59750 53848 14208 2500 1.94 +16 19200 38253 1480 2293 1.95 +17 40000 109404 83016 2718 1.96 +18 8466 18198 1278 2877 1.97 +19 16000 40891 7599 4150 1.98 +20 10000 45444 5556 4421 1.99 +21 25000 35623 2121 3883 1.100 +22 14000 20192 5515 3519 1.101 +23 12500 34973 10475 32366 1.102 +24 17260 32284 14498 3393 1.103 +25 7000 17920 7585 4489 1.104 +26 14000 42094 3742 2217 1.105 +27 16400 35422 14236 4641 1.106 +28 13000 19100 3529 5968 1.107 +29 30000 72167 8656 8715 1.108 +30 12530 19970 1714 5968 1.109 +31 31500 39183 4919 5607 1.110 +32 10000 32048 3483 7324 1.111 +33 22000 68877 12279 8685 1.112 +34 10000 29812 3332 8685 1.113 +35 16000 47686 2507 5420 1.114 +36 10000 33415 4738 7703 1.115 +37 9000 12359 4603 4665 1.116 +38 16439 23614 2989 6317 1.117 +39 14500 36069 1793 31839 1.118 +40 39000 76307 9539 15619 1.119 +41 24927 40706 12661 30213 1.120 +42 13858 39267 4609 34719 1.121 +43 33375 29509 11323 31839 1.122 +44 29044 44482 5542 34719 1.123 +45 32257 61365 20550 32366 1.124 +46 8800 49671 3306 43561 1.125 +47 47000 40425 10396 31263 1.126 +48 12000 33034 4915 31263 1.127 +49 28000 69163 4688 15173 1.128 +50 13300 28931 16735 73064 1.129 +51 13500 29758 4260 62309 1.130 +52 24000 40927 8285 23166 1.131 +53 16000 40403 2131 99836 1.132 +54 17000 38730 2539 60348 1.133 +55 25000 35978 2502 99836 1.134 +56 16000 37509 6278 99836 1.135 +57 20000 46950 10715 85925 1.136 +58 14000 35966 3144 85925 1.137 +59 22000 68318 8015 108987 1.138 +60 21879 69537 7778 108987 1.139 +61 15000 25425 2812 201404 1.140 +62 10000 19508 2454 201404 1.141 +63 20000 28191 3367 201404 1.142 +64 18000 37073 8624 108987 1.143 +65 19051 23763 3496 201404 1.144 +66 15000 28642 3366 201404 1.145 +67 10000 35919 3868 201404 1.146 +68 24000 54653 26494 108987 1.147 +69 1800 6276 3413 60348 1.148 + ; 1.149 + 1.150 +param output_data default 0.0 : 1.151 + 1.152 + PrescrVol kDollarValue := 1.153 + 1.154 +1 12293 61.00 1.155 +2 18400 92.00 1.156 +3 16789 92.65 1.157 +4 10700 45.00 1.158 +5 9800 50.00 1.159 +6 6500 29.00 1.160 +7 8200 56.00 1.161 +8 8680 45.00 1.162 +9 33800 183.00 1.163 +10 23710 156.00 1.164 +11 24000 120.00 1.165 +12 17500 75.00 1.166 +13 25000 130.00 1.167 +14 26000 122.00 1.168 +15 26830 178.513 1.169 +16 16600 106.00 1.170 +17 90000 450.00 1.171 +18 11140 73.624 1.172 +19 25868 136.00 1.173 +20 32700 191.295 1.174 +21 29117 152.864 1.175 +22 18000 100.00 1.176 +23 11100 60.00 1.177 +24 23030 137.778 1.178 +25 10656 58.00 1.179 +26 24682 152.095 1.180 +27 26908 120.00 1.181 +28 16464 80.00 1.182 +29 57000 321.00 1.183 +30 17532 94.747 1.184 +31 30035 168.00 1.185 +32 16000 100.00 1.186 +33 63700 277.00 1.187 +34 18000 90.00 1.188 +35 27339 139.134 1.189 +36 19500 116.00 1.190 +37 13000 80.00 1.191 +38 15370 102.00 1.192 +39 18446 90.00 1.193 +40 56000 260.00 1.194 +41 73845 364.951 1.195 +42 28600 145.00 1.196 +43 27000 243.00 1.197 +44 52423 279.816 1.198 +45 73759 363.388 1.199 +46 20500 80.00 1.200 +47 27100 115.00 1.201 +48 15000 110.00 1.202 +49 50895 277.852 1.203 +50 19707 128.00 1.204 +51 17994 78.80 1.205 +52 36135 167.222 1.206 +53 30000 153.00 1.207 +54 26195 125.00 1.208 +55 28000 216.00 1.209 +56 24658 152.551 1.210 +57 36850 190.00 1.211 +58 29250 183.69 1.212 +59 50000 250.00 1.213 +60 40078 265.443 1.214 +61 20200 110.00 1.215 +62 12500 75.00 1.216 +63 30890 195.00 1.217 +64 31000 175.00 1.218 +65 31277 192.992 1.219 +66 11500 75.00 1.220 +67 30000 175.668 1.221 +68 38383 190.00 1.222 +69 2075 8.650 1.223 + ; 1.224 + 1.225 +end;