lemon-project-template-glpk
diff deps/glpk/examples/sat.mod @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/examples/sat.mod Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,201 @@ 1.4 +/* SAT, Satisfiability Problem */ 1.5 + 1.6 +/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */ 1.7 + 1.8 +param m, integer, > 0; 1.9 +/* number of clauses */ 1.10 + 1.11 +param n, integer, > 0; 1.12 +/* number of variables */ 1.13 + 1.14 +set C{1..m}; 1.15 +/* clauses; each clause C[i], i = 1, ..., m, is disjunction of some 1.16 + variables or their negations; in the data section each clause is 1.17 + coded as a set of indices of corresponding variables, where negative 1.18 + indices mean negation; for example, the clause (x3 or not x7 or x11) 1.19 + is coded as the set { 3, -7, 11 } */ 1.20 + 1.21 +var x{1..n}, binary; 1.22 +/* main variables */ 1.23 + 1.24 +/* To solve the satisfiability problem means to determine all variables 1.25 + x[j] such that conjunction of all clauses C[1] and ... and C[m] takes 1.26 + on the value true, i.e. all clauses are satisfied. 1.27 + 1.28 + Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t'' 1.29 + are either variables or their negations. The condition of satisfying 1.30 + C[i] can be most naturally written as: 1.31 + 1.32 + t + t' + ... + t'' >= 1, (1) 1.33 + 1.34 + where t, t', t'' have to be replaced by either x[j] or (1 - x[j]). 1.35 + The formulation (1) leads to the mip problem with no objective, i.e. 1.36 + to a feasibility problem. 1.37 + 1.38 + Another, more practical way is to write the condition for C[i] as: 1.39 + 1.40 + t + t' + ... + t'' + y[i] >= 1, (2) 1.41 + 1.42 + where y[i] is an auxiliary binary variable, and minimize the sum of 1.43 + y[i]. If the sum is zero, all y[i] are also zero, and therefore all 1.44 + clauses are satisfied. If the sum is minimal but non-zero, its value 1.45 + shows the number of clauses which cannot be satisfied. */ 1.46 + 1.47 +var y{1..m}, binary, >= 0; 1.48 +/* auxiliary variables */ 1.49 + 1.50 +s.t. c{i in 1..m}: 1.51 + sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1; 1.52 +/* the condition (2) */ 1.53 + 1.54 +minimize unsat: sum{i in 1..m} y[i]; 1.55 +/* number of unsatisfied clauses */ 1.56 + 1.57 +data; 1.58 + 1.59 +/* These data correspond to the instance hole6 (pigeon hole problem for 1.60 + 6 holes) from SATLIB, the Satisfiability Library, which is part of 1.61 + the collection at the Forschungsinstitut fuer anwendungsorientierte 1.62 + Wissensverarbeitung in Ulm Germany */ 1.63 + 1.64 +/* The optimal solution is 1 (one clause cannot be satisfied) */ 1.65 + 1.66 +param m := 133; 1.67 + 1.68 +param n := 42; 1.69 + 1.70 +set C[1] := -1 -7; 1.71 +set C[2] := -1 -13; 1.72 +set C[3] := -1 -19; 1.73 +set C[4] := -1 -25; 1.74 +set C[5] := -1 -31; 1.75 +set C[6] := -1 -37; 1.76 +set C[7] := -7 -13; 1.77 +set C[8] := -7 -19; 1.78 +set C[9] := -7 -25; 1.79 +set C[10] := -7 -31; 1.80 +set C[11] := -7 -37; 1.81 +set C[12] := -13 -19; 1.82 +set C[13] := -13 -25; 1.83 +set C[14] := -13 -31; 1.84 +set C[15] := -13 -37; 1.85 +set C[16] := -19 -25; 1.86 +set C[17] := -19 -31; 1.87 +set C[18] := -19 -37; 1.88 +set C[19] := -25 -31; 1.89 +set C[20] := -25 -37; 1.90 +set C[21] := -31 -37; 1.91 +set C[22] := -2 -8; 1.92 +set C[23] := -2 -14; 1.93 +set C[24] := -2 -20; 1.94 +set C[25] := -2 -26; 1.95 +set C[26] := -2 -32; 1.96 +set C[27] := -2 -38; 1.97 +set C[28] := -8 -14; 1.98 +set C[29] := -8 -20; 1.99 +set C[30] := -8 -26; 1.100 +set C[31] := -8 -32; 1.101 +set C[32] := -8 -38; 1.102 +set C[33] := -14 -20; 1.103 +set C[34] := -14 -26; 1.104 +set C[35] := -14 -32; 1.105 +set C[36] := -14 -38; 1.106 +set C[37] := -20 -26; 1.107 +set C[38] := -20 -32; 1.108 +set C[39] := -20 -38; 1.109 +set C[40] := -26 -32; 1.110 +set C[41] := -26 -38; 1.111 +set C[42] := -32 -38; 1.112 +set C[43] := -3 -9; 1.113 +set C[44] := -3 -15; 1.114 +set C[45] := -3 -21; 1.115 +set C[46] := -3 -27; 1.116 +set C[47] := -3 -33; 1.117 +set C[48] := -3 -39; 1.118 +set C[49] := -9 -15; 1.119 +set C[50] := -9 -21; 1.120 +set C[51] := -9 -27; 1.121 +set C[52] := -9 -33; 1.122 +set C[53] := -9 -39; 1.123 +set C[54] := -15 -21; 1.124 +set C[55] := -15 -27; 1.125 +set C[56] := -15 -33; 1.126 +set C[57] := -15 -39; 1.127 +set C[58] := -21 -27; 1.128 +set C[59] := -21 -33; 1.129 +set C[60] := -21 -39; 1.130 +set C[61] := -27 -33; 1.131 +set C[62] := -27 -39; 1.132 +set C[63] := -33 -39; 1.133 +set C[64] := -4 -10; 1.134 +set C[65] := -4 -16; 1.135 +set C[66] := -4 -22; 1.136 +set C[67] := -4 -28; 1.137 +set C[68] := -4 -34; 1.138 +set C[69] := -4 -40; 1.139 +set C[70] := -10 -16; 1.140 +set C[71] := -10 -22; 1.141 +set C[72] := -10 -28; 1.142 +set C[73] := -10 -34; 1.143 +set C[74] := -10 -40; 1.144 +set C[75] := -16 -22; 1.145 +set C[76] := -16 -28; 1.146 +set C[77] := -16 -34; 1.147 +set C[78] := -16 -40; 1.148 +set C[79] := -22 -28; 1.149 +set C[80] := -22 -34; 1.150 +set C[81] := -22 -40; 1.151 +set C[82] := -28 -34; 1.152 +set C[83] := -28 -40; 1.153 +set C[84] := -34 -40; 1.154 +set C[85] := -5 -11; 1.155 +set C[86] := -5 -17; 1.156 +set C[87] := -5 -23; 1.157 +set C[88] := -5 -29; 1.158 +set C[89] := -5 -35; 1.159 +set C[90] := -5 -41; 1.160 +set C[91] := -11 -17; 1.161 +set C[92] := -11 -23; 1.162 +set C[93] := -11 -29; 1.163 +set C[94] := -11 -35; 1.164 +set C[95] := -11 -41; 1.165 +set C[96] := -17 -23; 1.166 +set C[97] := -17 -29; 1.167 +set C[98] := -17 -35; 1.168 +set C[99] := -17 -41; 1.169 +set C[100] := -23 -29; 1.170 +set C[101] := -23 -35; 1.171 +set C[102] := -23 -41; 1.172 +set C[103] := -29 -35; 1.173 +set C[104] := -29 -41; 1.174 +set C[105] := -35 -41; 1.175 +set C[106] := -6 -12; 1.176 +set C[107] := -6 -18; 1.177 +set C[108] := -6 -24; 1.178 +set C[109] := -6 -30; 1.179 +set C[110] := -6 -36; 1.180 +set C[111] := -6 -42; 1.181 +set C[112] := -12 -18; 1.182 +set C[113] := -12 -24; 1.183 +set C[114] := -12 -30; 1.184 +set C[115] := -12 -36; 1.185 +set C[116] := -12 -42; 1.186 +set C[117] := -18 -24; 1.187 +set C[118] := -18 -30; 1.188 +set C[119] := -18 -36; 1.189 +set C[120] := -18 -42; 1.190 +set C[121] := -24 -30; 1.191 +set C[122] := -24 -36; 1.192 +set C[123] := -24 -42; 1.193 +set C[124] := -30 -36; 1.194 +set C[125] := -30 -42; 1.195 +set C[126] := -36 -42; 1.196 +set C[127] := 6 5 4 3 2 1; 1.197 +set C[128] := 12 11 10 9 8 7; 1.198 +set C[129] := 18 17 16 15 14 13; 1.199 +set C[130] := 24 23 22 21 20 19; 1.200 +set C[131] := 30 29 28 27 26 25; 1.201 +set C[132] := 36 35 34 33 32 31; 1.202 +set C[133] := 42 41 40 39 38 37; 1.203 + 1.204 +end;