alpar@9: /* adler32.c -- compute the Adler-32 checksum of a data stream alpar@9: * Copyright (C) 1995-2007 Mark Adler alpar@9: * For conditions of distribution and use, see copyright notice in zlib.h alpar@9: */ alpar@9: alpar@9: /* @(#) $Id$ */ alpar@9: alpar@9: #include "zutil.h" alpar@9: alpar@9: #define local static alpar@9: alpar@9: local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2); alpar@9: alpar@9: #define BASE 65521UL /* largest prime smaller than 65536 */ alpar@9: #define NMAX 5552 alpar@9: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ alpar@9: alpar@9: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} alpar@9: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); alpar@9: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); alpar@9: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); alpar@9: #define DO16(buf) DO8(buf,0); DO8(buf,8); alpar@9: alpar@9: /* use NO_DIVIDE if your processor does not do division in hardware */ alpar@9: #ifdef NO_DIVIDE alpar@9: # define MOD(a) \ alpar@9: do { \ alpar@9: if (a >= (BASE << 16)) a -= (BASE << 16); \ alpar@9: if (a >= (BASE << 15)) a -= (BASE << 15); \ alpar@9: if (a >= (BASE << 14)) a -= (BASE << 14); \ alpar@9: if (a >= (BASE << 13)) a -= (BASE << 13); \ alpar@9: if (a >= (BASE << 12)) a -= (BASE << 12); \ alpar@9: if (a >= (BASE << 11)) a -= (BASE << 11); \ alpar@9: if (a >= (BASE << 10)) a -= (BASE << 10); \ alpar@9: if (a >= (BASE << 9)) a -= (BASE << 9); \ alpar@9: if (a >= (BASE << 8)) a -= (BASE << 8); \ alpar@9: if (a >= (BASE << 7)) a -= (BASE << 7); \ alpar@9: if (a >= (BASE << 6)) a -= (BASE << 6); \ alpar@9: if (a >= (BASE << 5)) a -= (BASE << 5); \ alpar@9: if (a >= (BASE << 4)) a -= (BASE << 4); \ alpar@9: if (a >= (BASE << 3)) a -= (BASE << 3); \ alpar@9: if (a >= (BASE << 2)) a -= (BASE << 2); \ alpar@9: if (a >= (BASE << 1)) a -= (BASE << 1); \ alpar@9: if (a >= BASE) a -= BASE; \ alpar@9: } while (0) alpar@9: # define MOD4(a) \ alpar@9: do { \ alpar@9: if (a >= (BASE << 4)) a -= (BASE << 4); \ alpar@9: if (a >= (BASE << 3)) a -= (BASE << 3); \ alpar@9: if (a >= (BASE << 2)) a -= (BASE << 2); \ alpar@9: if (a >= (BASE << 1)) a -= (BASE << 1); \ alpar@9: if (a >= BASE) a -= BASE; \ alpar@9: } while (0) alpar@9: #else alpar@9: # define MOD(a) a %= BASE alpar@9: # define MOD4(a) a %= BASE alpar@9: #endif alpar@9: alpar@9: /* ========================================================================= */ alpar@9: uLong ZEXPORT adler32(adler, buf, len) alpar@9: uLong adler; alpar@9: const Bytef *buf; alpar@9: uInt len; alpar@9: { alpar@9: unsigned long sum2; alpar@9: unsigned n; alpar@9: alpar@9: /* split Adler-32 into component sums */ alpar@9: sum2 = (adler >> 16) & 0xffff; alpar@9: adler &= 0xffff; alpar@9: alpar@9: /* in case user likes doing a byte at a time, keep it fast */ alpar@9: if (len == 1) { alpar@9: adler += buf[0]; alpar@9: if (adler >= BASE) alpar@9: adler -= BASE; alpar@9: sum2 += adler; alpar@9: if (sum2 >= BASE) alpar@9: sum2 -= BASE; alpar@9: return adler | (sum2 << 16); alpar@9: } alpar@9: alpar@9: /* initial Adler-32 value (deferred check for len == 1 speed) */ alpar@9: if (buf == Z_NULL) alpar@9: return 1L; alpar@9: alpar@9: /* in case short lengths are provided, keep it somewhat fast */ alpar@9: if (len < 16) { alpar@9: while (len--) { alpar@9: adler += *buf++; alpar@9: sum2 += adler; alpar@9: } alpar@9: if (adler >= BASE) alpar@9: adler -= BASE; alpar@9: MOD4(sum2); /* only added so many BASE's */ alpar@9: return adler | (sum2 << 16); alpar@9: } alpar@9: alpar@9: /* do length NMAX blocks -- requires just one modulo operation */ alpar@9: while (len >= NMAX) { alpar@9: len -= NMAX; alpar@9: n = NMAX / 16; /* NMAX is divisible by 16 */ alpar@9: do { alpar@9: DO16(buf); /* 16 sums unrolled */ alpar@9: buf += 16; alpar@9: } while (--n); alpar@9: MOD(adler); alpar@9: MOD(sum2); alpar@9: } alpar@9: alpar@9: /* do remaining bytes (less than NMAX, still just one modulo) */ alpar@9: if (len) { /* avoid modulos if none remaining */ alpar@9: while (len >= 16) { alpar@9: len -= 16; alpar@9: DO16(buf); alpar@9: buf += 16; alpar@9: } alpar@9: while (len--) { alpar@9: adler += *buf++; alpar@9: sum2 += adler; alpar@9: } alpar@9: MOD(adler); alpar@9: MOD(sum2); alpar@9: } alpar@9: alpar@9: /* return recombined sums */ alpar@9: return adler | (sum2 << 16); alpar@9: } alpar@9: alpar@9: /* ========================================================================= */ alpar@9: local uLong adler32_combine_(adler1, adler2, len2) alpar@9: uLong adler1; alpar@9: uLong adler2; alpar@9: z_off64_t len2; alpar@9: { alpar@9: unsigned long sum1; alpar@9: unsigned long sum2; alpar@9: unsigned rem; alpar@9: alpar@9: /* the derivation of this formula is left as an exercise for the reader */ alpar@9: rem = (unsigned)(len2 % BASE); alpar@9: sum1 = adler1 & 0xffff; alpar@9: sum2 = rem * sum1; alpar@9: MOD(sum2); alpar@9: sum1 += (adler2 & 0xffff) + BASE - 1; alpar@9: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; alpar@9: if (sum1 >= BASE) sum1 -= BASE; alpar@9: if (sum1 >= BASE) sum1 -= BASE; alpar@9: if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); alpar@9: if (sum2 >= BASE) sum2 -= BASE; alpar@9: return sum1 | (sum2 << 16); alpar@9: } alpar@9: alpar@9: /* ========================================================================= */ alpar@9: uLong ZEXPORT adler32_combine(adler1, adler2, len2) alpar@9: uLong adler1; alpar@9: uLong adler2; alpar@9: z_off_t len2; alpar@9: { alpar@9: return adler32_combine_(adler1, adler2, len2); alpar@9: } alpar@9: alpar@9: uLong ZEXPORT adler32_combine64(adler1, adler2, len2) alpar@9: uLong adler1; alpar@9: uLong adler2; alpar@9: z_off64_t len2; alpar@9: { alpar@9: return adler32_combine_(adler1, adler2, len2); alpar@9: }