|
1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2003-2010 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 ///\file |
|
20 ///\brief Demo program that solves maximum flow problems using the LP interface |
|
21 /// |
|
22 /// This demo program shows how to solve the maximum flow problem using |
|
23 /// the LEMON LP solver interface. We would like to lay the emphasis on the |
|
24 /// simplicity of the way one can formulate LP constraints that arise in graph |
|
25 /// theory using LEMON. |
|
26 /// |
|
27 /// \include lp_maxflow_demo.cc |
|
28 |
|
29 #include <iostream> |
|
30 #include <lemon/smart_graph.h> |
|
31 #include <lemon/lgf_reader.h> |
|
32 #include <lemon/lp.h> |
|
33 |
|
34 using namespace lemon; |
|
35 |
|
36 template <typename GR, typename CAP> |
|
37 double maxFlow(const GR &g, const CAP &capacity, |
|
38 typename GR::Node source, typename GR::Node target) |
|
39 { |
|
40 TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
41 |
|
42 // Create an instance of the default LP solver |
|
43 Lp lp; |
|
44 |
|
45 // Add a column to the problem for each arc |
|
46 typename GR::template ArcMap<Lp::Col> f(g); |
|
47 lp.addColSet(f); |
|
48 |
|
49 // Capacity constraints |
|
50 for (ArcIt a(g); a != INVALID; ++a) { |
|
51 lp.colLowerBound(f[a], 0); |
|
52 lp.colUpperBound(f[a], capacity[a]); |
|
53 } |
|
54 |
|
55 // Flow conservation constraints |
|
56 for (NodeIt n(g); n != INVALID; ++n) { |
|
57 if (n == source || n == target) continue; |
|
58 Lp::Expr e; |
|
59 for (OutArcIt a(g, n); a != INVALID; ++a) e += f[a]; |
|
60 for (InArcIt a(g, n); a != INVALID; ++a) e -= f[a]; |
|
61 lp.addRow(e == 0); |
|
62 } |
|
63 |
|
64 // Objective function |
|
65 Lp::Expr o; |
|
66 for (OutArcIt a(g, source); a != INVALID; ++a) o += f[a]; |
|
67 for (InArcIt a(g, source); a != INVALID; ++a) o -= f[a]; |
|
68 lp.max(); |
|
69 lp.obj(o); |
|
70 |
|
71 // Solve the LP problem |
|
72 lp.solve(); |
|
73 |
|
74 return lp.primal(); |
|
75 } |
|
76 |
|
77 |
|
78 int main(int argc, char *argv[]) |
|
79 { |
|
80 // Check the arguments |
|
81 if (argc < 2) { |
|
82 std::cerr << "Usage:" << std::endl; |
|
83 std::cerr << " lp_maxflow_demo <input_file>" << std::endl; |
|
84 std::cerr << "The given input file has to contain a maximum flow\n" |
|
85 << "problem in LGF format (like 'maxflow.lgf')." |
|
86 << std::endl; |
|
87 return 0; |
|
88 } |
|
89 |
|
90 // Read the input file |
|
91 SmartDigraph g; |
|
92 SmartDigraph::ArcMap<double> cap(g); |
|
93 SmartDigraph::Node s, t; |
|
94 |
|
95 digraphReader(g, argv[1]) |
|
96 .arcMap("capacity", cap) |
|
97 .node("source", s) |
|
98 .node("target", t) |
|
99 .run(); |
|
100 |
|
101 // Solve the problem and print the result |
|
102 std::cout << "Max flow value: " << maxFlow(g, cap, s, t) << std::endl; |
|
103 |
|
104 return 0; |
|
105 } |