lemon-project-template-glpk
diff deps/glpk/src/glpluf.h @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/src/glpluf.h Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,326 @@ 1.4 +/* glpluf.h (LU-factorization) */ 1.5 + 1.6 +/*********************************************************************** 1.7 +* This code is part of GLPK (GNU Linear Programming Kit). 1.8 +* 1.9 +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 1.10 +* 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics, 1.11 +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. 1.12 +* E-mail: <mao@gnu.org>. 1.13 +* 1.14 +* GLPK is free software: you can redistribute it and/or modify it 1.15 +* under the terms of the GNU General Public License as published by 1.16 +* the Free Software Foundation, either version 3 of the License, or 1.17 +* (at your option) any later version. 1.18 +* 1.19 +* GLPK is distributed in the hope that it will be useful, but WITHOUT 1.20 +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 1.21 +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 1.22 +* License for more details. 1.23 +* 1.24 +* You should have received a copy of the GNU General Public License 1.25 +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. 1.26 +***********************************************************************/ 1.27 + 1.28 +#ifndef GLPLUF_H 1.29 +#define GLPLUF_H 1.30 + 1.31 +/*********************************************************************** 1.32 +* The structure LUF defines LU-factorization of a square matrix A and 1.33 +* is the following quartet: 1.34 +* 1.35 +* [A] = (F, V, P, Q), (1) 1.36 +* 1.37 +* where F and V are such matrices that 1.38 +* 1.39 +* A = F * V, (2) 1.40 +* 1.41 +* and P and Q are such permutation matrices that the matrix 1.42 +* 1.43 +* L = P * F * inv(P) (3) 1.44 +* 1.45 +* is lower triangular with unity diagonal, and the matrix 1.46 +* 1.47 +* U = P * V * Q (4) 1.48 +* 1.49 +* is upper triangular. All the matrices have the order n. 1.50 +* 1.51 +* Matrices F and V are stored in row- and column-wise sparse format 1.52 +* as row and column linked lists of non-zero elements. Unity elements 1.53 +* on the main diagonal of matrix F are not stored. Pivot elements of 1.54 +* matrix V (which correspond to diagonal elements of matrix U) are 1.55 +* stored separately in an ordinary array. 1.56 +* 1.57 +* Permutation matrices P and Q are stored in ordinary arrays in both 1.58 +* row- and column-like formats. 1.59 +* 1.60 +* Matrices L and U are completely defined by matrices F, V, P, and Q 1.61 +* and therefore not stored explicitly. 1.62 +* 1.63 +* The factorization (1)-(4) is a version of LU-factorization. Indeed, 1.64 +* from (3) and (4) it follows that: 1.65 +* 1.66 +* F = inv(P) * L * P, 1.67 +* 1.68 +* U = inv(P) * U * inv(Q), 1.69 +* 1.70 +* and substitution into (2) leads to: 1.71 +* 1.72 +* A = F * V = inv(P) * L * U * inv(Q). 1.73 +* 1.74 +* For more details see the program documentation. */ 1.75 + 1.76 +typedef struct LUF LUF; 1.77 + 1.78 +struct LUF 1.79 +{ /* LU-factorization of a square matrix */ 1.80 + int n_max; 1.81 + /* maximal value of n (increased automatically, if necessary) */ 1.82 + int n; 1.83 + /* the order of matrices A, F, V, P, Q */ 1.84 + int valid; 1.85 + /* the factorization is valid only if this flag is set */ 1.86 + /*--------------------------------------------------------------*/ 1.87 + /* matrix F in row-wise format */ 1.88 + int *fr_ptr; /* int fr_ptr[1+n_max]; */ 1.89 + /* fr_ptr[i], i = 1,...,n, is a pointer to the first element of 1.90 + i-th row in SVA */ 1.91 + int *fr_len; /* int fr_len[1+n_max]; */ 1.92 + /* fr_len[i], i = 1,...,n, is the number of elements in i-th row 1.93 + (except unity diagonal element) */ 1.94 + /*--------------------------------------------------------------*/ 1.95 + /* matrix F in column-wise format */ 1.96 + int *fc_ptr; /* int fc_ptr[1+n_max]; */ 1.97 + /* fc_ptr[j], j = 1,...,n, is a pointer to the first element of 1.98 + j-th column in SVA */ 1.99 + int *fc_len; /* int fc_len[1+n_max]; */ 1.100 + /* fc_len[j], j = 1,...,n, is the number of elements in j-th 1.101 + column (except unity diagonal element) */ 1.102 + /*--------------------------------------------------------------*/ 1.103 + /* matrix V in row-wise format */ 1.104 + int *vr_ptr; /* int vr_ptr[1+n_max]; */ 1.105 + /* vr_ptr[i], i = 1,...,n, is a pointer to the first element of 1.106 + i-th row in SVA */ 1.107 + int *vr_len; /* int vr_len[1+n_max]; */ 1.108 + /* vr_len[i], i = 1,...,n, is the number of elements in i-th row 1.109 + (except pivot element) */ 1.110 + int *vr_cap; /* int vr_cap[1+n_max]; */ 1.111 + /* vr_cap[i], i = 1,...,n, is the capacity of i-th row, i.e. 1.112 + maximal number of elements which can be stored in the row 1.113 + without relocating it, vr_cap[i] >= vr_len[i] */ 1.114 + double *vr_piv; /* double vr_piv[1+n_max]; */ 1.115 + /* vr_piv[p], p = 1,...,n, is the pivot element v[p,q] which 1.116 + corresponds to a diagonal element of matrix U = P*V*Q */ 1.117 + /*--------------------------------------------------------------*/ 1.118 + /* matrix V in column-wise format */ 1.119 + int *vc_ptr; /* int vc_ptr[1+n_max]; */ 1.120 + /* vc_ptr[j], j = 1,...,n, is a pointer to the first element of 1.121 + j-th column in SVA */ 1.122 + int *vc_len; /* int vc_len[1+n_max]; */ 1.123 + /* vc_len[j], j = 1,...,n, is the number of elements in j-th 1.124 + column (except pivot element) */ 1.125 + int *vc_cap; /* int vc_cap[1+n_max]; */ 1.126 + /* vc_cap[j], j = 1,...,n, is the capacity of j-th column, i.e. 1.127 + maximal number of elements which can be stored in the column 1.128 + without relocating it, vc_cap[j] >= vc_len[j] */ 1.129 + /*--------------------------------------------------------------*/ 1.130 + /* matrix P */ 1.131 + int *pp_row; /* int pp_row[1+n_max]; */ 1.132 + /* pp_row[i] = j means that P[i,j] = 1 */ 1.133 + int *pp_col; /* int pp_col[1+n_max]; */ 1.134 + /* pp_col[j] = i means that P[i,j] = 1 */ 1.135 + /* if i-th row or column of matrix F is i'-th row or column of 1.136 + matrix L, or if i-th row of matrix V is i'-th row of matrix U, 1.137 + then pp_row[i'] = i and pp_col[i] = i' */ 1.138 + /*--------------------------------------------------------------*/ 1.139 + /* matrix Q */ 1.140 + int *qq_row; /* int qq_row[1+n_max]; */ 1.141 + /* qq_row[i] = j means that Q[i,j] = 1 */ 1.142 + int *qq_col; /* int qq_col[1+n_max]; */ 1.143 + /* qq_col[j] = i means that Q[i,j] = 1 */ 1.144 + /* if j-th column of matrix V is j'-th column of matrix U, then 1.145 + qq_row[j] = j' and qq_col[j'] = j */ 1.146 + /*--------------------------------------------------------------*/ 1.147 + /* the Sparse Vector Area (SVA) is a set of locations used to 1.148 + store sparse vectors representing rows and columns of matrices 1.149 + F and V; each location is a doublet (ind, val), where ind is 1.150 + an index, and val is a numerical value of a sparse vector 1.151 + element; in the whole each sparse vector is a set of adjacent 1.152 + locations defined by a pointer to the first element and the 1.153 + number of elements; these pointer and number are stored in the 1.154 + corresponding matrix data structure (see above); the left part 1.155 + of SVA is used to store rows and columns of matrix V, and its 1.156 + right part is used to store rows and columns of matrix F; the 1.157 + middle part of SVA contains free (unused) locations */ 1.158 + int sv_size; 1.159 + /* the size of SVA, in locations; all locations are numbered by 1.160 + integers 1, ..., n, and location 0 is not used; if necessary, 1.161 + the SVA size is automatically increased */ 1.162 + int sv_beg, sv_end; 1.163 + /* SVA partitioning pointers: 1.164 + locations from 1 to sv_beg-1 belong to the left part 1.165 + locations from sv_beg to sv_end-1 belong to the middle part 1.166 + locations from sv_end to sv_size belong to the right part 1.167 + the size of the middle part is (sv_end - sv_beg) */ 1.168 + int *sv_ind; /* sv_ind[1+sv_size]; */ 1.169 + /* sv_ind[k], 1 <= k <= sv_size, is the index field of k-th 1.170 + location */ 1.171 + double *sv_val; /* sv_val[1+sv_size]; */ 1.172 + /* sv_val[k], 1 <= k <= sv_size, is the value field of k-th 1.173 + location */ 1.174 + /*--------------------------------------------------------------*/ 1.175 + /* in order to efficiently defragment the left part of SVA there 1.176 + is a doubly linked list of rows and columns of matrix V, where 1.177 + rows are numbered by 1, ..., n, while columns are numbered by 1.178 + n+1, ..., n+n, that allows uniquely identifying each row and 1.179 + column of V by only one integer; in this list rows and columns 1.180 + are ordered by ascending their pointers vr_ptr and vc_ptr */ 1.181 + int sv_head; 1.182 + /* the number of leftmost row/column */ 1.183 + int sv_tail; 1.184 + /* the number of rightmost row/column */ 1.185 + int *sv_prev; /* int sv_prev[1+n_max+n_max]; */ 1.186 + /* sv_prev[k], k = 1,...,n+n, is the number of a row/column which 1.187 + precedes k-th row/column */ 1.188 + int *sv_next; /* int sv_next[1+n_max+n_max]; */ 1.189 + /* sv_next[k], k = 1,...,n+n, is the number of a row/column which 1.190 + succedes k-th row/column */ 1.191 + /*--------------------------------------------------------------*/ 1.192 + /* working segment (used only during factorization) */ 1.193 + double *vr_max; /* int vr_max[1+n_max]; */ 1.194 + /* vr_max[i], 1 <= i <= n, is used only if i-th row of matrix V 1.195 + is active (i.e. belongs to the active submatrix), and is the 1.196 + largest magnitude of elements in i-th row; if vr_max[i] < 0, 1.197 + the largest magnitude is not known yet and should be computed 1.198 + by the pivoting routine */ 1.199 + /*--------------------------------------------------------------*/ 1.200 + /* in order to efficiently implement Markowitz strategy and Duff 1.201 + search technique there are two families {R[0], R[1], ..., R[n]} 1.202 + and {C[0], C[1], ..., C[n]}; member R[k] is the set of active 1.203 + rows of matrix V, which have k non-zeros, and member C[k] is 1.204 + the set of active columns of V, which have k non-zeros in the 1.205 + active submatrix (i.e. in the active rows); each set R[k] and 1.206 + C[k] is implemented as a separate doubly linked list */ 1.207 + int *rs_head; /* int rs_head[1+n_max]; */ 1.208 + /* rs_head[k], 0 <= k <= n, is the number of first active row, 1.209 + which has k non-zeros */ 1.210 + int *rs_prev; /* int rs_prev[1+n_max]; */ 1.211 + /* rs_prev[i], 1 <= i <= n, is the number of previous row, which 1.212 + has the same number of non-zeros as i-th row */ 1.213 + int *rs_next; /* int rs_next[1+n_max]; */ 1.214 + /* rs_next[i], 1 <= i <= n, is the number of next row, which has 1.215 + the same number of non-zeros as i-th row */ 1.216 + int *cs_head; /* int cs_head[1+n_max]; */ 1.217 + /* cs_head[k], 0 <= k <= n, is the number of first active column, 1.218 + which has k non-zeros (in the active rows) */ 1.219 + int *cs_prev; /* int cs_prev[1+n_max]; */ 1.220 + /* cs_prev[j], 1 <= j <= n, is the number of previous column, 1.221 + which has the same number of non-zeros (in the active rows) as 1.222 + j-th column */ 1.223 + int *cs_next; /* int cs_next[1+n_max]; */ 1.224 + /* cs_next[j], 1 <= j <= n, is the number of next column, which 1.225 + has the same number of non-zeros (in the active rows) as j-th 1.226 + column */ 1.227 + /* (end of working segment) */ 1.228 + /*--------------------------------------------------------------*/ 1.229 + /* working arrays */ 1.230 + int *flag; /* int flag[1+n_max]; */ 1.231 + /* integer working array */ 1.232 + double *work; /* double work[1+n_max]; */ 1.233 + /* floating-point working array */ 1.234 + /*--------------------------------------------------------------*/ 1.235 + /* control parameters */ 1.236 + int new_sva; 1.237 + /* new required size of the sparse vector area, in locations; set 1.238 + automatically by the factorizing routine */ 1.239 + double piv_tol; 1.240 + /* threshold pivoting tolerance, 0 < piv_tol < 1; element v[i,j] 1.241 + of the active submatrix fits to be pivot if it satisfies to the 1.242 + stability criterion |v[i,j]| >= piv_tol * max |v[i,*]|, i.e. if 1.243 + it is not very small in the magnitude among other elements in 1.244 + the same row; decreasing this parameter gives better sparsity 1.245 + at the expense of numerical accuracy and vice versa */ 1.246 + int piv_lim; 1.247 + /* maximal allowable number of pivot candidates to be considered; 1.248 + if piv_lim pivot candidates have been considered, the pivoting 1.249 + routine terminates the search with the best candidate found */ 1.250 + int suhl; 1.251 + /* if this flag is set, the pivoting routine applies a heuristic 1.252 + proposed by Uwe Suhl: if a column of the active submatrix has 1.253 + no eligible pivot candidates (i.e. all its elements do not 1.254 + satisfy to the stability criterion), the routine excludes it 1.255 + from futher consideration until it becomes column singleton; 1.256 + in many cases this allows reducing the time needed for pivot 1.257 + searching */ 1.258 + double eps_tol; 1.259 + /* epsilon tolerance; each element of the active submatrix, whose 1.260 + magnitude is less than eps_tol, is replaced by exact zero */ 1.261 + double max_gro; 1.262 + /* maximal allowable growth of elements of matrix V during all 1.263 + the factorization process; if on some eliminaion step the ratio 1.264 + big_v / max_a (see below) becomes greater than max_gro, matrix 1.265 + A is considered as ill-conditioned (assuming that the pivoting 1.266 + tolerance piv_tol has an appropriate value) */ 1.267 + /*--------------------------------------------------------------*/ 1.268 + /* some statistics */ 1.269 + int nnz_a; 1.270 + /* the number of non-zeros in matrix A */ 1.271 + int nnz_f; 1.272 + /* the number of non-zeros in matrix F (except diagonal elements, 1.273 + which are not stored) */ 1.274 + int nnz_v; 1.275 + /* the number of non-zeros in matrix V (except its pivot elements, 1.276 + which are stored in a separate array) */ 1.277 + double max_a; 1.278 + /* the largest magnitude of elements of matrix A */ 1.279 + double big_v; 1.280 + /* the largest magnitude of elements of matrix V appeared in the 1.281 + active submatrix during all the factorization process */ 1.282 + int rank; 1.283 + /* estimated rank of matrix A */ 1.284 +}; 1.285 + 1.286 +/* return codes: */ 1.287 +#define LUF_ESING 1 /* singular matrix */ 1.288 +#define LUF_ECOND 2 /* ill-conditioned matrix */ 1.289 + 1.290 +#define luf_create_it _glp_luf_create_it 1.291 +LUF *luf_create_it(void); 1.292 +/* create LU-factorization */ 1.293 + 1.294 +#define luf_defrag_sva _glp_luf_defrag_sva 1.295 +void luf_defrag_sva(LUF *luf); 1.296 +/* defragment the sparse vector area */ 1.297 + 1.298 +#define luf_enlarge_row _glp_luf_enlarge_row 1.299 +int luf_enlarge_row(LUF *luf, int i, int cap); 1.300 +/* enlarge row capacity */ 1.301 + 1.302 +#define luf_enlarge_col _glp_luf_enlarge_col 1.303 +int luf_enlarge_col(LUF *luf, int j, int cap); 1.304 +/* enlarge column capacity */ 1.305 + 1.306 +#define luf_factorize _glp_luf_factorize 1.307 +int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, 1.308 + int ind[], double val[]), void *info); 1.309 +/* compute LU-factorization */ 1.310 + 1.311 +#define luf_f_solve _glp_luf_f_solve 1.312 +void luf_f_solve(LUF *luf, int tr, double x[]); 1.313 +/* solve system F*x = b or F'*x = b */ 1.314 + 1.315 +#define luf_v_solve _glp_luf_v_solve 1.316 +void luf_v_solve(LUF *luf, int tr, double x[]); 1.317 +/* solve system V*x = b or V'*x = b */ 1.318 + 1.319 +#define luf_a_solve _glp_luf_a_solve 1.320 +void luf_a_solve(LUF *luf, int tr, double x[]); 1.321 +/* solve system A*x = b or A'*x = b */ 1.322 + 1.323 +#define luf_delete_it _glp_luf_delete_it 1.324 +void luf_delete_it(LUF *luf); 1.325 +/* delete LU-factorization */ 1.326 + 1.327 +#endif 1.328 + 1.329 +/* eof */