lemon-project-template-glpk
diff deps/glpk/src/glpnet08.c @ 9:33de93886c88
Import GLPK 4.47
author | Alpar Juttner <alpar@cs.elte.hu> |
---|---|
date | Sun, 06 Nov 2011 20:59:10 +0100 |
parents | |
children |
line diff
1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000 1.2 +++ b/deps/glpk/src/glpnet08.c Sun Nov 06 20:59:10 2011 +0100 1.3 @@ -0,0 +1,241 @@ 1.4 +/* glpnet08.c */ 1.5 + 1.6 +/*********************************************************************** 1.7 +* This code is part of GLPK (GNU Linear Programming Kit). 1.8 +* 1.9 +* Two subroutines sub() and wclique() below are intended to find a 1.10 +* maximum weight clique in a given undirected graph. These subroutines 1.11 +* are slightly modified version of the program WCLIQUE developed by 1.12 +* Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based 1.13 +* on ideas from the article "P. R. J. Ostergard, A new algorithm for 1.14 +* the maximum-weight clique problem, submitted for publication", which 1.15 +* in turn is a generalization of the algorithm for unweighted graphs 1.16 +* presented in "P. R. J. Ostergard, A fast algorithm for the maximum 1.17 +* clique problem, submitted for publication". 1.18 +* 1.19 +* USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE. 1.20 +* 1.21 +* Changes were made by Andrew Makhorin <mao@gnu.org>. 1.22 +* 1.23 +* GLPK is free software: you can redistribute it and/or modify it 1.24 +* under the terms of the GNU General Public License as published by 1.25 +* the Free Software Foundation, either version 3 of the License, or 1.26 +* (at your option) any later version. 1.27 +* 1.28 +* GLPK is distributed in the hope that it will be useful, but WITHOUT 1.29 +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 1.30 +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 1.31 +* License for more details. 1.32 +* 1.33 +* You should have received a copy of the GNU General Public License 1.34 +* along with GLPK. If not, see <http://www.gnu.org/licenses/>. 1.35 +***********************************************************************/ 1.36 + 1.37 +#include "glpenv.h" 1.38 +#include "glpnet.h" 1.39 + 1.40 +/*********************************************************************** 1.41 +* NAME 1.42 +* 1.43 +* wclique - find maximum weight clique with Ostergard's algorithm 1.44 +* 1.45 +* SYNOPSIS 1.46 +* 1.47 +* int wclique(int n, const int w[], const unsigned char a[], 1.48 +* int ind[]); 1.49 +* 1.50 +* DESCRIPTION 1.51 +* 1.52 +* The routine wclique finds a maximum weight clique in an undirected 1.53 +* graph with Ostergard's algorithm. 1.54 +* 1.55 +* INPUT PARAMETERS 1.56 +* 1.57 +* n is the number of vertices, n > 0. 1.58 +* 1.59 +* w[i], i = 1,...,n, is a weight of vertex i. 1.60 +* 1.61 +* a[*] is the strict (without main diagonal) lower triangle of the 1.62 +* graph adjacency matrix in packed format. 1.63 +* 1.64 +* OUTPUT PARAMETER 1.65 +* 1.66 +* ind[k], k = 1,...,size, is the number of a vertex included in the 1.67 +* clique found, 1 <= ind[k] <= n, where size is the number of vertices 1.68 +* in the clique returned on exit. 1.69 +* 1.70 +* RETURNS 1.71 +* 1.72 +* The routine returns the clique size, i.e. the number of vertices in 1.73 +* the clique. */ 1.74 + 1.75 +struct csa 1.76 +{ /* common storage area */ 1.77 + int n; 1.78 + /* number of vertices */ 1.79 + const int *wt; /* int wt[0:n-1]; */ 1.80 + /* weights */ 1.81 + const unsigned char *a; 1.82 + /* adjacency matrix (packed lower triangle without main diag.) */ 1.83 + int record; 1.84 + /* weight of best clique */ 1.85 + int rec_level; 1.86 + /* number of vertices in best clique */ 1.87 + int *rec; /* int rec[0:n-1]; */ 1.88 + /* best clique so far */ 1.89 + int *clique; /* int clique[0:n-1]; */ 1.90 + /* table for pruning */ 1.91 + int *set; /* int set[0:n-1]; */ 1.92 + /* current clique */ 1.93 +}; 1.94 + 1.95 +#define n (csa->n) 1.96 +#define wt (csa->wt) 1.97 +#define a (csa->a) 1.98 +#define record (csa->record) 1.99 +#define rec_level (csa->rec_level) 1.100 +#define rec (csa->rec) 1.101 +#define clique (csa->clique) 1.102 +#define set (csa->set) 1.103 + 1.104 +#if 0 1.105 +static int is_edge(struct csa *csa, int i, int j) 1.106 +{ /* if there is arc (i,j), the routine returns true; otherwise 1.107 + false; 0 <= i, j < n */ 1.108 + int k; 1.109 + xassert(0 <= i && i < n); 1.110 + xassert(0 <= j && j < n); 1.111 + if (i == j) return 0; 1.112 + if (i < j) k = i, i = j, j = k; 1.113 + k = (i * (i - 1)) / 2 + j; 1.114 + return a[k / CHAR_BIT] & 1.115 + (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); 1.116 +} 1.117 +#else 1.118 +#define is_edge(csa, i, j) ((i) == (j) ? 0 : \ 1.119 + (i) > (j) ? is_edge1(i, j) : is_edge1(j, i)) 1.120 +#define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j)) 1.121 +#define is_edge2(k) (a[(k) / CHAR_BIT] & \ 1.122 + (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT))) 1.123 +#endif 1.124 + 1.125 +static void sub(struct csa *csa, int ct, int table[], int level, 1.126 + int weight, int l_weight) 1.127 +{ int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable; 1.128 + newtable = xcalloc(n, sizeof(int)); 1.129 + if (ct <= 0) 1.130 + { /* 0 or 1 elements left; include these */ 1.131 + if (ct == 0) 1.132 + { set[level++] = table[0]; 1.133 + weight += l_weight; 1.134 + } 1.135 + if (weight > record) 1.136 + { record = weight; 1.137 + rec_level = level; 1.138 + for (i = 0; i < level; i++) rec[i] = set[i]; 1.139 + } 1.140 + goto done; 1.141 + } 1.142 + for (i = ct; i >= 0; i--) 1.143 + { if ((level == 0) && (i < ct)) goto done; 1.144 + k = table[i]; 1.145 + if ((level > 0) && (clique[k] <= (record - weight))) 1.146 + goto done; /* prune */ 1.147 + set[level] = k; 1.148 + curr_weight = weight + wt[k]; 1.149 + l_weight -= wt[k]; 1.150 + if (l_weight <= (record - curr_weight)) 1.151 + goto done; /* prune */ 1.152 + p1 = newtable; 1.153 + p2 = table; 1.154 + left_weight = 0; 1.155 + while (p2 < table + i) 1.156 + { j = *p2++; 1.157 + if (is_edge(csa, j, k)) 1.158 + { *p1++ = j; 1.159 + left_weight += wt[j]; 1.160 + } 1.161 + } 1.162 + if (left_weight <= (record - curr_weight)) continue; 1.163 + sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight, 1.164 + left_weight); 1.165 + } 1.166 +done: xfree(newtable); 1.167 + return; 1.168 +} 1.169 + 1.170 +int wclique(int _n, const int w[], const unsigned char _a[], int ind[]) 1.171 +{ struct csa _csa, *csa = &_csa; 1.172 + int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos; 1.173 + glp_long timer; 1.174 + n = _n; 1.175 + xassert(n > 0); 1.176 + wt = &w[1]; 1.177 + a = _a; 1.178 + record = 0; 1.179 + rec_level = 0; 1.180 + rec = &ind[1]; 1.181 + clique = xcalloc(n, sizeof(int)); 1.182 + set = xcalloc(n, sizeof(int)); 1.183 + used = xcalloc(n, sizeof(int)); 1.184 + nwt = xcalloc(n, sizeof(int)); 1.185 + pos = xcalloc(n, sizeof(int)); 1.186 + /* start timer */ 1.187 + timer = xtime(); 1.188 + /* order vertices */ 1.189 + for (i = 0; i < n; i++) 1.190 + { nwt[i] = 0; 1.191 + for (j = 0; j < n; j++) 1.192 + if (is_edge(csa, i, j)) nwt[i] += wt[j]; 1.193 + } 1.194 + for (i = 0; i < n; i++) 1.195 + used[i] = 0; 1.196 + for (i = n-1; i >= 0; i--) 1.197 + { max_wt = -1; 1.198 + max_nwt = -1; 1.199 + for (j = 0; j < n; j++) 1.200 + { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt 1.201 + && nwt[j] > max_nwt))) 1.202 + { max_wt = wt[j]; 1.203 + max_nwt = nwt[j]; 1.204 + p = j; 1.205 + } 1.206 + } 1.207 + pos[i] = p; 1.208 + used[p] = 1; 1.209 + for (j = 0; j < n; j++) 1.210 + if ((!used[j]) && (j != p) && (is_edge(csa, p, j))) 1.211 + nwt[j] -= wt[p]; 1.212 + } 1.213 + /* main routine */ 1.214 + wth = 0; 1.215 + for (i = 0; i < n; i++) 1.216 + { wth += wt[pos[i]]; 1.217 + sub(csa, i, pos, 0, 0, wth); 1.218 + clique[pos[i]] = record; 1.219 + if (xdifftime(xtime(), timer) >= 5.0 - 0.001) 1.220 + { /* print current record and reset timer */ 1.221 + xprintf("level = %d (%d); best = %d\n", i+1, n, record); 1.222 + timer = xtime(); 1.223 + } 1.224 + } 1.225 + xfree(clique); 1.226 + xfree(set); 1.227 + xfree(used); 1.228 + xfree(nwt); 1.229 + xfree(pos); 1.230 + /* return the solution found */ 1.231 + for (i = 1; i <= rec_level; i++) ind[i]++; 1.232 + return rec_level; 1.233 +} 1.234 + 1.235 +#undef n 1.236 +#undef wt 1.237 +#undef a 1.238 +#undef record 1.239 +#undef rec_level 1.240 +#undef rec 1.241 +#undef clique 1.242 +#undef set 1.243 + 1.244 +/* eof */