lemon-project-template-glpk
diff deps/glpk/src/glpbfd.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/src/glpbfd.c Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,481 @@ 1.4 +/* glpbfd.c (LP basis factorization driver) */ 1.5 + 1.6 +/*********************************************************************** 1.7 +* This code is part of GLPK (GNU Linear Programming Kit). 1.8 +* 1.9 +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 1.10 +* 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, 1.11 +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. 1.12 +* E-mail: <mao@gnu.org>. 1.13 +* 1.14 +* GLPK is free software: you can redistribute it and/or modify it 1.15 +* under the terms of the GNU General Public License as published by 1.16 +* the Free Software Foundation, either version 3 of the License, or 1.17 +* (at your option) any later version. 1.18 +* 1.19 +* GLPK is distributed in the hope that it will be useful, but WITHOUT 1.20 +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 1.21 +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 1.22 +* License for more details. 1.23 +* 1.24 +* You should have received a copy of the GNU General Public License 1.25 +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. 1.26 +***********************************************************************/ 1.27 + 1.28 +typedef struct BFD BFD; 1.29 + 1.30 +#define GLPBFD_PRIVATE 1.31 +#include "glpapi.h" 1.32 +#include "glpfhv.h" 1.33 +#include "glplpf.h" 1.34 + 1.35 +/* CAUTION: DO NOT CHANGE THE LIMIT BELOW */ 1.36 + 1.37 +#define M_MAX 100000000 /* = 100*10^6 */ 1.38 +/* maximal order of the basis matrix */ 1.39 + 1.40 +struct BFD 1.41 +{ /* LP basis factorization */ 1.42 + int valid; 1.43 + /* factorization is valid only if this flag is set */ 1.44 + int type; 1.45 + /* factorization type: 1.46 + GLP_BF_FT - LUF + Forrest-Tomlin 1.47 + GLP_BF_BG - LUF + Schur compl. + Bartels-Golub 1.48 + GLP_BF_GR - LUF + Schur compl. + Givens rotation */ 1.49 + FHV *fhv; 1.50 + /* LP basis factorization (GLP_BF_FT) */ 1.51 + LPF *lpf; 1.52 + /* LP basis factorization (GLP_BF_BG, GLP_BF_GR) */ 1.53 + int lu_size; /* luf.sv_size */ 1.54 + double piv_tol; /* luf.piv_tol */ 1.55 + int piv_lim; /* luf.piv_lim */ 1.56 + int suhl; /* luf.suhl */ 1.57 + double eps_tol; /* luf.eps_tol */ 1.58 + double max_gro; /* luf.max_gro */ 1.59 + int nfs_max; /* fhv.hh_max */ 1.60 + double upd_tol; /* fhv.upd_tol */ 1.61 + int nrs_max; /* lpf.n_max */ 1.62 + int rs_size; /* lpf.v_size */ 1.63 + /* internal control parameters */ 1.64 + int upd_lim; 1.65 + /* the factorization update limit */ 1.66 + int upd_cnt; 1.67 + /* the factorization update count */ 1.68 +}; 1.69 + 1.70 +/*********************************************************************** 1.71 +* NAME 1.72 +* 1.73 +* bfd_create_it - create LP basis factorization 1.74 +* 1.75 +* SYNOPSIS 1.76 +* 1.77 +* #include "glpbfd.h" 1.78 +* BFD *bfd_create_it(void); 1.79 +* 1.80 +* DESCRIPTION 1.81 +* 1.82 +* The routine bfd_create_it creates a program object, which represents 1.83 +* a factorization of LP basis. 1.84 +* 1.85 +* RETURNS 1.86 +* 1.87 +* The routine bfd_create_it returns a pointer to the object created. */ 1.88 + 1.89 +BFD *bfd_create_it(void) 1.90 +{ BFD *bfd; 1.91 + bfd = xmalloc(sizeof(BFD)); 1.92 + bfd->valid = 0; 1.93 + bfd->type = GLP_BF_FT; 1.94 + bfd->fhv = NULL; 1.95 + bfd->lpf = NULL; 1.96 + bfd->lu_size = 0; 1.97 + bfd->piv_tol = 0.10; 1.98 + bfd->piv_lim = 4; 1.99 + bfd->suhl = 1; 1.100 + bfd->eps_tol = 1e-15; 1.101 + bfd->max_gro = 1e+10; 1.102 + bfd->nfs_max = 100; 1.103 + bfd->upd_tol = 1e-6; 1.104 + bfd->nrs_max = 100; 1.105 + bfd->rs_size = 1000; 1.106 + bfd->upd_lim = -1; 1.107 + bfd->upd_cnt = 0; 1.108 + return bfd; 1.109 +} 1.110 + 1.111 +/**********************************************************************/ 1.112 + 1.113 +void bfd_set_parm(BFD *bfd, const void *_parm) 1.114 +{ /* change LP basis factorization control parameters */ 1.115 + const glp_bfcp *parm = _parm; 1.116 + xassert(bfd != NULL); 1.117 + bfd->type = parm->type; 1.118 + bfd->lu_size = parm->lu_size; 1.119 + bfd->piv_tol = parm->piv_tol; 1.120 + bfd->piv_lim = parm->piv_lim; 1.121 + bfd->suhl = parm->suhl; 1.122 + bfd->eps_tol = parm->eps_tol; 1.123 + bfd->max_gro = parm->max_gro; 1.124 + bfd->nfs_max = parm->nfs_max; 1.125 + bfd->upd_tol = parm->upd_tol; 1.126 + bfd->nrs_max = parm->nrs_max; 1.127 + bfd->rs_size = parm->rs_size; 1.128 + return; 1.129 +} 1.130 + 1.131 +/*********************************************************************** 1.132 +* NAME 1.133 +* 1.134 +* bfd_factorize - compute LP basis factorization 1.135 +* 1.136 +* SYNOPSIS 1.137 +* 1.138 +* #include "glpbfd.h" 1.139 +* int bfd_factorize(BFD *bfd, int m, int bh[], int (*col)(void *info, 1.140 +* int j, int ind[], double val[]), void *info); 1.141 +* 1.142 +* DESCRIPTION 1.143 +* 1.144 +* The routine bfd_factorize computes the factorization of the basis 1.145 +* matrix B specified by the routine col. 1.146 +* 1.147 +* The parameter bfd specified the basis factorization data structure 1.148 +* created with the routine bfd_create_it. 1.149 +* 1.150 +* The parameter m specifies the order of B, m > 0. 1.151 +* 1.152 +* The array bh specifies the basis header: bh[j], 1 <= j <= m, is the 1.153 +* number of j-th column of B in some original matrix. The array bh is 1.154 +* optional and can be specified as NULL. 1.155 +* 1.156 +* The formal routine col specifies the matrix B to be factorized. To 1.157 +* obtain j-th column of A the routine bfd_factorize calls the routine 1.158 +* col with the parameter j (1 <= j <= n). In response the routine col 1.159 +* should store row indices and numerical values of non-zero elements 1.160 +* of j-th column of B to locations ind[1,...,len] and val[1,...,len], 1.161 +* respectively, where len is the number of non-zeros in j-th column 1.162 +* returned on exit. Neither zero nor duplicate elements are allowed. 1.163 +* 1.164 +* The parameter info is a transit pointer passed to the routine col. 1.165 +* 1.166 +* RETURNS 1.167 +* 1.168 +* 0 The factorization has been successfully computed. 1.169 +* 1.170 +* BFD_ESING 1.171 +* The specified matrix is singular within the working precision. 1.172 +* 1.173 +* BFD_ECOND 1.174 +* The specified matrix is ill-conditioned. 1.175 +* 1.176 +* For more details see comments to the routine luf_factorize. */ 1.177 + 1.178 +int bfd_factorize(BFD *bfd, int m, const int bh[], int (*col) 1.179 + (void *info, int j, int ind[], double val[]), void *info) 1.180 +{ LUF *luf; 1.181 + int nov, ret; 1.182 + xassert(bfd != NULL); 1.183 + xassert(1 <= m && m <= M_MAX); 1.184 + /* invalidate the factorization */ 1.185 + bfd->valid = 0; 1.186 + /* create the factorization, if necessary */ 1.187 + nov = 0; 1.188 + switch (bfd->type) 1.189 + { case GLP_BF_FT: 1.190 + if (bfd->lpf != NULL) 1.191 + lpf_delete_it(bfd->lpf), bfd->lpf = NULL; 1.192 + if (bfd->fhv == NULL) 1.193 + bfd->fhv = fhv_create_it(), nov = 1; 1.194 + break; 1.195 + case GLP_BF_BG: 1.196 + case GLP_BF_GR: 1.197 + if (bfd->fhv != NULL) 1.198 + fhv_delete_it(bfd->fhv), bfd->fhv = NULL; 1.199 + if (bfd->lpf == NULL) 1.200 + bfd->lpf = lpf_create_it(), nov = 1; 1.201 + break; 1.202 + default: 1.203 + xassert(bfd != bfd); 1.204 + } 1.205 + /* set control parameters specific to LUF */ 1.206 + if (bfd->fhv != NULL) 1.207 + luf = bfd->fhv->luf; 1.208 + else if (bfd->lpf != NULL) 1.209 + luf = bfd->lpf->luf; 1.210 + else 1.211 + xassert(bfd != bfd); 1.212 + if (nov) luf->new_sva = bfd->lu_size; 1.213 + luf->piv_tol = bfd->piv_tol; 1.214 + luf->piv_lim = bfd->piv_lim; 1.215 + luf->suhl = bfd->suhl; 1.216 + luf->eps_tol = bfd->eps_tol; 1.217 + luf->max_gro = bfd->max_gro; 1.218 + /* set control parameters specific to FHV */ 1.219 + if (bfd->fhv != NULL) 1.220 + { if (nov) bfd->fhv->hh_max = bfd->nfs_max; 1.221 + bfd->fhv->upd_tol = bfd->upd_tol; 1.222 + } 1.223 + /* set control parameters specific to LPF */ 1.224 + if (bfd->lpf != NULL) 1.225 + { if (nov) bfd->lpf->n_max = bfd->nrs_max; 1.226 + if (nov) bfd->lpf->v_size = bfd->rs_size; 1.227 + } 1.228 + /* try to factorize the basis matrix */ 1.229 + if (bfd->fhv != NULL) 1.230 + { switch (fhv_factorize(bfd->fhv, m, col, info)) 1.231 + { case 0: 1.232 + break; 1.233 + case FHV_ESING: 1.234 + ret = BFD_ESING; 1.235 + goto done; 1.236 + case FHV_ECOND: 1.237 + ret = BFD_ECOND; 1.238 + goto done; 1.239 + default: 1.240 + xassert(bfd != bfd); 1.241 + } 1.242 + } 1.243 + else if (bfd->lpf != NULL) 1.244 + { switch (lpf_factorize(bfd->lpf, m, bh, col, info)) 1.245 + { case 0: 1.246 + /* set the Schur complement update type */ 1.247 + switch (bfd->type) 1.248 + { case GLP_BF_BG: 1.249 + /* Bartels-Golub update */ 1.250 + bfd->lpf->scf->t_opt = SCF_TBG; 1.251 + break; 1.252 + case GLP_BF_GR: 1.253 + /* Givens rotation update */ 1.254 + bfd->lpf->scf->t_opt = SCF_TGR; 1.255 + break; 1.256 + default: 1.257 + xassert(bfd != bfd); 1.258 + } 1.259 + break; 1.260 + case LPF_ESING: 1.261 + ret = BFD_ESING; 1.262 + goto done; 1.263 + case LPF_ECOND: 1.264 + ret = BFD_ECOND; 1.265 + goto done; 1.266 + default: 1.267 + xassert(bfd != bfd); 1.268 + } 1.269 + } 1.270 + else 1.271 + xassert(bfd != bfd); 1.272 + /* the basis matrix has been successfully factorized */ 1.273 + bfd->valid = 1; 1.274 + bfd->upd_cnt = 0; 1.275 + ret = 0; 1.276 +done: /* return to the calling program */ 1.277 + return ret; 1.278 +} 1.279 + 1.280 +/*********************************************************************** 1.281 +* NAME 1.282 +* 1.283 +* bfd_ftran - perform forward transformation (solve system B*x = b) 1.284 +* 1.285 +* SYNOPSIS 1.286 +* 1.287 +* #include "glpbfd.h" 1.288 +* void bfd_ftran(BFD *bfd, double x[]); 1.289 +* 1.290 +* DESCRIPTION 1.291 +* 1.292 +* The routine bfd_ftran performs forward transformation, i.e. solves 1.293 +* the system B*x = b, where B is the basis matrix, x is the vector of 1.294 +* unknowns to be computed, b is the vector of right-hand sides. 1.295 +* 1.296 +* On entry elements of the vector b should be stored in dense format 1.297 +* in locations x[1], ..., x[m], where m is the number of rows. On exit 1.298 +* the routine stores elements of the vector x in the same locations. */ 1.299 + 1.300 +void bfd_ftran(BFD *bfd, double x[]) 1.301 +{ xassert(bfd != NULL); 1.302 + xassert(bfd->valid); 1.303 + if (bfd->fhv != NULL) 1.304 + fhv_ftran(bfd->fhv, x); 1.305 + else if (bfd->lpf != NULL) 1.306 + lpf_ftran(bfd->lpf, x); 1.307 + else 1.308 + xassert(bfd != bfd); 1.309 + return; 1.310 +} 1.311 + 1.312 +/*********************************************************************** 1.313 +* NAME 1.314 +* 1.315 +* bfd_btran - perform backward transformation (solve system B'*x = b) 1.316 +* 1.317 +* SYNOPSIS 1.318 +* 1.319 +* #include "glpbfd.h" 1.320 +* void bfd_btran(BFD *bfd, double x[]); 1.321 +* 1.322 +* DESCRIPTION 1.323 +* 1.324 +* The routine bfd_btran performs backward transformation, i.e. solves 1.325 +* the system B'*x = b, where B' is a matrix transposed to the basis 1.326 +* matrix B, x is the vector of unknowns to be computed, b is the vector 1.327 +* of right-hand sides. 1.328 +* 1.329 +* On entry elements of the vector b should be stored in dense format 1.330 +* in locations x[1], ..., x[m], where m is the number of rows. On exit 1.331 +* the routine stores elements of the vector x in the same locations. */ 1.332 + 1.333 +void bfd_btran(BFD *bfd, double x[]) 1.334 +{ xassert(bfd != NULL); 1.335 + xassert(bfd->valid); 1.336 + if (bfd->fhv != NULL) 1.337 + fhv_btran(bfd->fhv, x); 1.338 + else if (bfd->lpf != NULL) 1.339 + lpf_btran(bfd->lpf, x); 1.340 + else 1.341 + xassert(bfd != bfd); 1.342 + return; 1.343 +} 1.344 + 1.345 +/*********************************************************************** 1.346 +* NAME 1.347 +* 1.348 +* bfd_update_it - update LP basis factorization 1.349 +* 1.350 +* SYNOPSIS 1.351 +* 1.352 +* #include "glpbfd.h" 1.353 +* int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[], 1.354 +* const double val[]); 1.355 +* 1.356 +* DESCRIPTION 1.357 +* 1.358 +* The routine bfd_update_it updates the factorization of the basis 1.359 +* matrix B after replacing its j-th column by a new vector. 1.360 +* 1.361 +* The parameter j specifies the number of column of B, which has been 1.362 +* replaced, 1 <= j <= m, where m is the order of B. 1.363 +* 1.364 +* The parameter bh specifies the basis header entry for the new column 1.365 +* of B, which is the number of the new column in some original matrix. 1.366 +* This parameter is optional and can be specified as 0. 1.367 +* 1.368 +* Row indices and numerical values of non-zero elements of the new 1.369 +* column of B should be placed in locations ind[1], ..., ind[len] and 1.370 +* val[1], ..., val[len], resp., where len is the number of non-zeros 1.371 +* in the column. Neither zero nor duplicate elements are allowed. 1.372 +* 1.373 +* RETURNS 1.374 +* 1.375 +* 0 The factorization has been successfully updated. 1.376 +* 1.377 +* BFD_ESING 1.378 +* New basis matrix is singular within the working precision. 1.379 +* 1.380 +* BFD_ECHECK 1.381 +* The factorization is inaccurate. 1.382 +* 1.383 +* BFD_ELIMIT 1.384 +* Factorization update limit has been reached. 1.385 +* 1.386 +* BFD_EROOM 1.387 +* Overflow of the sparse vector area. 1.388 +* 1.389 +* In case of non-zero return code the factorization becomes invalid. 1.390 +* It should not be used until it has been recomputed with the routine 1.391 +* bfd_factorize. */ 1.392 + 1.393 +int bfd_update_it(BFD *bfd, int j, int bh, int len, const int ind[], 1.394 + const double val[]) 1.395 +{ int ret; 1.396 + xassert(bfd != NULL); 1.397 + xassert(bfd->valid); 1.398 + /* try to update the factorization */ 1.399 + if (bfd->fhv != NULL) 1.400 + { switch (fhv_update_it(bfd->fhv, j, len, ind, val)) 1.401 + { case 0: 1.402 + break; 1.403 + case FHV_ESING: 1.404 + bfd->valid = 0; 1.405 + ret = BFD_ESING; 1.406 + goto done; 1.407 + case FHV_ECHECK: 1.408 + bfd->valid = 0; 1.409 + ret = BFD_ECHECK; 1.410 + goto done; 1.411 + case FHV_ELIMIT: 1.412 + bfd->valid = 0; 1.413 + ret = BFD_ELIMIT; 1.414 + goto done; 1.415 + case FHV_EROOM: 1.416 + bfd->valid = 0; 1.417 + ret = BFD_EROOM; 1.418 + goto done; 1.419 + default: 1.420 + xassert(bfd != bfd); 1.421 + } 1.422 + } 1.423 + else if (bfd->lpf != NULL) 1.424 + { switch (lpf_update_it(bfd->lpf, j, bh, len, ind, val)) 1.425 + { case 0: 1.426 + break; 1.427 + case LPF_ESING: 1.428 + bfd->valid = 0; 1.429 + ret = BFD_ESING; 1.430 + goto done; 1.431 + case LPF_ELIMIT: 1.432 + bfd->valid = 0; 1.433 + ret = BFD_ELIMIT; 1.434 + goto done; 1.435 + default: 1.436 + xassert(bfd != bfd); 1.437 + } 1.438 + } 1.439 + else 1.440 + xassert(bfd != bfd); 1.441 + /* the factorization has been successfully updated */ 1.442 + /* increase the update count */ 1.443 + bfd->upd_cnt++; 1.444 + ret = 0; 1.445 +done: /* return to the calling program */ 1.446 + return ret; 1.447 +} 1.448 + 1.449 +/**********************************************************************/ 1.450 + 1.451 +int bfd_get_count(BFD *bfd) 1.452 +{ /* determine factorization update count */ 1.453 + xassert(bfd != NULL); 1.454 + xassert(bfd->valid); 1.455 + return bfd->upd_cnt; 1.456 +} 1.457 + 1.458 +/*********************************************************************** 1.459 +* NAME 1.460 +* 1.461 +* bfd_delete_it - delete LP basis factorization 1.462 +* 1.463 +* SYNOPSIS 1.464 +* 1.465 +* #include "glpbfd.h" 1.466 +* void bfd_delete_it(BFD *bfd); 1.467 +* 1.468 +* DESCRIPTION 1.469 +* 1.470 +* The routine bfd_delete_it deletes LP basis factorization specified 1.471 +* by the parameter fhv and frees all memory allocated to this program 1.472 +* object. */ 1.473 + 1.474 +void bfd_delete_it(BFD *bfd) 1.475 +{ xassert(bfd != NULL); 1.476 + if (bfd->fhv != NULL) 1.477 + fhv_delete_it(bfd->fhv); 1.478 + if (bfd->lpf != NULL) 1.479 + lpf_delete_it(bfd->lpf); 1.480 + xfree(bfd); 1.481 + return; 1.482 +} 1.483 + 1.484 +/* eof */