lemon-project-template-glpk

diff deps/glpk/src/glpnpp04.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/deps/glpk/src/glpnpp04.c	Sun Nov 06 20:59:10 2011 +0100
     1.3 @@ -0,0 +1,1414 @@
     1.4 +/* glpnpp04.c */
     1.5 +
     1.6 +/***********************************************************************
     1.7 +*  This code is part of GLPK (GNU Linear Programming Kit).
     1.8 +*
     1.9 +*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
    1.10 +*  2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
    1.11 +*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
    1.12 +*  E-mail: <mao@gnu.org>.
    1.13 +*
    1.14 +*  GLPK is free software: you can redistribute it and/or modify it
    1.15 +*  under the terms of the GNU General Public License as published by
    1.16 +*  the Free Software Foundation, either version 3 of the License, or
    1.17 +*  (at your option) any later version.
    1.18 +*
    1.19 +*  GLPK is distributed in the hope that it will be useful, but WITHOUT
    1.20 +*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    1.21 +*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    1.22 +*  License for more details.
    1.23 +*
    1.24 +*  You should have received a copy of the GNU General Public License
    1.25 +*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    1.26 +***********************************************************************/
    1.27 +
    1.28 +#include "glpnpp.h"
    1.29 +
    1.30 +/***********************************************************************
    1.31 +*  NAME
    1.32 +*
    1.33 +*  npp_binarize_prob - binarize MIP problem
    1.34 +*
    1.35 +*  SYNOPSIS
    1.36 +*
    1.37 +*  #include "glpnpp.h"
    1.38 +*  int npp_binarize_prob(NPP *npp);
    1.39 +*
    1.40 +*  DESCRIPTION
    1.41 +*
    1.42 +*  The routine npp_binarize_prob replaces in the original MIP problem
    1.43 +*  every integer variable:
    1.44 +*
    1.45 +*     l[q] <= x[q] <= u[q],                                          (1)
    1.46 +*
    1.47 +*  where l[q] < u[q], by an equivalent sum of binary variables.
    1.48 +*
    1.49 +*  RETURNS
    1.50 +*
    1.51 +*  The routine returns the number of integer variables for which the
    1.52 +*  transformation failed, because u[q] - l[q] > d_max.
    1.53 +*
    1.54 +*  PROBLEM TRANSFORMATION
    1.55 +*
    1.56 +*  If variable x[q] has non-zero lower bound, it is first processed
    1.57 +*  with the routine npp_lbnd_col. Thus, we can assume that:
    1.58 +*
    1.59 +*     0 <= x[q] <= u[q].                                             (2)
    1.60 +*
    1.61 +*  If u[q] = 1, variable x[q] is already binary, so further processing
    1.62 +*  is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a
    1.63 +*  smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2).
    1.64 +*  Then variable x[q] can be replaced by the following sum:
    1.65 +*
    1.66 +*            n-1
    1.67 +*     x[q] = sum 2^k x[k],                                           (3)
    1.68 +*            k=0
    1.69 +*
    1.70 +*  where x[k] are binary columns (variables). If u[q] < 2^n - 1, the
    1.71 +*  following additional inequality constraint must be also included in
    1.72 +*  the transformed problem:
    1.73 +*
    1.74 +*     n-1
    1.75 +*     sum 2^k x[k] <= u[q].                                          (4)
    1.76 +*     k=0
    1.77 +*
    1.78 +*  Note: Assuming that in the transformed problem x[q] becomes binary
    1.79 +*  variable x[0], this transformation causes new n-1 binary variables
    1.80 +*  to appear.
    1.81 +*
    1.82 +*  Substituting x[q] from (3) to the objective row gives:
    1.83 +*
    1.84 +*     z = sum c[j] x[j] + c[0] =
    1.85 +*          j
    1.86 +*
    1.87 +*       = sum c[j] x[j] + c[q] x[q] + c[0] =
    1.88 +*         j!=q
    1.89 +*                              n-1
    1.90 +*       = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] =
    1.91 +*         j!=q                 k=0
    1.92 +*                         n-1
    1.93 +*       = sum c[j] x[j] + sum c[k] x[k] + c[0],
    1.94 +*         j!=q            k=0
    1.95 +*
    1.96 +*  where:
    1.97 +*
    1.98 +*     c[k] = 2^k c[q],  k = 0, ..., n-1.                             (5)
    1.99 +*
   1.100 +*  And substituting x[q] from (3) to i-th constraint row i gives:
   1.101 +*
   1.102 +*     L[i] <= sum a[i,j] x[j] <= U[i]  ==>
   1.103 +*              j
   1.104 +*
   1.105 +*     L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i]  ==>
   1.106 +*             j!=q
   1.107 +*                                      n-1
   1.108 +*     L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i]  ==>
   1.109 +*             j!=q                     k=0
   1.110 +*                               n-1
   1.111 +*     L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i],
   1.112 +*             j!=q              k=0
   1.113 +*
   1.114 +*  where:
   1.115 +*
   1.116 +*     a[i,k] = 2^k a[i,q],  k = 0, ..., n-1.                         (6)
   1.117 +*
   1.118 +*  RECOVERING SOLUTION
   1.119 +*
   1.120 +*  Value of variable x[q] is computed with formula (3). */
   1.121 +
   1.122 +struct binarize
   1.123 +{     int q;
   1.124 +      /* column reference number for x[q] = x[0] */
   1.125 +      int j;
   1.126 +      /* column reference number for x[1]; x[2] has reference number
   1.127 +         j+1, x[3] - j+2, etc. */
   1.128 +      int n;
   1.129 +      /* total number of binary variables, n >= 2 */
   1.130 +};
   1.131 +
   1.132 +static int rcv_binarize_prob(NPP *npp, void *info);
   1.133 +
   1.134 +int npp_binarize_prob(NPP *npp)
   1.135 +{     /* binarize MIP problem */
   1.136 +      struct binarize *info;
   1.137 +      NPPROW *row;
   1.138 +      NPPCOL *col, *bin;
   1.139 +      NPPAIJ *aij;
   1.140 +      int u, n, k, temp, nfails, nvars, nbins, nrows;
   1.141 +      /* new variables will be added to the end of the column list, so
   1.142 +         we go from the end to beginning of the column list */
   1.143 +      nfails = nvars = nbins = nrows = 0;
   1.144 +      for (col = npp->c_tail; col != NULL; col = col->prev)
   1.145 +      {  /* skip continuous variable */
   1.146 +         if (!col->is_int) continue;
   1.147 +         /* skip fixed variable */
   1.148 +         if (col->lb == col->ub) continue;
   1.149 +         /* skip binary variable */
   1.150 +         if (col->lb == 0.0 && col->ub == 1.0) continue;
   1.151 +         /* check if the transformation is applicable */
   1.152 +         if (col->lb < -1e6 || col->ub > +1e6 ||
   1.153 +             col->ub - col->lb > 4095.0)
   1.154 +         {  /* unfortunately, not */
   1.155 +            nfails++;
   1.156 +            continue;
   1.157 +         }
   1.158 +         /* process integer non-binary variable x[q] */
   1.159 +         nvars++;
   1.160 +         /* make x[q] non-negative, if its lower bound is non-zero */
   1.161 +         if (col->lb != 0.0)
   1.162 +            npp_lbnd_col(npp, col);
   1.163 +         /* now 0 <= x[q] <= u[q] */
   1.164 +         xassert(col->lb == 0.0);
   1.165 +         u = (int)col->ub;
   1.166 +         xassert(col->ub == (double)u);
   1.167 +         /* if x[q] is binary, further processing is not needed */
   1.168 +         if (u == 1) continue;
   1.169 +         /* determine smallest n such that u <= 2^n - 1 (thus, n is the
   1.170 +            number of binary variables needed) */
   1.171 +         n = 2, temp = 4;
   1.172 +         while (u >= temp)
   1.173 +            n++, temp += temp;
   1.174 +         nbins += n;
   1.175 +         /* create transformation stack entry */
   1.176 +         info = npp_push_tse(npp,
   1.177 +            rcv_binarize_prob, sizeof(struct binarize));
   1.178 +         info->q = col->j;
   1.179 +         info->j = 0; /* will be set below */
   1.180 +         info->n = n;
   1.181 +         /* if u < 2^n - 1, we need one additional row for (4) */
   1.182 +         if (u < temp - 1)
   1.183 +         {  row = npp_add_row(npp), nrows++;
   1.184 +            row->lb = -DBL_MAX, row->ub = u;
   1.185 +         }
   1.186 +         else
   1.187 +            row = NULL;
   1.188 +         /* in the transformed problem variable x[q] becomes binary
   1.189 +            variable x[0], so its objective and constraint coefficients
   1.190 +            are not changed */
   1.191 +         col->ub = 1.0;
   1.192 +         /* include x[0] into constraint (4) */
   1.193 +         if (row != NULL)
   1.194 +            npp_add_aij(npp, row, col, 1.0);
   1.195 +         /* add other binary variables x[1], ..., x[n-1] */
   1.196 +         for (k = 1, temp = 2; k < n; k++, temp += temp)
   1.197 +         {  /* add new binary variable x[k] */
   1.198 +            bin = npp_add_col(npp);
   1.199 +            bin->is_int = 1;
   1.200 +            bin->lb = 0.0, bin->ub = 1.0;
   1.201 +            bin->coef = (double)temp * col->coef;
   1.202 +            /* store column reference number for x[1] */
   1.203 +            if (info->j == 0)
   1.204 +               info->j = bin->j;
   1.205 +            else
   1.206 +               xassert(info->j + (k-1) == bin->j);
   1.207 +            /* duplicate constraint coefficients for x[k]; this also
   1.208 +               automatically includes x[k] into constraint (4) */
   1.209 +            for (aij = col->ptr; aij != NULL; aij = aij->c_next)
   1.210 +               npp_add_aij(npp, aij->row, bin, (double)temp * aij->val);
   1.211 +         }
   1.212 +      }
   1.213 +      if (nvars > 0)
   1.214 +         xprintf("%d integer variable(s) were replaced by %d binary one"
   1.215 +            "s\n", nvars, nbins);
   1.216 +      if (nrows > 0)
   1.217 +         xprintf("%d row(s) were added due to binarization\n", nrows);
   1.218 +      if (nfails > 0)
   1.219 +         xprintf("Binarization failed for %d integer variable(s)\n",
   1.220 +            nfails);
   1.221 +      return nfails;
   1.222 +}
   1.223 +
   1.224 +static int rcv_binarize_prob(NPP *npp, void *_info)
   1.225 +{     /* recovery binarized variable */
   1.226 +      struct binarize *info = _info;
   1.227 +      int k, temp;
   1.228 +      double sum;
   1.229 +      /* compute value of x[q]; see formula (3) */
   1.230 +      sum = npp->c_value[info->q];
   1.231 +      for (k = 1, temp = 2; k < info->n; k++, temp += temp)
   1.232 +         sum += (double)temp * npp->c_value[info->j + (k-1)];
   1.233 +      npp->c_value[info->q] = sum;
   1.234 +      return 0;
   1.235 +}
   1.236 +
   1.237 +/**********************************************************************/
   1.238 +
   1.239 +struct elem
   1.240 +{     /* linear form element a[j] x[j] */
   1.241 +      double aj;
   1.242 +      /* non-zero coefficient value */
   1.243 +      NPPCOL *xj;
   1.244 +      /* pointer to variable (column) */
   1.245 +      struct elem *next;
   1.246 +      /* pointer to another term */
   1.247 +};
   1.248 +
   1.249 +static struct elem *copy_form(NPP *npp, NPPROW *row, double s)
   1.250 +{     /* copy linear form */
   1.251 +      NPPAIJ *aij;
   1.252 +      struct elem *ptr, *e;
   1.253 +      ptr = NULL;
   1.254 +      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   1.255 +      {  e = dmp_get_atom(npp->pool, sizeof(struct elem));
   1.256 +         e->aj = s * aij->val;
   1.257 +         e->xj = aij->col;
   1.258 +         e->next = ptr;
   1.259 +         ptr = e;
   1.260 +      }
   1.261 +      return ptr;
   1.262 +}
   1.263 +
   1.264 +static void drop_form(NPP *npp, struct elem *ptr)
   1.265 +{     /* drop linear form */
   1.266 +      struct elem *e;
   1.267 +      while (ptr != NULL)
   1.268 +      {  e = ptr;
   1.269 +         ptr = e->next;
   1.270 +         dmp_free_atom(npp->pool, e, sizeof(struct elem));
   1.271 +      }
   1.272 +      return;
   1.273 +}
   1.274 +
   1.275 +/***********************************************************************
   1.276 +*  NAME
   1.277 +*
   1.278 +*  npp_is_packing - test if constraint is packing inequality
   1.279 +*
   1.280 +*  SYNOPSIS
   1.281 +*
   1.282 +*  #include "glpnpp.h"
   1.283 +*  int npp_is_packing(NPP *npp, NPPROW *row);
   1.284 +*
   1.285 +*  RETURNS
   1.286 +*
   1.287 +*  If the specified row (constraint) is packing inequality (see below),
   1.288 +*  the routine npp_is_packing returns non-zero. Otherwise, it returns
   1.289 +*  zero.
   1.290 +*
   1.291 +*  PACKING INEQUALITIES
   1.292 +*
   1.293 +*  In canonical format the packing inequality is the following:
   1.294 +*
   1.295 +*     sum  x[j] <= 1,                                                (1)
   1.296 +*    j in J
   1.297 +*
   1.298 +*  where all variables x[j] are binary. This inequality expresses the
   1.299 +*  condition that in any integer feasible solution at most one variable
   1.300 +*  from set J can take non-zero (unity) value while other variables
   1.301 +*  must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because
   1.302 +*  if J is empty or |J| = 1, the inequality (1) is redundant.
   1.303 +*
   1.304 +*  In general case the packing inequality may include original variables
   1.305 +*  x[j] as well as their complements x~[j]:
   1.306 +*
   1.307 +*     sum   x[j] + sum   x~[j] <= 1,                                 (2)
   1.308 +*    j in Jp      j in Jn
   1.309 +*
   1.310 +*  where Jp and Jn are not intersected. Therefore, using substitution
   1.311 +*  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
   1.312 +*
   1.313 +*     sum   x[j] - sum   x[j] <= 1 - |Jn|.                           (3)
   1.314 +*    j in Jp      j in Jn */
   1.315 +
   1.316 +int npp_is_packing(NPP *npp, NPPROW *row)
   1.317 +{     /* test if constraint is packing inequality */
   1.318 +      NPPCOL *col;
   1.319 +      NPPAIJ *aij;
   1.320 +      int b;
   1.321 +      xassert(npp == npp);
   1.322 +      if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX))
   1.323 +         return 0;
   1.324 +      b = 1;
   1.325 +      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   1.326 +      {  col = aij->col;
   1.327 +         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
   1.328 +            return 0;
   1.329 +         if (aij->val == +1.0)
   1.330 +            ;
   1.331 +         else if (aij->val == -1.0)
   1.332 +            b--;
   1.333 +         else
   1.334 +            return 0;
   1.335 +      }
   1.336 +      if (row->ub != (double)b) return 0;
   1.337 +      return 1;
   1.338 +}
   1.339 +
   1.340 +/***********************************************************************
   1.341 +*  NAME
   1.342 +*
   1.343 +*  npp_hidden_packing - identify hidden packing inequality
   1.344 +*
   1.345 +*  SYNOPSIS
   1.346 +*
   1.347 +*  #include "glpnpp.h"
   1.348 +*  int npp_hidden_packing(NPP *npp, NPPROW *row);
   1.349 +*
   1.350 +*  DESCRIPTION
   1.351 +*
   1.352 +*  The routine npp_hidden_packing processes specified inequality
   1.353 +*  constraint, which includes only binary variables, and the number of
   1.354 +*  the variables is not less than two. If the original inequality is
   1.355 +*  equivalent to a packing inequality, the routine replaces it by this
   1.356 +*  equivalent inequality. If the original constraint is double-sided
   1.357 +*  inequality, it is replaced by a pair of single-sided inequalities,
   1.358 +*  if necessary.
   1.359 +*
   1.360 +*  RETURNS
   1.361 +*
   1.362 +*  If the original inequality constraint was replaced by equivalent
   1.363 +*  packing inequality, the routine npp_hidden_packing returns non-zero.
   1.364 +*  Otherwise, it returns zero.
   1.365 +*
   1.366 +*  PROBLEM TRANSFORMATION
   1.367 +*
   1.368 +*  Consider an inequality constraint:
   1.369 +*
   1.370 +*     sum  a[j] x[j] <= b,                                           (1)
   1.371 +*    j in J
   1.372 +*
   1.373 +*  where all variables x[j] are binary, and |J| >= 2. (In case of '>='
   1.374 +*  inequality it can be transformed to '<=' format by multiplying both
   1.375 +*  its sides by -1.)
   1.376 +*
   1.377 +*  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
   1.378 +*  x[j] = 1 - x~[j] for all j in Jn, we have:
   1.379 +*
   1.380 +*     sum   a[j] x[j] <= b  ==>
   1.381 +*    j in J
   1.382 +*
   1.383 +*     sum   a[j] x[j] + sum   a[j] x[j] <= b  ==>
   1.384 +*    j in Jp           j in Jn
   1.385 +*
   1.386 +*     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) <= b  ==>
   1.387 +*    j in Jp           j in Jn
   1.388 +*
   1.389 +*     sum   a[j] x[j] - sum   a[j] x~[j] <= b - sum   a[j].
   1.390 +*    j in Jp           j in Jn                 j in Jn
   1.391 +*
   1.392 +*  Thus, meaning the transformation above, we can assume that in
   1.393 +*  inequality (1) all coefficients a[j] are positive. Moreover, we can
   1.394 +*  assume that a[j] <= b. In fact, let a[j] > b; then the following
   1.395 +*  three cases are possible:
   1.396 +*
   1.397 +*  1) b < 0. In this case inequality (1) is infeasible, so the problem
   1.398 +*     has no feasible solution (see the routine npp_analyze_row);
   1.399 +*
   1.400 +*  2) b = 0. In this case inequality (1) is a forcing inequality on its
   1.401 +*     upper bound (see the routine npp_forcing row), from which it
   1.402 +*     follows that all variables x[j] should be fixed at zero;
   1.403 +*
   1.404 +*  3) b > 0. In this case inequality (1) defines an implied zero upper
   1.405 +*     bound for variable x[j] (see the routine npp_implied_bounds), from
   1.406 +*     which it follows that x[j] should be fixed at zero.
   1.407 +*
   1.408 +*  It is assumed that all three cases listed above have been recognized
   1.409 +*  by the routine npp_process_prob, which performs basic MIP processing
   1.410 +*  prior to a call the routine npp_hidden_packing. So, if one of these
   1.411 +*  cases occurs, we should just skip processing such constraint.
   1.412 +*
   1.413 +*  Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is
   1.414 +*  equivalent to packing inquality only if:
   1.415 +*
   1.416 +*     a[j] + a[k] > b + eps                                          (2)
   1.417 +*
   1.418 +*  for all j, k in J, j != k, where eps is an absolute tolerance for
   1.419 +*  row (linear form) value. Checking the condition (2) for all j and k,
   1.420 +*  j != k, requires time O(|J|^2). However, this time can be reduced to
   1.421 +*  O(|J|), if use minimal a[j] and a[k], in which case it is sufficient
   1.422 +*  to check the condition (2) only once.
   1.423 +*
   1.424 +*  Once the original inequality (1) is replaced by equivalent packing
   1.425 +*  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
   1.426 +*  all j in Jn (see above).
   1.427 +*
   1.428 +*  RECOVERING SOLUTION
   1.429 +*
   1.430 +*  None needed. */
   1.431 +
   1.432 +static int hidden_packing(NPP *npp, struct elem *ptr, double *_b)
   1.433 +{     /* process inequality constraint: sum a[j] x[j] <= b;
   1.434 +         0 - specified row is NOT hidden packing inequality;
   1.435 +         1 - specified row is packing inequality;
   1.436 +         2 - specified row is hidden packing inequality. */
   1.437 +      struct elem *e, *ej, *ek;
   1.438 +      int neg;
   1.439 +      double b = *_b, eps;
   1.440 +      xassert(npp == npp);
   1.441 +      /* a[j] must be non-zero, x[j] must be binary, for all j in J */
   1.442 +      for (e = ptr; e != NULL; e = e->next)
   1.443 +      {  xassert(e->aj != 0.0);
   1.444 +         xassert(e->xj->is_int);
   1.445 +         xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
   1.446 +      }
   1.447 +      /* check if the specified inequality constraint already has the
   1.448 +         form of packing inequality */
   1.449 +      neg = 0; /* neg is |Jn| */
   1.450 +      for (e = ptr; e != NULL; e = e->next)
   1.451 +      {  if (e->aj == +1.0)
   1.452 +            ;
   1.453 +         else if (e->aj == -1.0)
   1.454 +            neg++;
   1.455 +         else
   1.456 +            break;
   1.457 +      }
   1.458 +      if (e == NULL)
   1.459 +      {  /* all coefficients a[j] are +1 or -1; check rhs b */
   1.460 +         if (b == (double)(1 - neg))
   1.461 +         {  /* it is packing inequality; no processing is needed */
   1.462 +            return 1;
   1.463 +         }
   1.464 +      }
   1.465 +      /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
   1.466 +         positive; the result is a~[j] = |a[j]| and new rhs b */
   1.467 +      for (e = ptr; e != NULL; e = e->next)
   1.468 +         if (e->aj < 0) b -= e->aj;
   1.469 +      /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
   1.470 +      /* if a[j] > b, skip processing--this case must not appear */
   1.471 +      for (e = ptr; e != NULL; e = e->next)
   1.472 +         if (fabs(e->aj) > b) return 0;
   1.473 +      /* now 0 < a[j] <= b for all j in J */
   1.474 +      /* find two minimal coefficients a[j] and a[k], j != k */
   1.475 +      ej = NULL;
   1.476 +      for (e = ptr; e != NULL; e = e->next)
   1.477 +         if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e;
   1.478 +      xassert(ej != NULL);
   1.479 +      ek = NULL;
   1.480 +      for (e = ptr; e != NULL; e = e->next)
   1.481 +         if (e != ej)
   1.482 +            if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e;
   1.483 +      xassert(ek != NULL);
   1.484 +      /* the specified constraint is equivalent to packing inequality
   1.485 +         iff a[j] + a[k] > b + eps */
   1.486 +      eps = 1e-3 + 1e-6 * fabs(b);
   1.487 +      if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0;
   1.488 +      /* perform back substitution x~[j] = 1 - x[j] and construct the
   1.489 +         final equivalent packing inequality in generalized format */
   1.490 +      b = 1.0;
   1.491 +      for (e = ptr; e != NULL; e = e->next)
   1.492 +      {  if (e->aj > 0.0)
   1.493 +            e->aj = +1.0;
   1.494 +         else /* e->aj < 0.0 */
   1.495 +            e->aj = -1.0, b -= 1.0;
   1.496 +      }
   1.497 +      *_b = b;
   1.498 +      return 2;
   1.499 +}
   1.500 +
   1.501 +int npp_hidden_packing(NPP *npp, NPPROW *row)
   1.502 +{     /* identify hidden packing inequality */
   1.503 +      NPPROW *copy;
   1.504 +      NPPAIJ *aij;
   1.505 +      struct elem *ptr, *e;
   1.506 +      int kase, ret, count = 0;
   1.507 +      double b;
   1.508 +      /* the row must be inequality constraint */
   1.509 +      xassert(row->lb < row->ub);
   1.510 +      for (kase = 0; kase <= 1; kase++)
   1.511 +      {  if (kase == 0)
   1.512 +         {  /* process row upper bound */
   1.513 +            if (row->ub == +DBL_MAX) continue;
   1.514 +            ptr = copy_form(npp, row, +1.0);
   1.515 +            b = + row->ub;
   1.516 +         }
   1.517 +         else
   1.518 +         {  /* process row lower bound */
   1.519 +            if (row->lb == -DBL_MAX) continue;
   1.520 +            ptr = copy_form(npp, row, -1.0);
   1.521 +            b = - row->lb;
   1.522 +         }
   1.523 +         /* now the inequality has the form "sum a[j] x[j] <= b" */
   1.524 +         ret = hidden_packing(npp, ptr, &b);
   1.525 +         xassert(0 <= ret && ret <= 2);
   1.526 +         if (kase == 1 && ret == 1 || ret == 2)
   1.527 +         {  /* the original inequality has been identified as hidden
   1.528 +               packing inequality */
   1.529 +            count++;
   1.530 +#ifdef GLP_DEBUG
   1.531 +            xprintf("Original constraint:\n");
   1.532 +            for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   1.533 +               xprintf(" %+g x%d", aij->val, aij->col->j);
   1.534 +            if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
   1.535 +            if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
   1.536 +            xprintf("\n");
   1.537 +            xprintf("Equivalent packing inequality:\n");
   1.538 +            for (e = ptr; e != NULL; e = e->next)
   1.539 +               xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
   1.540 +            xprintf(", <= %g\n", b);
   1.541 +#endif
   1.542 +            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
   1.543 +            {  /* the original row is single-sided inequality; no copy
   1.544 +                  is needed */
   1.545 +               copy = NULL;
   1.546 +            }
   1.547 +            else
   1.548 +            {  /* the original row is double-sided inequality; we need
   1.549 +                  to create its copy for other bound before replacing it
   1.550 +                  with the equivalent inequality */
   1.551 +               copy = npp_add_row(npp);
   1.552 +               if (kase == 0)
   1.553 +               {  /* the copy is for lower bound */
   1.554 +                  copy->lb = row->lb, copy->ub = +DBL_MAX;
   1.555 +               }
   1.556 +               else
   1.557 +               {  /* the copy is for upper bound */
   1.558 +                  copy->lb = -DBL_MAX, copy->ub = row->ub;
   1.559 +               }
   1.560 +               /* copy original row coefficients */
   1.561 +               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   1.562 +                  npp_add_aij(npp, copy, aij->col, aij->val);
   1.563 +            }
   1.564 +            /* replace the original inequality by equivalent one */
   1.565 +            npp_erase_row(npp, row);
   1.566 +            row->lb = -DBL_MAX, row->ub = b;
   1.567 +            for (e = ptr; e != NULL; e = e->next)
   1.568 +               npp_add_aij(npp, row, e->xj, e->aj);
   1.569 +            /* continue processing lower bound for the copy */
   1.570 +            if (copy != NULL) row = copy;
   1.571 +         }
   1.572 +         drop_form(npp, ptr);
   1.573 +      }
   1.574 +      return count;
   1.575 +}
   1.576 +
   1.577 +/***********************************************************************
   1.578 +*  NAME
   1.579 +*
   1.580 +*  npp_implied_packing - identify implied packing inequality
   1.581 +*
   1.582 +*  SYNOPSIS
   1.583 +*
   1.584 +*  #include "glpnpp.h"
   1.585 +*  int npp_implied_packing(NPP *npp, NPPROW *row, int which,
   1.586 +*     NPPCOL *var[], char set[]);
   1.587 +*
   1.588 +*  DESCRIPTION
   1.589 +*
   1.590 +*  The routine npp_implied_packing processes specified row (constraint)
   1.591 +*  of general format:
   1.592 +*
   1.593 +*     L <= sum a[j] x[j] <= U.                                       (1)
   1.594 +*           j
   1.595 +*
   1.596 +*  If which = 0, only lower bound L, which must exist, is considered,
   1.597 +*  while upper bound U is ignored. Similarly, if which = 1, only upper
   1.598 +*  bound U, which must exist, is considered, while lower bound L is
   1.599 +*  ignored. Thus, if the specified row is a double-sided inequality or
   1.600 +*  equality constraint, this routine should be called twice for both
   1.601 +*  lower and upper bounds.
   1.602 +*
   1.603 +*  The routine npp_implied_packing attempts to find a non-trivial (i.e.
   1.604 +*  having not less than two binary variables) packing inequality:
   1.605 +*
   1.606 +*     sum   x[j] - sum   x[j] <= 1 - |Jn|,                           (2)
   1.607 +*    j in Jp      j in Jn
   1.608 +*
   1.609 +*  which is relaxation of the constraint (1) in the sense that any
   1.610 +*  solution satisfying to that constraint also satisfies to the packing
   1.611 +*  inequality (2). If such relaxation exists, the routine stores
   1.612 +*  pointers to descriptors of corresponding binary variables and their
   1.613 +*  flags, resp., to locations var[1], var[2], ..., var[len] and set[1],
   1.614 +*  set[2], ..., set[len], where set[j] = 0 means that j in Jp and
   1.615 +*  set[j] = 1 means that j in Jn.
   1.616 +*
   1.617 +*  RETURNS
   1.618 +*
   1.619 +*  The routine npp_implied_packing returns len, which is the total
   1.620 +*  number of binary variables in the packing inequality found, len >= 2.
   1.621 +*  However, if the relaxation does not exist, the routine returns zero.
   1.622 +*
   1.623 +*  ALGORITHM
   1.624 +*
   1.625 +*  If which = 0, the constraint coefficients (1) are multiplied by -1
   1.626 +*  and b is assigned -L; if which = 1, the constraint coefficients (1)
   1.627 +*  are not changed and b is assigned +U. In both cases the specified
   1.628 +*  constraint gets the following format:
   1.629 +*
   1.630 +*     sum a[j] x[j] <= b.                                            (3)
   1.631 +*      j
   1.632 +*
   1.633 +*  (Note that (3) is a relaxation of (1), because one of bounds L or U
   1.634 +*  is ignored.)
   1.635 +*
   1.636 +*  Let J be set of binary variables, Kp be set of non-binary (integer
   1.637 +*  or continuous) variables with a[j] > 0, and Kn be set of non-binary
   1.638 +*  variables with a[j] < 0. Then the inequality (3) can be written as
   1.639 +*  follows:
   1.640 +*
   1.641 +*     sum  a[j] x[j] <= b - sum   a[j] x[j] - sum   a[j] x[j].       (4)
   1.642 +*    j in J                j in Kp           j in Kn
   1.643 +*
   1.644 +*  To get rid of non-binary variables we can replace the inequality (4)
   1.645 +*  by the following relaxed inequality:
   1.646 +*
   1.647 +*     sum  a[j] x[j] <= b~,                                          (5)
   1.648 +*    j in J
   1.649 +*
   1.650 +*  where:
   1.651 +*
   1.652 +*     b~ = sup(b - sum   a[j] x[j] - sum   a[j] x[j]) =
   1.653 +*                 j in Kp           j in Kn
   1.654 +*
   1.655 +*        = b - inf sum   a[j] x[j] - inf sum   a[j] x[j] =           (6)
   1.656 +*                 j in Kp               j in Kn
   1.657 +*
   1.658 +*        = b - sum   a[j] l[j] - sum   a[j] u[j].
   1.659 +*             j in Kp           j in Kn
   1.660 +*
   1.661 +*  Note that if lower bound l[j] (if j in Kp) or upper bound u[j]
   1.662 +*  (if j in Kn) of some non-binary variable x[j] does not exist, then
   1.663 +*  formally b = +oo, in which case further analysis is not performed.
   1.664 +*
   1.665 +*  Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all
   1.666 +*  the inequality coefficients in (5) positive, we replace all x[j] in
   1.667 +*  Bn by their complementaries, substituting x[j] = 1 - x~[j] for all
   1.668 +*  j in Bn, that gives:
   1.669 +*
   1.670 +*     sum   a[j] x[j] - sum   a[j] x~[j] <= b~ - sum   a[j].         (7)
   1.671 +*    j in Bp           j in Bn                  j in Bn
   1.672 +*
   1.673 +*  This inequality is a relaxation of the original constraint (1), and
   1.674 +*  it is a binary knapsack inequality. Writing it in the standard format
   1.675 +*  we have:
   1.676 +*
   1.677 +*     sum  alfa[j] z[j] <= beta,                                     (8)
   1.678 +*    j in J
   1.679 +*
   1.680 +*  where:
   1.681 +*               ( + a[j],   if j in Bp,
   1.682 +*     alfa[j] = <                                                    (9)
   1.683 +*               ( - a[j],   if j in Bn,
   1.684 +*
   1.685 +*               ( x[j],     if j in Bp,
   1.686 +*        z[j] = <                                                   (10)
   1.687 +*               ( 1 - x[j], if j in Bn,
   1.688 +*
   1.689 +*        beta = b~ - sum   a[j].                                    (11)
   1.690 +*                   j in Bn
   1.691 +*
   1.692 +*  In the inequality (8) all coefficients are positive, therefore, the
   1.693 +*  packing relaxation to be found for this inequality is the following:
   1.694 +*
   1.695 +*     sum  z[j] <= 1.                                               (12)
   1.696 +*    j in P
   1.697 +*
   1.698 +*  It is obvious that set P within J, which we would like to find, must
   1.699 +*  satisfy to the following condition:
   1.700 +*
   1.701 +*     alfa[j] + alfa[k] > beta + eps  for all j, k in P, j != k,    (13)
   1.702 +*
   1.703 +*  where eps is an absolute tolerance for value of the linear form.
   1.704 +*  Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}.
   1.705 +*  Moreover, if in the equality (8) there exist coefficients alfa[k],
   1.706 +*  for which alfa[k] <= (beta + eps) / 2, but which, nevertheless,
   1.707 +*  satisfies to the condition (13) for all j in P, *one* corresponding
   1.708 +*  variable z[k] (having, for example, maximal coefficient alfa[k]) can
   1.709 +*  be included in set P, that allows increasing the number of binary
   1.710 +*  variables in (12) by one.
   1.711 +*
   1.712 +*  Once the set P has been built, for the inequality (12) we need to
   1.713 +*  perform back substitution according to (10) in order to express it
   1.714 +*  through the original binary variables. As the result of such back
   1.715 +*  substitution the relaxed packing inequality get its final format (2),
   1.716 +*  where Jp = J intersect Bp, and Jn = J intersect Bn. */
   1.717 +
   1.718 +int npp_implied_packing(NPP *npp, NPPROW *row, int which,
   1.719 +      NPPCOL *var[], char set[])
   1.720 +{     struct elem *ptr, *e, *i, *k;
   1.721 +      int len = 0;
   1.722 +      double b, eps;
   1.723 +      /* build inequality (3) */
   1.724 +      if (which == 0)
   1.725 +      {  ptr = copy_form(npp, row, -1.0);
   1.726 +         xassert(row->lb != -DBL_MAX);
   1.727 +         b = - row->lb;
   1.728 +      }
   1.729 +      else if (which == 1)
   1.730 +      {  ptr = copy_form(npp, row, +1.0);
   1.731 +         xassert(row->ub != +DBL_MAX);
   1.732 +         b = + row->ub;
   1.733 +      }
   1.734 +      /* remove non-binary variables to build relaxed inequality (5);
   1.735 +         compute its right-hand side b~ with formula (6) */
   1.736 +      for (e = ptr; e != NULL; e = e->next)
   1.737 +      {  if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
   1.738 +         {  /* x[j] is non-binary variable */
   1.739 +            if (e->aj > 0.0)
   1.740 +            {  if (e->xj->lb == -DBL_MAX) goto done;
   1.741 +               b -= e->aj * e->xj->lb;
   1.742 +            }
   1.743 +            else /* e->aj < 0.0 */
   1.744 +            {  if (e->xj->ub == +DBL_MAX) goto done;
   1.745 +               b -= e->aj * e->xj->ub;
   1.746 +            }
   1.747 +            /* a[j] = 0 means that variable x[j] is removed */
   1.748 +            e->aj = 0.0;
   1.749 +         }
   1.750 +      }
   1.751 +      /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8);
   1.752 +         compute its right-hand side beta with formula (11) */
   1.753 +      for (e = ptr; e != NULL; e = e->next)
   1.754 +         if (e->aj < 0.0) b -= e->aj;
   1.755 +      /* if beta is close to zero, the knapsack inequality is either
   1.756 +         infeasible or forcing inequality; this must never happen, so
   1.757 +         we skip further analysis */
   1.758 +      if (b < 1e-3) goto done;
   1.759 +      /* build set P as well as sets Jp and Jn, and determine x[k] as
   1.760 +         explained above in comments to the routine */
   1.761 +      eps = 1e-3 + 1e-6 * b;
   1.762 +      i = k = NULL;
   1.763 +      for (e = ptr; e != NULL; e = e->next)
   1.764 +      {  /* note that alfa[j] = |a[j]| */
   1.765 +         if (fabs(e->aj) > 0.5 * (b + eps))
   1.766 +         {  /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in
   1.767 +               set Jp or Jn */
   1.768 +            var[++len] = e->xj;
   1.769 +            set[len] = (char)(e->aj > 0.0 ? 0 : 1);
   1.770 +            /* alfa[i] = min alfa[j] over all j included in set P */
   1.771 +            if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e;
   1.772 +         }
   1.773 +         else if (fabs(e->aj) >= 1e-3)
   1.774 +         {  /* alfa[k] = max alfa[j] over all j not included in set P;
   1.775 +               we skip coefficient a[j] if it is close to zero to avoid
   1.776 +               numerically unreliable results */
   1.777 +            if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e;
   1.778 +         }
   1.779 +      }
   1.780 +      /* if alfa[k] satisfies to condition (13) for all j in P, include
   1.781 +         x[k] in P */
   1.782 +      if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps)
   1.783 +      {  var[++len] = k->xj;
   1.784 +         set[len] = (char)(k->aj > 0.0 ? 0 : 1);
   1.785 +      }
   1.786 +      /* trivial packing inequality being redundant must never appear,
   1.787 +         so we just ignore it */
   1.788 +      if (len < 2) len = 0;
   1.789 +done: drop_form(npp, ptr);
   1.790 +      return len;
   1.791 +}
   1.792 +
   1.793 +/***********************************************************************
   1.794 +*  NAME
   1.795 +*
   1.796 +*  npp_is_covering - test if constraint is covering inequality
   1.797 +*
   1.798 +*  SYNOPSIS
   1.799 +*
   1.800 +*  #include "glpnpp.h"
   1.801 +*  int npp_is_covering(NPP *npp, NPPROW *row);
   1.802 +*
   1.803 +*  RETURNS
   1.804 +*
   1.805 +*  If the specified row (constraint) is covering inequality (see below),
   1.806 +*  the routine npp_is_covering returns non-zero. Otherwise, it returns
   1.807 +*  zero.
   1.808 +*
   1.809 +*  COVERING INEQUALITIES
   1.810 +*
   1.811 +*  In canonical format the covering inequality is the following:
   1.812 +*
   1.813 +*     sum  x[j] >= 1,                                                (1)
   1.814 +*    j in J
   1.815 +*
   1.816 +*  where all variables x[j] are binary. This inequality expresses the
   1.817 +*  condition that in any integer feasible solution variables in set J
   1.818 +*  cannot be all equal to zero at the same time, i.e. at least one
   1.819 +*  variable must take non-zero (unity) value. W.l.o.g. it is assumed
   1.820 +*  that |J| >= 2, because if J is empty, the inequality (1) is
   1.821 +*  infeasible, and if |J| = 1, the inequality (1) is a forcing row.
   1.822 +*
   1.823 +*  In general case the covering inequality may include original
   1.824 +*  variables x[j] as well as their complements x~[j]:
   1.825 +*
   1.826 +*     sum   x[j] + sum   x~[j] >= 1,                                 (2)
   1.827 +*    j in Jp      j in Jn
   1.828 +*
   1.829 +*  where Jp and Jn are not intersected. Therefore, using substitution
   1.830 +*  x~[j] = 1 - x[j] gives the packing inequality in generalized format:
   1.831 +*
   1.832 +*     sum   x[j] - sum   x[j] >= 1 - |Jn|.                           (3)
   1.833 +*    j in Jp      j in Jn
   1.834 +*
   1.835 +*  (May note that the inequality (3) cuts off infeasible solutions,
   1.836 +*  where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.)
   1.837 +*
   1.838 +*  NOTE: If |J| = 2, the inequality (3) is equivalent to packing
   1.839 +*        inequality (see the routine npp_is_packing). */
   1.840 +
   1.841 +int npp_is_covering(NPP *npp, NPPROW *row)
   1.842 +{     /* test if constraint is covering inequality */
   1.843 +      NPPCOL *col;
   1.844 +      NPPAIJ *aij;
   1.845 +      int b;
   1.846 +      xassert(npp == npp);
   1.847 +      if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX))
   1.848 +         return 0;
   1.849 +      b = 1;
   1.850 +      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
   1.851 +      {  col = aij->col;
   1.852 +         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
   1.853 +            return 0;
   1.854 +         if (aij->val == +1.0)
   1.855 +            ;
   1.856 +         else if (aij->val == -1.0)
   1.857 +            b--;
   1.858 +         else
   1.859 +            return 0;
   1.860 +      }
   1.861 +      if (row->lb != (double)b) return 0;
   1.862 +      return 1;
   1.863 +}
   1.864 +
   1.865 +/***********************************************************************
   1.866 +*  NAME
   1.867 +*
   1.868 +*  npp_hidden_covering - identify hidden covering inequality
   1.869 +*
   1.870 +*  SYNOPSIS
   1.871 +*
   1.872 +*  #include "glpnpp.h"
   1.873 +*  int npp_hidden_covering(NPP *npp, NPPROW *row);
   1.874 +*
   1.875 +*  DESCRIPTION
   1.876 +*
   1.877 +*  The routine npp_hidden_covering processes specified inequality
   1.878 +*  constraint, which includes only binary variables, and the number of
   1.879 +*  the variables is not less than three. If the original inequality is
   1.880 +*  equivalent to a covering inequality (see below), the routine
   1.881 +*  replaces it by the equivalent inequality. If the original constraint
   1.882 +*  is double-sided inequality, it is replaced by a pair of single-sided
   1.883 +*  inequalities, if necessary.
   1.884 +*
   1.885 +*  RETURNS
   1.886 +*
   1.887 +*  If the original inequality constraint was replaced by equivalent
   1.888 +*  covering inequality, the routine npp_hidden_covering returns
   1.889 +*  non-zero. Otherwise, it returns zero.
   1.890 +*
   1.891 +*  PROBLEM TRANSFORMATION
   1.892 +*
   1.893 +*  Consider an inequality constraint:
   1.894 +*
   1.895 +*     sum  a[j] x[j] >= b,                                           (1)
   1.896 +*    j in J
   1.897 +*
   1.898 +*  where all variables x[j] are binary, and |J| >= 3. (In case of '<='
   1.899 +*  inequality it can be transformed to '>=' format by multiplying both
   1.900 +*  its sides by -1.)
   1.901 +*
   1.902 +*  Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
   1.903 +*  x[j] = 1 - x~[j] for all j in Jn, we have:
   1.904 +*
   1.905 +*     sum   a[j] x[j] >= b  ==>
   1.906 +*    j in J
   1.907 +*
   1.908 +*     sum   a[j] x[j] + sum   a[j] x[j] >= b  ==>
   1.909 +*    j in Jp           j in Jn
   1.910 +*
   1.911 +*     sum   a[j] x[j] + sum   a[j] (1 - x~[j]) >= b  ==>
   1.912 +*    j in Jp           j in Jn
   1.913 +*
   1.914 +*     sum  m   a[j] x[j] - sum   a[j] x~[j] >= b - sum   a[j].
   1.915 +*    j in Jp              j in Jn                 j in Jn
   1.916 +*
   1.917 +*  Thus, meaning the transformation above, we can assume that in
   1.918 +*  inequality (1) all coefficients a[j] are positive. Moreover, we can
   1.919 +*  assume that b > 0, because otherwise the inequality (1) would be
   1.920 +*  redundant (see the routine npp_analyze_row). It is then obvious that
   1.921 +*  constraint (1) is equivalent to covering inequality only if:
   1.922 +*
   1.923 +*     a[j] >= b,                                                     (2)
   1.924 +*
   1.925 +*  for all j in J.
   1.926 +*
   1.927 +*  Once the original inequality (1) is replaced by equivalent covering
   1.928 +*  inequality, we need to perform back substitution x~[j] = 1 - x[j] for
   1.929 +*  all j in Jn (see above).
   1.930 +*
   1.931 +*  RECOVERING SOLUTION
   1.932 +*
   1.933 +*  None needed. */
   1.934 +
   1.935 +static int hidden_covering(NPP *npp, struct elem *ptr, double *_b)
   1.936 +{     /* process inequality constraint: sum a[j] x[j] >= b;
   1.937 +         0 - specified row is NOT hidden covering inequality;
   1.938 +         1 - specified row is covering inequality;
   1.939 +         2 - specified row is hidden covering inequality. */
   1.940 +      struct elem *e;
   1.941 +      int neg;
   1.942 +      double b = *_b, eps;
   1.943 +      xassert(npp == npp);
   1.944 +      /* a[j] must be non-zero, x[j] must be binary, for all j in J */
   1.945 +      for (e = ptr; e != NULL; e = e->next)
   1.946 +      {  xassert(e->aj != 0.0);
   1.947 +         xassert(e->xj->is_int);
   1.948 +         xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
   1.949 +      }
   1.950 +      /* check if the specified inequality constraint already has the
   1.951 +         form of covering inequality */
   1.952 +      neg = 0; /* neg is |Jn| */
   1.953 +      for (e = ptr; e != NULL; e = e->next)
   1.954 +      {  if (e->aj == +1.0)
   1.955 +            ;
   1.956 +         else if (e->aj == -1.0)
   1.957 +            neg++;
   1.958 +         else
   1.959 +            break;
   1.960 +      }
   1.961 +      if (e == NULL)
   1.962 +      {  /* all coefficients a[j] are +1 or -1; check rhs b */
   1.963 +         if (b == (double)(1 - neg))
   1.964 +         {  /* it is covering inequality; no processing is needed */
   1.965 +            return 1;
   1.966 +         }
   1.967 +      }
   1.968 +      /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
   1.969 +         positive; the result is a~[j] = |a[j]| and new rhs b */
   1.970 +      for (e = ptr; e != NULL; e = e->next)
   1.971 +         if (e->aj < 0) b -= e->aj;
   1.972 +      /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
   1.973 +      /* if b <= 0, skip processing--this case must not appear */
   1.974 +      if (b < 1e-3) return 0;
   1.975 +      /* now a[j] > 0 for all j in J, and b > 0 */
   1.976 +      /* the specified constraint is equivalent to covering inequality
   1.977 +         iff a[j] >= b for all j in J */
   1.978 +      eps = 1e-9 + 1e-12 * fabs(b);
   1.979 +      for (e = ptr; e != NULL; e = e->next)
   1.980 +         if (fabs(e->aj) < b - eps) return 0;
   1.981 +      /* perform back substitution x~[j] = 1 - x[j] and construct the
   1.982 +         final equivalent covering inequality in generalized format */
   1.983 +      b = 1.0;
   1.984 +      for (e = ptr; e != NULL; e = e->next)
   1.985 +      {  if (e->aj > 0.0)
   1.986 +            e->aj = +1.0;
   1.987 +         else /* e->aj < 0.0 */
   1.988 +            e->aj = -1.0, b -= 1.0;
   1.989 +      }
   1.990 +      *_b = b;
   1.991 +      return 2;
   1.992 +}
   1.993 +
   1.994 +int npp_hidden_covering(NPP *npp, NPPROW *row)
   1.995 +{     /* identify hidden covering inequality */
   1.996 +      NPPROW *copy;
   1.997 +      NPPAIJ *aij;
   1.998 +      struct elem *ptr, *e;
   1.999 +      int kase, ret, count = 0;
  1.1000 +      double b;
  1.1001 +      /* the row must be inequality constraint */
  1.1002 +      xassert(row->lb < row->ub);
  1.1003 +      for (kase = 0; kase <= 1; kase++)
  1.1004 +      {  if (kase == 0)
  1.1005 +         {  /* process row lower bound */
  1.1006 +            if (row->lb == -DBL_MAX) continue;
  1.1007 +            ptr = copy_form(npp, row, +1.0);
  1.1008 +            b = + row->lb;
  1.1009 +         }
  1.1010 +         else
  1.1011 +         {  /* process row upper bound */
  1.1012 +            if (row->ub == +DBL_MAX) continue;
  1.1013 +            ptr = copy_form(npp, row, -1.0);
  1.1014 +            b = - row->ub;
  1.1015 +         }
  1.1016 +         /* now the inequality has the form "sum a[j] x[j] >= b" */
  1.1017 +         ret = hidden_covering(npp, ptr, &b);
  1.1018 +         xassert(0 <= ret && ret <= 2);
  1.1019 +         if (kase == 1 && ret == 1 || ret == 2)
  1.1020 +         {  /* the original inequality has been identified as hidden
  1.1021 +               covering inequality */
  1.1022 +            count++;
  1.1023 +#ifdef GLP_DEBUG
  1.1024 +            xprintf("Original constraint:\n");
  1.1025 +            for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1.1026 +               xprintf(" %+g x%d", aij->val, aij->col->j);
  1.1027 +            if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
  1.1028 +            if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
  1.1029 +            xprintf("\n");
  1.1030 +            xprintf("Equivalent covering inequality:\n");
  1.1031 +            for (e = ptr; e != NULL; e = e->next)
  1.1032 +               xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
  1.1033 +            xprintf(", >= %g\n", b);
  1.1034 +#endif
  1.1035 +            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
  1.1036 +            {  /* the original row is single-sided inequality; no copy
  1.1037 +                  is needed */
  1.1038 +               copy = NULL;
  1.1039 +            }
  1.1040 +            else
  1.1041 +            {  /* the original row is double-sided inequality; we need
  1.1042 +                  to create its copy for other bound before replacing it
  1.1043 +                  with the equivalent inequality */
  1.1044 +               copy = npp_add_row(npp);
  1.1045 +               if (kase == 0)
  1.1046 +               {  /* the copy is for upper bound */
  1.1047 +                  copy->lb = -DBL_MAX, copy->ub = row->ub;
  1.1048 +               }
  1.1049 +               else
  1.1050 +               {  /* the copy is for lower bound */
  1.1051 +                  copy->lb = row->lb, copy->ub = +DBL_MAX;
  1.1052 +               }
  1.1053 +               /* copy original row coefficients */
  1.1054 +               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1.1055 +                  npp_add_aij(npp, copy, aij->col, aij->val);
  1.1056 +            }
  1.1057 +            /* replace the original inequality by equivalent one */
  1.1058 +            npp_erase_row(npp, row);
  1.1059 +            row->lb = b, row->ub = +DBL_MAX;
  1.1060 +            for (e = ptr; e != NULL; e = e->next)
  1.1061 +               npp_add_aij(npp, row, e->xj, e->aj);
  1.1062 +            /* continue processing upper bound for the copy */
  1.1063 +            if (copy != NULL) row = copy;
  1.1064 +         }
  1.1065 +         drop_form(npp, ptr);
  1.1066 +      }
  1.1067 +      return count;
  1.1068 +}
  1.1069 +
  1.1070 +/***********************************************************************
  1.1071 +*  NAME
  1.1072 +*
  1.1073 +*  npp_is_partitioning - test if constraint is partitioning equality
  1.1074 +*
  1.1075 +*  SYNOPSIS
  1.1076 +*
  1.1077 +*  #include "glpnpp.h"
  1.1078 +*  int npp_is_partitioning(NPP *npp, NPPROW *row);
  1.1079 +*
  1.1080 +*  RETURNS
  1.1081 +*
  1.1082 +*  If the specified row (constraint) is partitioning equality (see
  1.1083 +*  below), the routine npp_is_partitioning returns non-zero. Otherwise,
  1.1084 +*  it returns zero.
  1.1085 +*
  1.1086 +*  PARTITIONING EQUALITIES
  1.1087 +*
  1.1088 +*  In canonical format the partitioning equality is the following:
  1.1089 +*
  1.1090 +*     sum  x[j] = 1,                                                 (1)
  1.1091 +*    j in J
  1.1092 +*
  1.1093 +*  where all variables x[j] are binary. This equality expresses the
  1.1094 +*  condition that in any integer feasible solution exactly one variable
  1.1095 +*  in set J must take non-zero (unity) value while other variables must
  1.1096 +*  be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if
  1.1097 +*  J is empty, the inequality (1) is infeasible, and if |J| = 1, the
  1.1098 +*  inequality (1) is a fixing row.
  1.1099 +*
  1.1100 +*  In general case the partitioning equality may include original
  1.1101 +*  variables x[j] as well as their complements x~[j]:
  1.1102 +*
  1.1103 +*     sum   x[j] + sum   x~[j] = 1,                                  (2)
  1.1104 +*    j in Jp      j in Jn
  1.1105 +*
  1.1106 +*  where Jp and Jn are not intersected. Therefore, using substitution
  1.1107 +*  x~[j] = 1 - x[j] leads to the partitioning equality in generalized
  1.1108 +*  format:
  1.1109 +*
  1.1110 +*     sum   x[j] - sum   x[j] = 1 - |Jn|.                            (3)
  1.1111 +*    j in Jp      j in Jn */
  1.1112 +
  1.1113 +int npp_is_partitioning(NPP *npp, NPPROW *row)
  1.1114 +{     /* test if constraint is partitioning equality */
  1.1115 +      NPPCOL *col;
  1.1116 +      NPPAIJ *aij;
  1.1117 +      int b;
  1.1118 +      xassert(npp == npp);
  1.1119 +      if (row->lb != row->ub) return 0;
  1.1120 +      b = 1;
  1.1121 +      for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1.1122 +      {  col = aij->col;
  1.1123 +         if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
  1.1124 +            return 0;
  1.1125 +         if (aij->val == +1.0)
  1.1126 +            ;
  1.1127 +         else if (aij->val == -1.0)
  1.1128 +            b--;
  1.1129 +         else
  1.1130 +            return 0;
  1.1131 +      }
  1.1132 +      if (row->lb != (double)b) return 0;
  1.1133 +      return 1;
  1.1134 +}
  1.1135 +
  1.1136 +/***********************************************************************
  1.1137 +*  NAME
  1.1138 +*
  1.1139 +*  npp_reduce_ineq_coef - reduce inequality constraint coefficients
  1.1140 +*
  1.1141 +*  SYNOPSIS
  1.1142 +*
  1.1143 +*  #include "glpnpp.h"
  1.1144 +*  int npp_reduce_ineq_coef(NPP *npp, NPPROW *row);
  1.1145 +*
  1.1146 +*  DESCRIPTION
  1.1147 +*
  1.1148 +*  The routine npp_reduce_ineq_coef processes specified inequality
  1.1149 +*  constraint attempting to replace it by an equivalent constraint,
  1.1150 +*  where magnitude of coefficients at binary variables is smaller than
  1.1151 +*  in the original constraint. If the inequality is double-sided, it is
  1.1152 +*  replaced by a pair of single-sided inequalities, if necessary.
  1.1153 +*
  1.1154 +*  RETURNS
  1.1155 +*
  1.1156 +*  The routine npp_reduce_ineq_coef returns the number of coefficients
  1.1157 +*  reduced.
  1.1158 +*
  1.1159 +*  BACKGROUND
  1.1160 +*
  1.1161 +*  Consider an inequality constraint:
  1.1162 +*
  1.1163 +*     sum  a[j] x[j] >= b.                                           (1)
  1.1164 +*    j in J
  1.1165 +*
  1.1166 +*  (In case of '<=' inequality it can be transformed to '>=' format by
  1.1167 +*  multiplying both its sides by -1.) Let x[k] be a binary variable;
  1.1168 +*  other variables can be integer as well as continuous. We can write
  1.1169 +*  constraint (1) as follows:
  1.1170 +*
  1.1171 +*     a[k] x[k] + t[k] >= b,                                         (2)
  1.1172 +*
  1.1173 +*  where:
  1.1174 +*
  1.1175 +*     t[k] = sum      a[j] x[j].                                     (3)
  1.1176 +*           j in J\{k}
  1.1177 +*
  1.1178 +*  Since x[k] is binary, constraint (2) is equivalent to disjunction of
  1.1179 +*  the following two constraints:
  1.1180 +*
  1.1181 +*     x[k] = 0,  t[k] >= b                                           (4)
  1.1182 +*
  1.1183 +*        OR
  1.1184 +*
  1.1185 +*     x[k] = 1,  t[k] >= b - a[k].                                   (5)
  1.1186 +*
  1.1187 +*  Let also that for the partial sum t[k] be known some its implied
  1.1188 +*  lower bound inf t[k].
  1.1189 +*
  1.1190 +*  Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints
  1.1191 +*  (4) and (5) and therefore constraint (2) are redundant.
  1.1192 +*  If inf t[k] > b - a[k], only constraint (5) is redundant, in which
  1.1193 +*  case it can be replaced with the following redundant and therefore
  1.1194 +*  equivalent constraint:
  1.1195 +*
  1.1196 +*     t[k] >= b - a'[k] = inf t[k],                                  (6)
  1.1197 +*
  1.1198 +*  where:
  1.1199 +*
  1.1200 +*     a'[k] = b - inf t[k].                                          (7)
  1.1201 +*
  1.1202 +*  Thus, the original constraint (2) is equivalent to the following
  1.1203 +*  constraint with coefficient at variable x[k] changed:
  1.1204 +*
  1.1205 +*     a'[k] x[k] + t[k] >= b.                                        (8)
  1.1206 +*
  1.1207 +*  From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient
  1.1208 +*  at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that
  1.1209 +*  a'[k] < a[k], i.e. the coefficient reduces in magnitude.
  1.1210 +*
  1.1211 +*  Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both
  1.1212 +*  constraints (4) and (5) and therefore constraint (2) are redundant.
  1.1213 +*  If inf t[k] > b, only constraint (4) is redundant, in which case it
  1.1214 +*  can be replaced with the following redundant and therefore equivalent
  1.1215 +*  constraint:
  1.1216 +*
  1.1217 +*     t[k] >= b' = inf t[k].                                         (9)
  1.1218 +*
  1.1219 +*  Rewriting constraint (5) as follows:
  1.1220 +*
  1.1221 +*     t[k] >= b - a[k] = b' - a'[k],                                (10)
  1.1222 +*
  1.1223 +*  where:
  1.1224 +*
  1.1225 +*     a'[k] = a[k] + b' - b = a[k] + inf t[k] - b,                  (11)
  1.1226 +*
  1.1227 +*  we can see that disjunction of constraint (9) and (10) is equivalent
  1.1228 +*  to disjunction of constraint (4) and (5), from which it follows that
  1.1229 +*  the original constraint (2) is equivalent to the following constraint
  1.1230 +*  with both coefficient at variable x[k] and right-hand side changed:
  1.1231 +*
  1.1232 +*     a'[k] x[k] + t[k] >= b'.                                      (12)
  1.1233 +*
  1.1234 +*  From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the
  1.1235 +*  coefficient at x[k] keeps its sign. And from inf t[k] > b it follows
  1.1236 +*  that a'[k] > a[k], i.e. the coefficient reduces in magnitude.
  1.1237 +*
  1.1238 +*  PROBLEM TRANSFORMATION
  1.1239 +*
  1.1240 +*  In the routine npp_reduce_ineq_coef the following implied lower
  1.1241 +*  bound of the partial sum (3) is used:
  1.1242 +*
  1.1243 +*     inf t[k] = sum       a[j] l[j] + sum       a[j] u[j],         (13)
  1.1244 +*               j in Jp\{k}           k in Jn\{k}
  1.1245 +*
  1.1246 +*  where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are
  1.1247 +*  lower and upper bounds, resp., of variable x[j].
  1.1248 +*
  1.1249 +*  In order to compute inf t[k] more efficiently, the following formula,
  1.1250 +*  which is equivalent to (13), is actually used:
  1.1251 +*
  1.1252 +*                ( h - a[k] l[k] = h,        if a[k] > 0,
  1.1253 +*     inf t[k] = <                                                  (14)
  1.1254 +*                ( h - a[k] u[k] = h - a[k], if a[k] < 0,
  1.1255 +*
  1.1256 +*  where:
  1.1257 +*
  1.1258 +*     h = sum   a[j] l[j] + sum   a[j] u[j]                         (15)
  1.1259 +*        j in Jp           j in Jn
  1.1260 +*
  1.1261 +*  is the implied lower bound of row (1).
  1.1262 +*
  1.1263 +*  Reduction of positive coefficient (a[k] > 0) does not change value
  1.1264 +*  of h, since l[k] = 0. In case of reduction of negative coefficient
  1.1265 +*  (a[k] < 0) from (11) it follows that:
  1.1266 +*
  1.1267 +*     delta a[k] = a'[k] - a[k] = inf t[k] - b  (> 0),              (16)
  1.1268 +*
  1.1269 +*  so new value of h (accounting that u[k] = 1) can be computed as
  1.1270 +*  follows:
  1.1271 +*
  1.1272 +*     h := h + delta a[k] = h + (inf t[k] - b).                     (17)
  1.1273 +*
  1.1274 +*  RECOVERING SOLUTION
  1.1275 +*
  1.1276 +*  None needed. */
  1.1277 +
  1.1278 +static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b)
  1.1279 +{     /* process inequality constraint: sum a[j] x[j] >= b */
  1.1280 +      /* returns: the number of coefficients reduced */
  1.1281 +      struct elem *e;
  1.1282 +      int count = 0;
  1.1283 +      double h, inf_t, new_a, b = *_b;
  1.1284 +      xassert(npp == npp);
  1.1285 +      /* compute h; see (15) */
  1.1286 +      h = 0.0;
  1.1287 +      for (e = ptr; e != NULL; e = e->next)
  1.1288 +      {  if (e->aj > 0.0)
  1.1289 +         {  if (e->xj->lb == -DBL_MAX) goto done;
  1.1290 +            h += e->aj * e->xj->lb;
  1.1291 +         }
  1.1292 +         else /* e->aj < 0.0 */
  1.1293 +         {  if (e->xj->ub == +DBL_MAX) goto done;
  1.1294 +            h += e->aj * e->xj->ub;
  1.1295 +         }
  1.1296 +      }
  1.1297 +      /* perform reduction of coefficients at binary variables */
  1.1298 +      for (e = ptr; e != NULL; e = e->next)
  1.1299 +      {  /* skip non-binary variable */
  1.1300 +         if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
  1.1301 +            continue;
  1.1302 +         if (e->aj > 0.0)
  1.1303 +         {  /* compute inf t[k]; see (14) */
  1.1304 +            inf_t = h;
  1.1305 +            if (b - e->aj < inf_t && inf_t < b)
  1.1306 +            {  /* compute reduced coefficient a'[k]; see (7) */
  1.1307 +               new_a = b - inf_t;
  1.1308 +               if (new_a >= +1e-3 &&
  1.1309 +                   e->aj - new_a >= 0.01 * (1.0 + e->aj))
  1.1310 +               {  /* accept a'[k] */
  1.1311 +#ifdef GLP_DEBUG
  1.1312 +                  xprintf("+");
  1.1313 +#endif
  1.1314 +                  e->aj = new_a;
  1.1315 +                  count++;
  1.1316 +               }
  1.1317 +            }
  1.1318 +         }
  1.1319 +         else /* e->aj < 0.0 */
  1.1320 +         {  /* compute inf t[k]; see (14) */
  1.1321 +            inf_t = h - e->aj;
  1.1322 +            if (b < inf_t && inf_t < b - e->aj)
  1.1323 +            {  /* compute reduced coefficient a'[k]; see (11) */
  1.1324 +               new_a = e->aj + (inf_t - b);
  1.1325 +               if (new_a <= -1e-3 &&
  1.1326 +                   new_a - e->aj >= 0.01 * (1.0 - e->aj))
  1.1327 +               {  /* accept a'[k] */
  1.1328 +#ifdef GLP_DEBUG
  1.1329 +                  xprintf("-");
  1.1330 +#endif
  1.1331 +                  e->aj = new_a;
  1.1332 +                  /* update h; see (17) */
  1.1333 +                  h += (inf_t - b);
  1.1334 +                  /* compute b'; see (9) */
  1.1335 +                  b = inf_t;
  1.1336 +                  count++;
  1.1337 +               }
  1.1338 +            }
  1.1339 +         }
  1.1340 +      }
  1.1341 +      *_b = b;
  1.1342 +done: return count;
  1.1343 +}
  1.1344 +
  1.1345 +int npp_reduce_ineq_coef(NPP *npp, NPPROW *row)
  1.1346 +{     /* reduce inequality constraint coefficients */
  1.1347 +      NPPROW *copy;
  1.1348 +      NPPAIJ *aij;
  1.1349 +      struct elem *ptr, *e;
  1.1350 +      int kase, count[2];
  1.1351 +      double b;
  1.1352 +      /* the row must be inequality constraint */
  1.1353 +      xassert(row->lb < row->ub);
  1.1354 +      count[0] = count[1] = 0;
  1.1355 +      for (kase = 0; kase <= 1; kase++)
  1.1356 +      {  if (kase == 0)
  1.1357 +         {  /* process row lower bound */
  1.1358 +            if (row->lb == -DBL_MAX) continue;
  1.1359 +#ifdef GLP_DEBUG
  1.1360 +            xprintf("L");
  1.1361 +#endif
  1.1362 +            ptr = copy_form(npp, row, +1.0);
  1.1363 +            b = + row->lb;
  1.1364 +         }
  1.1365 +         else
  1.1366 +         {  /* process row upper bound */
  1.1367 +            if (row->ub == +DBL_MAX) continue;
  1.1368 +#ifdef GLP_DEBUG
  1.1369 +            xprintf("U");
  1.1370 +#endif
  1.1371 +            ptr = copy_form(npp, row, -1.0);
  1.1372 +            b = - row->ub;
  1.1373 +         }
  1.1374 +         /* now the inequality has the form "sum a[j] x[j] >= b" */
  1.1375 +         count[kase] = reduce_ineq_coef(npp, ptr, &b);
  1.1376 +         if (count[kase] > 0)
  1.1377 +         {  /* the original inequality has been replaced by equivalent
  1.1378 +               one with coefficients reduced */
  1.1379 +            if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
  1.1380 +            {  /* the original row is single-sided inequality; no copy
  1.1381 +                  is needed */
  1.1382 +               copy = NULL;
  1.1383 +            }
  1.1384 +            else
  1.1385 +            {  /* the original row is double-sided inequality; we need
  1.1386 +                  to create its copy for other bound before replacing it
  1.1387 +                  with the equivalent inequality */
  1.1388 +#ifdef GLP_DEBUG
  1.1389 +               xprintf("*");
  1.1390 +#endif
  1.1391 +               copy = npp_add_row(npp);
  1.1392 +               if (kase == 0)
  1.1393 +               {  /* the copy is for upper bound */
  1.1394 +                  copy->lb = -DBL_MAX, copy->ub = row->ub;
  1.1395 +               }
  1.1396 +               else
  1.1397 +               {  /* the copy is for lower bound */
  1.1398 +                  copy->lb = row->lb, copy->ub = +DBL_MAX;
  1.1399 +               }
  1.1400 +               /* copy original row coefficients */
  1.1401 +               for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1.1402 +                  npp_add_aij(npp, copy, aij->col, aij->val);
  1.1403 +            }
  1.1404 +            /* replace the original inequality by equivalent one */
  1.1405 +            npp_erase_row(npp, row);
  1.1406 +            row->lb = b, row->ub = +DBL_MAX;
  1.1407 +            for (e = ptr; e != NULL; e = e->next)
  1.1408 +               npp_add_aij(npp, row, e->xj, e->aj);
  1.1409 +            /* continue processing upper bound for the copy */
  1.1410 +            if (copy != NULL) row = copy;
  1.1411 +         }
  1.1412 +         drop_form(npp, ptr);
  1.1413 +      }
  1.1414 +      return count[0] + count[1];
  1.1415 +}
  1.1416 +
  1.1417 +/* eof */