lemon-project-template-glpk

view deps/glpk/src/glpapi08.c @ 9:33de93886c88

Import GLPK 4.47
author Alpar Juttner <alpar@cs.elte.hu>
date Sun, 06 Nov 2011 20:59:10 +0100
parents
children
line source
1 /* glpapi08.c (interior-point method routines) */
3 /***********************************************************************
4 * This code is part of GLPK (GNU Linear Programming Kit).
5 *
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7 * 2009, 2010, 2011 Andrew Makhorin, Department for Applied Informatics,
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved.
9 * E-mail: <mao@gnu.org>.
10 *
11 * GLPK is free software: you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 3 of the License, or
14 * (at your option) any later version.
15 *
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
19 * License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>.
23 ***********************************************************************/
25 #include "glpapi.h"
26 #include "glpipm.h"
27 #include "glpnpp.h"
29 /***********************************************************************
30 * NAME
31 *
32 * glp_interior - solve LP problem with the interior-point method
33 *
34 * SYNOPSIS
35 *
36 * int glp_interior(glp_prob *P, const glp_iptcp *parm);
37 *
38 * The routine glp_interior is a driver to the LP solver based on the
39 * interior-point method.
40 *
41 * The interior-point solver has a set of control parameters. Values of
42 * the control parameters can be passed in a structure glp_iptcp, which
43 * the parameter parm points to.
44 *
45 * Currently this routine implements an easy variant of the primal-dual
46 * interior-point method based on Mehrotra's technique.
47 *
48 * This routine transforms the original LP problem to an equivalent LP
49 * problem in the standard formulation (all constraints are equalities,
50 * all variables are non-negative), calls the routine ipm_main to solve
51 * the transformed problem, and then transforms an obtained solution to
52 * the solution of the original problem.
53 *
54 * RETURNS
55 *
56 * 0 The LP problem instance has been successfully solved. This code
57 * does not necessarily mean that the solver has found optimal
58 * solution. It only means that the solution process was successful.
59 *
60 * GLP_EFAIL
61 * The problem has no rows/columns.
62 *
63 * GLP_ENOCVG
64 * Very slow convergence or divergence.
65 *
66 * GLP_EITLIM
67 * Iteration limit exceeded.
68 *
69 * GLP_EINSTAB
70 * Numerical instability on solving Newtonian system. */
72 static void transform(NPP *npp)
73 { /* transform LP to the standard formulation */
74 NPPROW *row, *prev_row;
75 NPPCOL *col, *prev_col;
76 for (row = npp->r_tail; row != NULL; row = prev_row)
77 { prev_row = row->prev;
78 if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
79 npp_free_row(npp, row);
80 else if (row->lb == -DBL_MAX)
81 npp_leq_row(npp, row);
82 else if (row->ub == +DBL_MAX)
83 npp_geq_row(npp, row);
84 else if (row->lb != row->ub)
85 { if (fabs(row->lb) < fabs(row->ub))
86 npp_geq_row(npp, row);
87 else
88 npp_leq_row(npp, row);
89 }
90 }
91 for (col = npp->c_tail; col != NULL; col = prev_col)
92 { prev_col = col->prev;
93 if (col->lb == -DBL_MAX && col->ub == +DBL_MAX)
94 npp_free_col(npp, col);
95 else if (col->lb == -DBL_MAX)
96 npp_ubnd_col(npp, col);
97 else if (col->ub == +DBL_MAX)
98 { if (col->lb != 0.0)
99 npp_lbnd_col(npp, col);
100 }
101 else if (col->lb != col->ub)
102 { if (fabs(col->lb) < fabs(col->ub))
103 { if (col->lb != 0.0)
104 npp_lbnd_col(npp, col);
105 }
106 else
107 npp_ubnd_col(npp, col);
108 npp_dbnd_col(npp, col);
109 }
110 else
111 npp_fixed_col(npp, col);
112 }
113 for (row = npp->r_head; row != NULL; row = row->next)
114 xassert(row->lb == row->ub);
115 for (col = npp->c_head; col != NULL; col = col->next)
116 xassert(col->lb == 0.0 && col->ub == +DBL_MAX);
117 return;
118 }
120 int glp_interior(glp_prob *P, const glp_iptcp *parm)
121 { glp_iptcp _parm;
122 GLPROW *row;
123 GLPCOL *col;
124 NPP *npp = NULL;
125 glp_prob *prob = NULL;
126 int i, j, ret;
127 /* check control parameters */
128 if (parm == NULL)
129 glp_init_iptcp(&_parm), parm = &_parm;
130 if (!(parm->msg_lev == GLP_MSG_OFF ||
131 parm->msg_lev == GLP_MSG_ERR ||
132 parm->msg_lev == GLP_MSG_ON ||
133 parm->msg_lev == GLP_MSG_ALL))
134 xerror("glp_interior: msg_lev = %d; invalid parameter\n",
135 parm->msg_lev);
136 if (!(parm->ord_alg == GLP_ORD_NONE ||
137 parm->ord_alg == GLP_ORD_QMD ||
138 parm->ord_alg == GLP_ORD_AMD ||
139 parm->ord_alg == GLP_ORD_SYMAMD))
140 xerror("glp_interior: ord_alg = %d; invalid parameter\n",
141 parm->ord_alg);
142 /* interior-point solution is currently undefined */
143 P->ipt_stat = GLP_UNDEF;
144 P->ipt_obj = 0.0;
145 /* check bounds of double-bounded variables */
146 for (i = 1; i <= P->m; i++)
147 { row = P->row[i];
148 if (row->type == GLP_DB && row->lb >= row->ub)
149 { if (parm->msg_lev >= GLP_MSG_ERR)
150 xprintf("glp_interior: row %d: lb = %g, ub = %g; incorre"
151 "ct bounds\n", i, row->lb, row->ub);
152 ret = GLP_EBOUND;
153 goto done;
154 }
155 }
156 for (j = 1; j <= P->n; j++)
157 { col = P->col[j];
158 if (col->type == GLP_DB && col->lb >= col->ub)
159 { if (parm->msg_lev >= GLP_MSG_ERR)
160 xprintf("glp_interior: column %d: lb = %g, ub = %g; inco"
161 "rrect bounds\n", j, col->lb, col->ub);
162 ret = GLP_EBOUND;
163 goto done;
164 }
165 }
166 /* transform LP to the standard formulation */
167 if (parm->msg_lev >= GLP_MSG_ALL)
168 xprintf("Original LP has %d row(s), %d column(s), and %d non-z"
169 "ero(s)\n", P->m, P->n, P->nnz);
170 npp = npp_create_wksp();
171 npp_load_prob(npp, P, GLP_OFF, GLP_IPT, GLP_ON);
172 transform(npp);
173 prob = glp_create_prob();
174 npp_build_prob(npp, prob);
175 if (parm->msg_lev >= GLP_MSG_ALL)
176 xprintf("Working LP has %d row(s), %d column(s), and %d non-ze"
177 "ro(s)\n", prob->m, prob->n, prob->nnz);
178 #if 1
179 /* currently empty problem cannot be solved */
180 if (!(prob->m > 0 && prob->n > 0))
181 { if (parm->msg_lev >= GLP_MSG_ERR)
182 xprintf("glp_interior: unable to solve empty problem\n");
183 ret = GLP_EFAIL;
184 goto done;
185 }
186 #endif
187 /* scale the resultant LP */
188 { ENV *env = get_env_ptr();
189 int term_out = env->term_out;
190 env->term_out = GLP_OFF;
191 glp_scale_prob(prob, GLP_SF_EQ);
192 env->term_out = term_out;
193 }
194 /* warn about dense columns */
195 if (parm->msg_lev >= GLP_MSG_ON && prob->m >= 200)
196 { int len, cnt = 0;
197 for (j = 1; j <= prob->n; j++)
198 { len = glp_get_mat_col(prob, j, NULL, NULL);
199 if ((double)len >= 0.20 * (double)prob->m) cnt++;
200 }
201 if (cnt == 1)
202 xprintf("WARNING: PROBLEM HAS ONE DENSE COLUMN\n");
203 else if (cnt > 0)
204 xprintf("WARNING: PROBLEM HAS %d DENSE COLUMNS\n", cnt);
205 }
206 /* solve the transformed LP */
207 ret = ipm_solve(prob, parm);
208 /* postprocess solution from the transformed LP */
209 npp_postprocess(npp, prob);
210 /* and store solution to the original LP */
211 npp_unload_sol(npp, P);
212 done: /* free working program objects */
213 if (npp != NULL) npp_delete_wksp(npp);
214 if (prob != NULL) glp_delete_prob(prob);
215 /* return to the application program */
216 return ret;
217 }
219 /***********************************************************************
220 * NAME
221 *
222 * glp_init_iptcp - initialize interior-point solver control parameters
223 *
224 * SYNOPSIS
225 *
226 * void glp_init_iptcp(glp_iptcp *parm);
227 *
228 * DESCRIPTION
229 *
230 * The routine glp_init_iptcp initializes control parameters, which are
231 * used by the interior-point solver, with default values.
232 *
233 * Default values of the control parameters are stored in the glp_iptcp
234 * structure, which the parameter parm points to. */
236 void glp_init_iptcp(glp_iptcp *parm)
237 { parm->msg_lev = GLP_MSG_ALL;
238 parm->ord_alg = GLP_ORD_AMD;
239 return;
240 }
242 /***********************************************************************
243 * NAME
244 *
245 * glp_ipt_status - retrieve status of interior-point solution
246 *
247 * SYNOPSIS
248 *
249 * int glp_ipt_status(glp_prob *lp);
250 *
251 * RETURNS
252 *
253 * The routine glp_ipt_status reports the status of solution found by
254 * the interior-point solver as follows:
255 *
256 * GLP_UNDEF - interior-point solution is undefined;
257 * GLP_OPT - interior-point solution is optimal;
258 * GLP_INFEAS - interior-point solution is infeasible;
259 * GLP_NOFEAS - no feasible solution exists. */
261 int glp_ipt_status(glp_prob *lp)
262 { int ipt_stat = lp->ipt_stat;
263 return ipt_stat;
264 }
266 /***********************************************************************
267 * NAME
268 *
269 * glp_ipt_obj_val - retrieve objective value (interior point)
270 *
271 * SYNOPSIS
272 *
273 * double glp_ipt_obj_val(glp_prob *lp);
274 *
275 * RETURNS
276 *
277 * The routine glp_ipt_obj_val returns value of the objective function
278 * for interior-point solution. */
280 double glp_ipt_obj_val(glp_prob *lp)
281 { /*struct LPXCPS *cps = lp->cps;*/
282 double z;
283 z = lp->ipt_obj;
284 /*if (cps->round && fabs(z) < 1e-9) z = 0.0;*/
285 return z;
286 }
288 /***********************************************************************
289 * NAME
290 *
291 * glp_ipt_row_prim - retrieve row primal value (interior point)
292 *
293 * SYNOPSIS
294 *
295 * double glp_ipt_row_prim(glp_prob *lp, int i);
296 *
297 * RETURNS
298 *
299 * The routine glp_ipt_row_prim returns primal value of the auxiliary
300 * variable associated with i-th row. */
302 double glp_ipt_row_prim(glp_prob *lp, int i)
303 { /*struct LPXCPS *cps = lp->cps;*/
304 double pval;
305 if (!(1 <= i && i <= lp->m))
306 xerror("glp_ipt_row_prim: i = %d; row number out of range\n",
307 i);
308 pval = lp->row[i]->pval;
309 /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/
310 return pval;
311 }
313 /***********************************************************************
314 * NAME
315 *
316 * glp_ipt_row_dual - retrieve row dual value (interior point)
317 *
318 * SYNOPSIS
319 *
320 * double glp_ipt_row_dual(glp_prob *lp, int i);
321 *
322 * RETURNS
323 *
324 * The routine glp_ipt_row_dual returns dual value (i.e. reduced cost)
325 * of the auxiliary variable associated with i-th row. */
327 double glp_ipt_row_dual(glp_prob *lp, int i)
328 { /*struct LPXCPS *cps = lp->cps;*/
329 double dval;
330 if (!(1 <= i && i <= lp->m))
331 xerror("glp_ipt_row_dual: i = %d; row number out of range\n",
332 i);
333 dval = lp->row[i]->dval;
334 /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/
335 return dval;
336 }
338 /***********************************************************************
339 * NAME
340 *
341 * glp_ipt_col_prim - retrieve column primal value (interior point)
342 *
343 * SYNOPSIS
344 *
345 * double glp_ipt_col_prim(glp_prob *lp, int j);
346 *
347 * RETURNS
348 *
349 * The routine glp_ipt_col_prim returns primal value of the structural
350 * variable associated with j-th column. */
352 double glp_ipt_col_prim(glp_prob *lp, int j)
353 { /*struct LPXCPS *cps = lp->cps;*/
354 double pval;
355 if (!(1 <= j && j <= lp->n))
356 xerror("glp_ipt_col_prim: j = %d; column number out of range\n"
357 , j);
358 pval = lp->col[j]->pval;
359 /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/
360 return pval;
361 }
363 /***********************************************************************
364 * NAME
365 *
366 * glp_ipt_col_dual - retrieve column dual value (interior point)
367 *
368 * SYNOPSIS
369 *
370 * #include "glplpx.h"
371 * double glp_ipt_col_dual(glp_prob *lp, int j);
372 *
373 * RETURNS
374 *
375 * The routine glp_ipt_col_dual returns dual value (i.e. reduced cost)
376 * of the structural variable associated with j-th column. */
378 double glp_ipt_col_dual(glp_prob *lp, int j)
379 { /*struct LPXCPS *cps = lp->cps;*/
380 double dval;
381 if (!(1 <= j && j <= lp->n))
382 xerror("glp_ipt_col_dual: j = %d; column number out of range\n"
383 , j);
384 dval = lp->col[j]->dval;
385 /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/
386 return dval;
387 }
389 /* eof */