damecco.tex
author Madarasi Peter
Wed, 23 Nov 2016 21:45:11 +0100
changeset 13 a21760ed63d6
parent 12 d35847f14178
child 14 b45bac511108
permissions -rw-r--r--
Under 30
     1 %% 
     2 %% Copyright 2007, 2008, 2009 Elsevier Ltd
     3 %% 
     4 %% This file is part of the 'Elsarticle Bundle'.
     5 %% ---------------------------------------------
     6 %% 
     7 %% It may be distributed under the conditions of the LaTeX Project Public
     8 %% License, either version 1.2 of this license or (at your option) any
     9 %% later version.  The latest version of this license is in
    10 %%    http://www.latex-project.org/lppl.txt
    11 %% and version 1.2 or later is part of all distributions of LaTeX
    12 %% version 1999/12/01 or later.
    13 %% 
    14 %% The list of all files belonging to the 'Elsarticle Bundle' is
    15 %% given in the file `manifest.txt'.
    16 %% 
    17 
    18 %% Template article for Elsevier's document class `elsarticle'
    19 %% with numbered style bibliographic references
    20 %% SP 2008/03/01
    21 
    22 \documentclass[preprint,12pt]{elsarticle}
    23 
    24 %% Use the option review to obtain double line spacing
    25 %% \documentclass[authoryear,preprint,review,12pt]{elsarticle}
    26 
    27 %% Use the options 1p,twocolumn; 3p; 3p,twocolumn; 5p; or 5p,twocolumn
    28 %% for a journal layout:
    29 %% \documentclass[final,1p,times]{elsarticle}
    30 %% \documentclass[final,1p,times,twocolumn]{elsarticle}
    31 %% \documentclass[final,3p,times]{elsarticle}
    32 %% \documentclass[final,3p,times,twocolumn]{elsarticle}
    33 %% \documentclass[final,5p,times]{elsarticle}
    34 %% \documentclass[final,5p,times,twocolumn]{elsarticle}
    35 
    36 %% For including figures, graphicx.sty has been loaded in
    37 %% elsarticle.cls. If you prefer to use the old commands
    38 %% please give \usepackage{epsfig}
    39 
    40 %% The amssymb package provides various useful mathematical symbols
    41 \usepackage{amssymb}
    42 %% The amsthm package provides extended theorem environments
    43 %% \usepackage{amsthm}
    44 
    45 %% The lineno packages adds line numbers. Start line numbering with
    46 %% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on
    47 %% for the whole article with \linenumbers.
    48 %% \usepackage{lineno}
    49 
    50 \usepackage{amsmath}
    51 %% \usepackage[pdftex]{graphicx}
    52 
    53 \usepackage{pgfplots}
    54 \pgfplotsset{width=9cm}
    55 \pgfplotsset{compat=1.8}
    56 
    57 \usepackage{caption}
    58 \usepackage{subcaption} 
    59 
    60 \usepackage{algorithm}
    61 \usepackage{algpseudocode}
    62 \usepackage{tikz}
    63 
    64 \usepackage{amsthm,amssymb}
    65 \renewcommand{\qedsymbol}{\rule{0.7em}{0.7em}}
    66 
    67 \newtheorem{theorem}{Theorem}[subsection]
    68 \newtheorem{corollary}{Corollary}[theorem]
    69 \newtheorem{claim}[theorem]{Claim}
    70 
    71 \newtheorem{definition}{Definition}[subsection]
    72 \newtheorem{notation}{Notation}[subsection]
    73 \newtheorem{example}{Example}[subsection]
    74 \usetikzlibrary{decorations.markings}
    75 \let\oldproofname=\proofname
    76 %% \renewcommand{\proofname}{\rm\bf{Proof:}}
    77 
    78 \captionsetup{font=normalsize}
    79 
    80 \journal{Discrete Applied Mathematics}
    81 
    82 \begin{document}
    83 
    84 \begin{frontmatter}
    85 
    86 %% Title, authors and addresses
    87 
    88 %% use the tnoteref command within \title for footnotes;
    89 %% use the tnotetext command for theassociated footnote;
    90 %% use the fnref command within \author or \address for footnotes;
    91 %% use the fntext command for theassociated footnote;
    92 %% use the corref command within \author for corresponding author footnotes;
    93 %% use the cortext command for theassociated footnote;
    94 %% use the ead command for the email address,
    95 %% and the form \ead[url] for the home page:
    96 %% \title{Title\tnoteref{label1}}
    97 %% \tnotetext[label1]{}
    98 %% \author{Name\corref{cor1}\fnref{label2}}
    99 %% \ead{email address}
   100 %% \ead[url]{home page}
   101 %% \fntext[label2]{}
   102 %% \cortext[cor1]{}
   103 %% \address{Address\fnref{label3}}
   104 %% \fntext[label3]{}
   105 
   106 \title{Improved Algorithms for Matching Biological Graphs}
   107 
   108 %% use optional labels to link authors explicitly to addresses:
   109 %% \author[label1,label2]{}
   110 %% \address[label1]{}
   111 %% \address[label2]{}
   112 
   113 \author{Alp{\'a}r J{\"u}ttner and P{\'e}ter Madarasi}
   114 
   115 \address{Dept of Operations Research, ELTE}
   116 
   117 \begin{abstract}
   118 Subgraph isomorphism is a well-known NP-Complete problem, while its
   119 special case, the graph isomorphism problem is one of the few problems
   120 in NP neither known to be in P nor NP-Complete. Their appearance in
   121 many fields of application such as pattern analysis, computer vision
   122 questions and the analysis of chemical and biological systems has
   123 fostered the design of various algorithms for handling special graph
   124 structures.
   125 
   126 The idea of using state space representation and checking some
   127 conditions in each state to prune the search tree has made the VF2
   128 algorithm one of the state of the art graph matching algorithms for
   129 more than a decade. Recently, biological questions of ever increasing
   130 importance have required more efficient, specialized algorithms.
   131 
   132 This paper presents VF2++, a new algorithm based on the original VF2,
   133 which runs significantly faster on most test cases and performs
   134 especially well on special graph classes stemming from biological
   135 questions. VF2++ handles graphs of thousands of nodes in practically
   136 near linear time including preprocessing. Not only is it an improved
   137 version of VF2, but in fact, it is by far the fastest existing
   138 algorithm regarding biological graphs.
   139 
   140 The reason for VF2++' superiority over VF2 is twofold. Firstly, taking
   141 into account the structure and the node labeling of the graph, VF2++
   142 determines a state order in which most of the unfruitful branches of
   143 the search space can be pruned immediately. Secondly, introducing more
   144 efficient - nevertheless still easier to compute - cutting rules
   145 reduces the chance of going astray even further.
   146 
   147 In addition to the usual subgraph isomorphism, specialized versions
   148 for induced subgraph isomorphism and for graph isomorphism are
   149 presented. VF2++ has gained a runtime improvement of one order of
   150 magnitude respecting induced subgraph isomorphism and a better
   151 asymptotical behaviour in the case of graph isomorphism problem.
   152 
   153 After having provided the description of VF2++, in order to evaluate
   154 its effectiveness, an extensive comparison to the contemporary other
   155 algorithms is shown, using a wide range of inputs, including both real
   156 life biological and chemical datasets and standard randomly generated
   157 graph series.
   158 
   159 The work was motivated and sponsored by QuantumBio Inc., and all the
   160 developed algorithms are available as the part of the open source
   161 LEMON graph and network optimization library
   162 (http://lemon.cs.elte.hu).
   163 \end{abstract}
   164 
   165 \begin{keyword}
   166 %% keywords here, in the form: keyword \sep keyword
   167 
   168 %% PACS codes here, in the form: \PACS code \sep code
   169 
   170 %% MSC codes here, in the form: \MSC code \sep code
   171 %% or \MSC[2008] code \sep code (2000 is the default)
   172 
   173 \end{keyword}
   174 
   175 \end{frontmatter}
   176 
   177 %% \linenumbers
   178 
   179 %% main text
   180 \section{Introduction}
   181 \label{sec:intro}
   182 
   183 In the last decades, combinatorial structures, and especially graphs
   184 have been considered with ever increasing interest, and applied to the
   185 solution of several new and revised questions.  The expressiveness,
   186 the simplicity and the studiedness of graphs make them practical for
   187 modelling and appear constantly in several seemingly independent
   188 fields.  Bioinformatics and chemistry are amongst the most relevant
   189 and most important fields.
   190 
   191 Complex biological systems arise from the interaction and cooperation
   192 of plenty of molecular components. Getting acquainted with such
   193 systems at the molecular level has primary importance, since
   194 protein-protein interaction, DNA-protein interaction, metabolic
   195 interaction, transcription factor binding, neuronal networks, and
   196 hormone signaling networks can be understood only this way.
   197 
   198 For instance, a molecular structure can be considered as a graph,
   199 whose nodes correspond to atoms and whose edges to chemical bonds. The
   200 secondary structure of a protein can also be represented as a graph,
   201 where nodes are associated with aminoacids and the edges with hydrogen
   202 bonds. The nodes are often whole molecular components and the edges
   203 represent some relationships among them.  The similarity and
   204 dissimilarity of objects corresponding to nodes are incorporated to
   205 the model by \emph{node labels}.  Many other chemical and biological
   206 structures can easily be modeled in a similar way. Understanding such
   207 networks basically requires finding specific subgraphs, which can not
   208 avoid the application of graph matching algorithms.
   209 
   210 Finally, let some of the other real-world fields related to some
   211 variants of graph matching be briefly mentioned: pattern recognition
   212 and machine vision \cite{HorstBunkeApplications}, symbol recognition
   213 \cite{CordellaVentoSymbolRecognition}, face identification
   214 \cite{JianzhuangYongFaceIdentification}.  \\
   215 
   216 Subgraph and induced subgraph matching problems are known to be
   217 NP-Complete\cite{SubgraphNPC}, while the graph isomorphism problem is
   218 one of the few problems in NP neither known to be in P nor
   219 NP-Complete. Although polynomial time isomorphism algorithms are known
   220 for various graph classes, like trees and planar
   221 graphs\cite{PlanarGraphIso}, bounded valence
   222 graphs\cite{BondedDegGraphIso}, interval graphs\cite{IntervalGraphIso}
   223 or permutation graphs\cite{PermGraphIso}.
   224 
   225 In the following, some algorithms based on other approaches are
   226 summarized, which do not need any restrictions on the graphs. However,
   227 an overall polynomial behaviour is not expectable from such an
   228 alternative, it may often have good performance, even on a graph class
   229 for which polynomial algorithm is known. Note that this summary
   230 containing only exact matching algorithms is far not complete, neither
   231 does it cover all the recent algorithms.
   232 
   233 The first practically usable approach was due to
   234 Ullmann\cite{Ullmann} which is a commonly used depth-first
   235 search based algorithm with a complex heuristic for reducing the
   236 number of visited states. A major problem is its $\Theta(n^3)$ space
   237 complexity, which makes it impractical in the case of big sparse
   238 graphs.
   239 
   240 In a recent paper, Ullmann\cite{UllmannBit} presents an
   241 improved version of this algorithm based on a bit-vector solution for
   242 the binary Constraint Satisfaction Problem.
   243 
   244 The Nauty algorithm\cite{Nauty} transforms the two graphs to
   245 a canonical form before starting to check for the isomorphism. It has
   246 been considered as one of the fastest graph isomorphism algorithms,
   247 although graph categories were shown in which it takes exponentially
   248 many steps. This algorithm handles only the graph isomorphism problem.
   249 
   250 The \emph{LAD} algorithm\cite{Lad} uses a depth-first search
   251 strategy and formulates the matching as a Constraint Satisfaction
   252 Problem to prune the search tree. The constraints are that the mapping
   253 has to be injective and edge-preserving, hence it is possible to
   254 handle new matching types as well.
   255 
   256 The \textbf{RI} algorithm\cite{RI} and its variations are based on a
   257 state space representation. After reordering the nodes of the graphs,
   258 it uses some fast executable heuristic checks without using any
   259 complex pruning rules. It seems to run really efficiently on graphs
   260 coming from biology, and won the International Contest on Pattern
   261 Search in Biological Databases\cite{Content}.
   262 
   263 The currently most commonly used algorithm is the
   264 \textbf{VF2}\cite{VF2}, the improved version of VF\cite{VF}, which was
   265 designed for solving pattern matching and computer vision problems,
   266 and has been one of the best overall algorithms for more than a
   267 decade. Although, it can't be up to new specialized algorithms, it is
   268 still widely used due to its simplicity and space efficiency. VF2 uses
   269 a state space representation and checks some conditions in each state
   270 to prune the search tree.
   271 
   272 Our first graph matching algorithm was the first version of VF2 which
   273 recognizes the significance of the node ordering, more opportunities
   274 to increase the cutting efficiency and reduce its computational
   275 complexity. This project was initiated and sponsored by QuantumBio
   276 Inc.\cite{QUANTUMBIO} and the implementation --- along with a source
   277 code --- has been published as a part of LEMON\cite{LEMON} open source
   278 graph library.
   279 
   280 This paper introduces \textbf{VF2++}, a new further improved algorithm
   281 for the graph and (induced)subgraph isomorphism problem, which uses
   282 efficient cutting rules and determines a node order in which VF2 runs
   283 significantly faster on practical inputs.
   284 
   285 Meanwhile, another variant called \textbf{VF2 Plus}\cite{VF2Plus} has
   286 been published. It is considered to be as efficient as the RI
   287 algorithm and has a strictly better behavior on large graphs.  The
   288 main idea of VF2 Plus is to precompute a heuristic node order of the
   289 small graph, in which the VF2 works more efficiently.
   290 
   291 \section{Problem Statement}
   292 This section provides a detailed description of the problems to be
   293 solved.
   294 \subsection{Definitions}
   295 
   296 Throughout the paper $G_{small}=(V_{small}, E_{small})$ and
   297 $G_{large}=(V_{large}, E_{large})$ denote two undirected graphs.
   298 \begin{definition}\label{sec:ismorphic}
   299 $G_{small}$ and $G_{large}$ are \textbf{isomorphic} if $\exists M:
   300   V_{small} \longrightarrow V_{large}$ bijection, for which the
   301   following is true:
   302 \begin{center}
   303 $\forall u,v\in{V_{small}} : (u,v)\in{E_{small}} \Leftrightarrow
   304   (M(u),M(v))\in{E_{large}}$
   305 \end{center}
   306 \end{definition}
   307 For the sake of simplicity in this paper subgraphs and induced
   308 subgraphs are defined in a more general way than usual:
   309 \begin{definition}
   310 $G_{small}$ is a \textbf{subgraph} of $G_{large}$ if $\exists I:
   311   V_{small}\longrightarrow V_{large}$ injection, for which the
   312   following is true:
   313 \begin{center}
   314 $\forall u,v \in{V_{small}} : (u,v)\in{E_{small}} \Rightarrow (I(u),I(v))\in E_{large}$
   315 \end{center}
   316 \end{definition}
   317 
   318 \begin{definition} 
   319 $G_{small}$ is an \textbf{induced subgraph} of $G_{large}$ if $\exists
   320   I: V_{small}\longrightarrow V_{large}$ injection, for which the
   321   following is true:
   322 \begin{center}
   323 $\forall u,v \in{V_{small}} : (u,v)\in{E_{small}} \Leftrightarrow
   324   (I(u),I(v))\in E_{large}$
   325 \end{center}
   326 \end{definition}
   327 
   328 \begin{definition}
   329 $lab: (V_{small}\cup V_{large}) \longrightarrow K$ is a \textbf{node
   330     label function}, where K is an arbitrary set. The elements in K
   331   are the \textbf{node labels}. Two nodes, u and v are said to be
   332   \textbf{equivalent}, if $lab(u)=lab(v)$.
   333 \end{definition}
   334 
   335 When node labels are also given, the matched nodes must have the same
   336 labels.  For example, the node labeled isomorphism is phrased by
   337 \begin{definition}
   338 $G_{small}$ and $G_{large}$ are \textbf{isomorphic by the node label
   339     function lab} if $\exists M: V_{small} \longrightarrow V_{large}$
   340   bijection, for which the following is true:
   341 \begin{center}
   342 $(\forall u,v\in{V_{small}} : (u,v)\in{E_{small}} \Leftrightarrow
   343   (M(u),M(v))\in{E_{large}})$ and $(\forall u\in{V_{small}} :
   344   lab(u)=lab(M(u)))$
   345 \end{center}
   346 \end{definition}
   347 
   348 The other two definitions can be extended in the same way.
   349 
   350 Note that edge label function can be defined similarly to node label
   351 function, and all the definitions can be extended with additional
   352 conditions, but it is out of the scope of this work.
   353 
   354 The equivalence of two nodes is usually defined by another relation,
   355 $\\R\subseteq (V_{small}\cup V_{large})^2$. This overlaps with the
   356 definition given above if R is an equivalence relation, which does not
   357 mean restriction in biological and chemical applications.
   358 
   359 \subsection{Common problems}\label{sec:CommProb}
   360 
   361 The focus of this paper is on two extensively studied topics, the
   362 subgraph isomorphism and its variations. However, the following
   363 problems also appear in many applications.
   364 
   365 The \textbf{subgraph matching problem} is the following: is
   366 $G_{small}$ isomorphic to any subgraph of $G_{large}$ by a given node
   367 label?
   368 
   369 The \textbf{induced subgraph matching problem} asks the same about the
   370 existence of an induced subgraph.
   371 
   372 The \textbf{graph isomorphism problem} can be defined as induced
   373 subgraph matching problem where the sizes of the two graphs are equal.
   374 
   375 In addition to existence, it may be needed to show such a subgraph, or
   376 it may be necessary to list all of them.
   377 
   378 It should be noted that some authors misleadingly refer to the term
   379 \emph{subgraph isomorphism problem} as an \emph{induced subgraph
   380   isomorphism problem}.
   381 
   382 The following sections give the descriptions of VF2, VF2++, VF2 Plus
   383 and a particular comparison.
   384 
   385 \section{The VF2 Algorithm}
   386 This algorithm is the basis of both the VF2++ and the VF2 Plus.  VF2
   387 is able to handle all the variations mentioned in Section
   388   \ref{sec:CommProb}.  Although it can also handle directed graphs,
   389 for the sake of simplicity, only the undirected case will be
   390 discussed.
   391 
   392 
   393 \subsection{Common notations}
   394 \indent Assume $G_{small}$ is searched in $G_{large}$.  The following
   395 definitions and notations will be used throughout the whole paper.
   396 \begin{definition}
   397 A set $M\subseteq V_{small}\times V_{large}$ is called
   398 \textbf{mapping}, if no node of $V_{small}$ or of $V_{large}$ appears
   399 in more than one pair in M.  That is, M uniquely associates some of
   400 the nodes in $V_{small}$ with some nodes of $V_{large}$ and vice
   401 versa.
   402 \end{definition}
   403 
   404 \begin{definition}
   405 Mapping M \textbf{covers} a node v, if there exists a pair in M, which
   406 contains v.
   407 \end{definition}
   408 
   409 \begin{definition}
   410 A mapping $M$ is $\mathbf{whole\ mapping}$, if $M$ covers all the
   411 nodes in $V_{small}$.
   412 \end{definition}
   413 
   414 \begin{notation}
   415 Let $\mathbf{M_{small}(s)} := \{u\in V_{small} : \exists v\in
   416 V_{large}: (u,v)\in M(s)\}$ and $\mathbf{M_{large}(s)} := \{v\in
   417 V_{large} : \exists u\in V_{small}: (u,v)\in M(s)\}$.
   418 \end{notation}
   419 
   420 \begin{notation}
   421 Let $\mathbf{Pair(M,v)}$ be the pair of $v$ in $M$, if such a node
   422 exist, otherwise $\mathbf{Pair(M,v)}$ is undefined. For a mapping $M$
   423 and $v\in V_{small}\cup V_{large}$.
   424 \end{notation}
   425 
   426 Note that if $\mathbf{Pair(M,v)}$ exists, then it is unique
   427 
   428 The definitions of the isomorphism types can be rephrased on the
   429 existence of a special whole mapping $M$, since it represents a
   430 bijection. For example
   431 \begin{center}
   432 $M\subseteq V_{small}\times V_{large}$ represents an induced subgraph
   433   isomorphism $\Leftrightarrow$ $M$ is whole mapping and $\forall u,v
   434   \in{V_{small}} : (u,v)\in{E_{small}} \Leftrightarrow
   435   (Pair(M,u),Pair(M,v))\in E_{large}$.
   436 \end{center}
   437 
   438 \begin{definition}
   439 A set of whole mappings is called \textbf{problem type}.
   440 \end{definition}
   441 Throughout the paper, $\mathbf{PT}$ denotes a generic problem type
   442 which can be substituted by any problem type.
   443 
   444 A whole mapping $W\mathbf{\ is\ of\ type\ PT}$, if $W\in PT$. Using
   445 this notations, VF2 searches a whole mapping $W$ of type $PT$.
   446 
   447 For example the problem type of graph isomorphism problem is the
   448 following.  A whole mapping $W$ is in $\mathbf{ISO}$, iff the
   449 bijection represented by $W$ satisfies Definition~\ref{sec:ismorphic}.
   450 The subgraph- and induced subgraph matching problems can be formalized
   451 in a similar way. Let their problem types be denoted as $\mathbf{SUB}$
   452 and $\mathbf{IND}$.
   453 
   454 \begin{definition}
   455 \label{expPT}
   456 $PT$ is an \textbf{expanding problem type} if $\ \forall\ W\in
   457 PT:\ \forall u_1,u_2\in V_{small}:\ (u_1,u_2)\in E_{small}\Rightarrow
   458 (Pair(W,u_1),Pair(W,u_2))\in E_{large}$, that is each edge of
   459 $G_{small}$ has to be mapped to an edge of $G_{large}$ for each
   460 mapping in $PT$.
   461 \end{definition}
   462 
   463 Note that $ISO$, $SUB$ and $IND$ are expanding problem types.
   464 
   465 This paper deals with the three problem types mentioned above only,
   466 but the following generic definitions make it possible to handle other
   467 types as well.  Although it may be challenging to find a proper
   468 consistency function and an efficient cutting function.
   469 
   470 \begin{definition}
   471 Let M be a mapping. A logical function $\mathbf{Cons_{PT}}$ is a
   472 \textbf{consistency function by } $\mathbf{PT}$, if the following
   473 holds. If there exists whole mapping $W$ of type PT for which
   474 $M\subseteq W$, then $Cons_{PT}(M)$ is true.
   475 \end{definition}
   476 
   477 \begin{definition} 
   478 Let M be a mapping. A logical function $\mathbf{Cut_{PT}}$ is a
   479 \textbf{cutting function by } $\mathbf{PT}$, if the following
   480 holds. $\mathbf{Cut_{PT}(M)}$ is false if $M$ can be extended to a
   481 whole mapping W of type PT.
   482 \end{definition}
   483 
   484 \begin{definition}
   485 $M$ is said to be \textbf{consistent mapping by} $\mathbf{PT}$, if
   486   $Cons_{PT}(M)$ is true.
   487 \end{definition}
   488 
   489 $Cons_{PT}$ and $Cut_{PT}$ will often be used in the following form.
   490 \begin{notation}
   491 Let $\mathbf{Cons_{PT}(p, M)}:=Cons_{PT}(M\cup\{p\})$ and
   492 $\mathbf{Cut_{PT}(p, M)}:=Cut_{PT}(M\cup\{p\})$, where
   493 $p\in{V_{small}\!\times\!V_{large}}$ and $M\cup\{p\}$ is mapping.
   494 \end{notation}
   495 
   496 $Cons_{PT}$ will be used to check the consistency of the already
   497 covered nodes, while $Cut_{PT}$ is for looking ahead to recognize if
   498 no whole consistent mapping can contain the current mapping.
   499 
   500 \subsection{Overview of the algorithm}
   501 VF2 uses a state space representation of mappings, $Cons_{PT}$ for
   502 excluding inconsistency with the problem type and $Cut_{PT}$ for
   503 pruning the search tree.  Each state $s$ of the matching process can
   504 be associated with a mapping $M(s)$.
   505 
   506 Algorithm~\ref{alg:VF2Pseu} is a high level description of
   507 the VF2 matching algorithm.
   508 
   509 
   510 \begin{algorithm}
   511 \algtext*{EndIf}%ne nyomtasson end if-et
   512 \algtext*{EndFor}%ne
   513 \algtext*{EndProcedure}%ne nyomtasson ..
   514 \caption{\hspace{0.5cm}$A\ high\ level\ description\ of\ VF2$}\label{alg:VF2Pseu}
   515 \begin{algorithmic}[1]
   516 
   517 \Procedure{VF2}{State $s$, ProblemType $PT$} \If{$M(s$) covers
   518   $V_{small}$} \State Output($M(s)$) \Else
   519   
   520   \State Compute the set $P(s)$ of the pairs candidate for inclusion
   521   in $M(s)$ \ForAll{$p\in{P(s)}$} \If{Cons$_{PT}$($p, M(s)$) $\wedge$
   522     $\neg$Cut$_{PT}$($p, M(s)$)} \State Compute the nascent state
   523   $\tilde{s}$ by adding $p$ to $M(s)$ \State \textbf{call}
   524   VF2($\tilde{s}$, $PT$) \EndIf \EndFor \EndIf \EndProcedure
   525 \end{algorithmic}
   526 \end{algorithm}
   527 
   528 
   529 The initial state $s_0$ is associated with $M(s_0)=\emptyset$, i.e. it
   530 starts with an empty mapping.
   531 
   532 For each state $s$, the algorithm computes $P(s)$, the set of
   533 candidate node pairs for adding to the current state $s$.
   534 
   535 For each pair $p$ in $P(s)$, $Cons_{PT}(p,M(s))$ and
   536 $Cut_{PT}(p,M(s))$ are evaluated. If $Cons_{PT}(p,M(s))$ is true and
   537 $Cut_{PT}(p,M(s))$ is false, the successor state $\tilde{s}=s\cup
   538 \{p\}$ is computed, and the whole process is recursively applied to
   539 $\tilde{s}$. Otherwise, $\tilde{s}$ is not consistent by $PT$ or it
   540 can be proved that $s$ can not be extended to a whole mapping.
   541 
   542 In order to make sure of the correctness, see
   543 \begin{claim}
   544 Through consistent mappings, only consistent whole mappings can be
   545 reached, and all of the whole mappings are reachable through
   546 consistent mappings.
   547 \end{claim}
   548 
   549 Note that a state may be reached in many different ways, since the
   550 order of insertions into M does not influence the nascent mapping. In
   551 fact, the number of different ways which lead to the same state can be
   552 exponentially large. If $G_{small}$ and $G_{large}$ are circles with n
   553 nodes and n different node labels, there exists exactly one graph
   554 isomorphism between them, but it will be reached in $n!$ different
   555 ways.
   556 
   557 However, one may observe
   558 
   559 \begin{claim}
   560 \label{claim:claimTotOrd}
   561 Let $\prec$ an arbitrary total ordering relation on $V_{small}$.  If
   562 the algorithm ignores each $p=(u,v) \in P(s)$, for which
   563 \begin{center}
   564 $\exists (\hat{u},\hat{v})\in P(s): \hat{u} \prec u$,
   565 \end{center}
   566 then no state can be reached more than ones and each state associated
   567 with a whole mapping remains reachable.
   568 \end{claim}
   569 
   570 Note that the cornerstone of the improvements to VF2 is a proper
   571 choice of a total ordering.
   572 
   573 \subsection{The candidate set P(s)}
   574 \label{candidateComputingVF2}
   575 $P(s)$ is the set of the candidate pairs for inclusion in $M(s)$.
   576 Suppose that $PT$ is an expanding problem type, see
   577 Definition~\ref{expPT}.
   578 
   579 \begin{notation}
   580 Let $\mathbf{T_{small}(s)}:=\{u \in V_{small} : u$ is not covered by
   581 $M(s)\wedge\exists \tilde{u}\in{V_{small}: (u,\tilde{u})\in E_{small}}
   582 \wedge \tilde{u}$ is covered by $M(s)\}$, and
   583 \\ $\mathbf{T_{large}(s)}\!:=\!\{v \in\!V_{large}\!:\!v$ is not
   584 covered by
   585 $M(s)\wedge\!\exists\tilde{v}\!\in\!{V_{large}\!:\!(v,\tilde{v})\in\!E_{large}}
   586 \wedge \tilde{v}$ is covered by $M(s)\}$
   587 \end{notation}
   588 
   589 The set $P(s)$ includes the pairs of uncovered neighbours of covered
   590 nodes and if there is not such a node pair, all the pairs containing
   591 two uncovered nodes are added. Formally, let
   592 \[
   593  P(s)\!=\!
   594   \begin{cases} 
   595    T_{small}(s)\times T_{large}(s)&\hspace{-0.15cm}\text{if }
   596    T_{small}(s)\!\neq\!\emptyset\!\wedge\!T_{large}(s)\!\neq
   597    \emptyset,\\ (V_{small}\!\setminus\!M_{small}(s))\!\times\!(V_{large}\!\setminus\!M_{large}(s))
   598    &\hspace{-0.15cm}otherwise.
   599   \end{cases}
   600 \]
   601 
   602 \subsection{Consistency}
   603 This section defines the consistency functions for the different
   604 problem types mentioned in Section~\ref{sec:CommProb}.
   605 \begin{notation}
   606 Let $\mathbf{\Gamma_{small} (u)}:=\{\tilde{u}\in V_{small} :
   607 (u,\tilde{u})\in E_{small}\}$\\ Let $\mathbf{\Gamma_{large}
   608   (v)}:=\{\tilde{v}\in V_{large} : (v,\tilde{v})\in E_{large}\}$
   609 \end{notation}
   610 Suppose $p=(u,v)$, where $u\in V_{small}$ and $v\in V_{large}$, $s$ is
   611 a state of the matching procedure, $M(s)$ is consistent mapping by
   612 $PT$ and $lab(u)=lab(v)$.  $Cons_{PT}(p,M(s))$ checks whether
   613 including pair $p$ into $M(s)$ leads to a consistent mapping by $PT$.
   614 
   615 \subsubsection{Induced subgraph isomorphism}
   616 $M(s)\cup \{(u,v)\}$ is a consistent mapping by $IND$ $\Leftrightarrow
   617 (\forall \tilde{u}\in M_{small}: (u,\tilde{u})\in E_{small}
   618 \Leftrightarrow (v,Pair(M(s),\tilde{u}))\in E_{large})$.\newline The
   619 following formulation gives an efficient way of calculating
   620 $Cons_{IND}$.
   621 \begin{claim}
   622 $Cons_{IND}((u,v),M(s)):=(\forall \tilde{v}\in \Gamma_{large}(v)
   623   \ \cap\ M_{large}(s):\\(Pair(M(s),\tilde{v}),u)\in E_{small})\wedge
   624   (\forall \tilde{u}\in \Gamma_{small}(u)
   625   \ \cap\ M_{small}(s):(v,Pair(M(s),\tilde{u}))\in E_{large})$ is a
   626   consistency function in the case of $IND$.
   627 \end{claim}
   628 
   629 \subsubsection{Graph isomorphism}
   630 $M(s)\cup \{(u,v)\}$ is a consistent mapping by $ISO$
   631 $\Leftrightarrow$ $M(s)\cup \{(u,v)\}$ is a consistent mapping by
   632 $IND$.
   633 \begin{claim}
   634 $Cons_{ISO}((u,v),M(s))$ is a consistency function by $ISO$ if and
   635   only if it is a consistency function by $IND$.
   636 \end{claim}
   637 \subsubsection{Subgraph isomorphism}
   638 $M(s)\cup \{(u,v)\}$ is a consistent mapping by $SUB$ $\Leftrightarrow
   639 (\forall \tilde{u}\in M_{small}:\\(u,\tilde{u})\in E_{small}
   640 \Rightarrow (v,Pair(M(s),\tilde{u}))\in E_{large})$.
   641 \newline
   642 The following formulation gives an efficient way of calculating
   643 $Cons_{SUB}$.
   644 \begin{claim}
   645 $Cons_{SUB}((u,v),M(s)):= (\forall \tilde{u}\in \Gamma_{small}(u)
   646   \ \cap\ M_{small}(s):\\(v,Pair(M(s),\tilde{u}))\in E_{large})$ is a
   647   consistency function by $SUB$.
   648 \end{claim}
   649 
   650 \subsection{Cutting rules}
   651 $Cut_{PT}(p,M(s))$ is defined by a collection of efficiently
   652 verifiable conditions. The requirement is that $Cut_{PT}(p,M(s))$ can
   653 be true only if it is impossible to extended $M(s)\cup \{p\}$ to a
   654 whole mapping.
   655 \begin{notation}
   656 
   657 Let $\mathbf{\tilde{T}_{small}}(s):=(V_{small}\backslash
   658 M_{small}(s))\backslash T_{small}(s)$, and
   659 \\ $\mathbf{\tilde{T}_{large}}(s):=(V_{large}\backslash
   660 M_{large}(s))\backslash T_{large}(s)$.
   661 \end{notation}
   662 \subsubsection{Induced subgraph isomorphism}
   663 \begin{claim}
   664 $Cut_{IND}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
   665   |\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
   666   \tilde{T}_{large}(s)| < |\Gamma_{small}(u)\cap
   667   \tilde{T}_{small}(s)|$ is a cutting function by $IND$.
   668 \end{claim}
   669 \subsubsection{Graph isomorphism}
   670 Note that the cutting function of induced subgraph isomorphism defined
   671 above is a cutting function by $ISO$, too, however it is less
   672 efficient than the following while their computational complexity is
   673 the same.
   674 \begin{claim}
   675 $Cut_{ISO}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| \neq
   676   |\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
   677   \tilde{T}_{large}(s)| \neq |\Gamma_{small}(u)\cap
   678   \tilde{T}_{small}(s)|$ is a cutting function by $ISO$.
   679 \end{claim}
   680 
   681 \subsubsection{Subgraph isomorphism}
   682 \begin{claim}
   683 $Cut_{SUB}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
   684   |\Gamma_{small} (u)\ \cap\ T_{small}(s)|$ is a cutting function by
   685   $SUB$.
   686 \end{claim}
   687 Note that there is a significant difference between induced and
   688 non-induced subgraph isomorphism:
   689 
   690 \begin{claim}
   691 \label{claimSUB}
   692 $Cut_{SUB}'((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
   693 |\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
   694 \tilde{T}_{large}(s)| < |\Gamma_{small}(u)\cap \tilde{T}_{small}(s)|$
   695 is \textbf{not} a cutting function by $SUB$.
   696 \end{claim}
   697 
   698 \section{The VF2++ Algorithm}
   699 Although any total ordering relation makes the search space of VF2 a
   700 tree, its choice turns out to dramatically influence the number of
   701 visited states. The goal is to determine an efficient one as quickly
   702 as possible.
   703 
   704 The main reason for VF2++' superiority over VF2 is twofold. Firstly,
   705 taking into account the structure and the node labeling of the graph,
   706 VF2++ determines a state order in which most of the unfruitful
   707 branches of the search space can be pruned immediately. Secondly,
   708 introducing more efficient --- nevertheless still easier to compute
   709 --- cutting rules reduces the chance of going astray even further.
   710 
   711 In addition to the usual subgraph isomorphism, specialized versions
   712 for induced subgraph isomorphism and for graph isomorphism have been
   713 designed. VF2++ has gained a runtime improvement of one order of
   714 magnitude respecting induced subgraph isomorphism and a better
   715 asymptotical behaviour in the case of graph isomorphism problem.
   716 
   717 Note that a weaker version of the cutting rules and the more efficient
   718 candidate set calculating were described in \cite{VF2Plus}, too.
   719 
   720 It should be noted that all the methods described in this section are
   721 extendable to handle directed graphs and edge labels as well.
   722 
   723 The basic ideas and the detailed description of VF2++ are provided in
   724 the following.
   725 
   726 \subsection{Preparations}
   727 \begin{claim}
   728 \label{claim:claimCoverFromLeft}
   729 The total ordering relation uniquely determines a node order, in which
   730 the nodes of $V_{small}$ will be covered by VF2. From the point of
   731 view of the matching procedure, this means, that always the same node
   732 of $G_{small}$ will be covered on the d-th level.
   733 \end{claim}
   734 
   735 \begin{definition}
   736 An order $(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{small}|)})$ of
   737 $V_{small}$ is \textbf{matching order}, if exists $\prec$ total
   738 ordering relation, s.t. the VF2 with $\prec$ on the d-th level finds
   739 pair for $u_{\sigma(d)}$ for all $d\in\{1,..,|V_{small}|\}$.
   740 \end{definition}
   741 
   742 \begin{claim}\label{claim:MOclaim}
   743 A total ordering is matching order, iff the nodes of every component
   744 form an interval in the node sequence, and every node connects to a
   745 previous node in its component except the first node of the
   746 component. The order of the components is arbitrary.  \\Formally
   747 spoken, an order
   748 $(u_{\sigma(1)},u_{\sigma(2)},..,u_{\sigma(|V_{small}|)})$ of
   749 $V_{small}$ is matching order $\Leftrightarrow$ $\forall
   750 G'_{small}=(V'_{small},E'_{small})\ component\ of\ G_{small}: \forall
   751 i: (\exists j : j<i\wedge u_{\sigma(j)},u_{\sigma(i)}\in
   752 V'_{small})\Rightarrow \exists k : k < i \wedge (\forall l: k\leq
   753 l\leq i \Rightarrow u_{l}\in V'_{small}) \wedge
   754 (u_{\sigma{(k)}},u_{\sigma{(i)}})\in E'_{small}$, where $i,j,k,l\in
   755 \{1,..,|V_{small}|\}$\newline
   756 \end{claim}
   757 
   758 To summing up, a total ordering always uniquely determines a matching
   759 order, and every matching order can be determined by a total ordering,
   760 however, more than one different total orderings may determine the
   761 same matching order.
   762 \subsection{Idea behind the algorithm}
   763 The goal is to find a matching order in which the algorithm is able to
   764 recognize inconsistency or prune the infeasible branches on the
   765 highest levels and goes deep only if it is needed.
   766 
   767 \begin{notation}
   768 Let $\mathbf{Conn_{H}(u)}:=|\Gamma_{small}(u)\cap H\}|$, that is the
   769 number of neighbours of u which are in H, where $u\in V_{small} $ and
   770 $H\subseteq V_{small}$.
   771 \end{notation}
   772 
   773 The principal question is the following. Suppose a state $s$ is
   774 given. For which node of $T_{small}(s)$ is the hardest to find a
   775 consistent pair in $G_{large}$? The more covered neighbours a node in
   776 $T_{small}(s)$ has --- i.e. the largest $Conn_{M_{small}(s)}$ it has
   777 ---, the more rarely satisfiable consistency constraints for its pair
   778 are given.
   779 
   780 In biology, most of the graphs are sparse, thus several nodes in
   781 $T_{small}(s)$ may have the same $Conn_{M_{small}(s)}$, which makes
   782 reasonable to define a secondary and a tertiary order between them.
   783 The observation above proves itself to be as determining, that the
   784 secondary ordering prefers nodes with the most uncovered neighbours
   785 among which have the same $Conn_{M_{small}(s)}$ to increase
   786 $Conn_{M_{small}(s)}$ of uncovered nodes so much, as possible.  The
   787 tertiary ordering prefers nodes having the rarest uncovered labels.
   788 
   789 Note that the secondary ordering is the same as the ordering by $deg$,
   790 which is a static data in front of the above used.
   791 
   792 These rules can easily result in a matching order which contains the
   793 nodes of a long path successively, whose nodes may have low $Conn$ and
   794 is easily matchable into $G_{large}$. To avoid that, a BFS order is
   795 used, which provides the shortest possible paths.
   796 \newline
   797 
   798 In the following, some examples on which the VF2 may be slow are
   799 described, although they are easily solvable by using a proper
   800 matching order.
   801 
   802 \begin{example}
   803 Suppose $G_{small}$ can be mapped into $G_{large}$ in many ways
   804 without node labels. Let $u\in V_{small}$ and $v\in V_{large}$.
   805 \newline
   806 $lab(u):=black$
   807 \newline
   808 $lab(v):=black$
   809 \newline
   810 $lab(\tilde{u}):=red \ \forall \tilde{u}\in (V_{small}\backslash
   811 \{u\})$
   812 \newline
   813 $lab(\tilde{v}):=red \ \forall \tilde{v}\in (V_{large}\backslash
   814 \{v\})$
   815 \newline
   816 
   817 Now, any mapping by the node label $lab$ must contain $(u,v)$, since
   818 $u$ is black and no node in $V_{large}$ has a black label except
   819 $v$. If unfortunately $u$ were the last node which will get covered,
   820 VF2 would check only in the last steps, whether $u$ can be matched to
   821 $v$.
   822 \newline
   823 However, had $u$ been the first matched node, u would have been
   824 matched immediately to v, so all the mappings would have been
   825 precluded in which node labels can not correspond.
   826 \end{example}
   827 
   828 \begin{example}
   829 Suppose there is no node label given, $G_{small}$ is a small graph and
   830 can not be mapped into $G_{large}$ and $u\in V_{small}$.
   831 \newline
   832 Let $G'_{small}:=(V_{small}\cup
   833 \{u'_{1},u'_{2},..,u'_{k}\},E_{small}\cup
   834 \{(u,u'_{1}),(u'_{1},u'_{2}),..,(u'_{k-1},u'_{k})\})$, that is,
   835 $G'_{small}$ is $G_{small}\cup \{ a\ k$ long path, which is disjoint
   836 from $G_{small}$ and one of its starting points is connected to $u\in
   837 V_{small}\}$.
   838 \newline
   839 Is there a subgraph of $G_{large}$, which is isomorph with
   840 $G'_{small}$?
   841 \newline
   842 If unfortunately the nodes of the path were the first $k$ nodes in the
   843 matching order, the algorithm would iterate through all the possible k
   844 long paths in $G_{large}$, and it would recognize that no path can be
   845 extended to $G'_{small}$.
   846 \newline
   847 However, had it started by the matching of $G_{small}$, it would not
   848 have matched any nodes of the path.
   849 \end{example}
   850 
   851 These examples may look artificial, but the same problems also appear
   852 in real-world instances, even though in a less obvious way.
   853 
   854 \subsection{Total ordering}
   855 Instead of the total ordering relation, the matching order will be
   856 searched directly.
   857 \begin{notation}
   858 Let \textbf{F$_\mathcal{M}$(l)}$:=|\{v\in V_{large} :
   859 l=lab(v)\}|-|\{u\in V_{small}\backslash \mathcal{M} : l=lab(u)\}|$ ,
   860 where $l$ is a label and $\mathcal{M}\subseteq V_{small}$.
   861 \end{notation}
   862 
   863 \begin{definition}Let $\mathbf{arg\ max}_{f}(S) :=\{u : u\in S \wedge f(u)=max_{v\in S}\{f(v)\}\}$ and $\mathbf{arg\ min}_{f}(S) := arg\ max_{-f}(S)$, where $S$ is a finite set and $f:S\longrightarrow \mathbb{R}$.
   864 \end{definition}
   865 
   866 \begin{algorithm}
   867 \algtext*{EndIf}
   868 \algtext*{EndProcedure}
   869 \algtext*{EndWhile}
   870 \algtext*{EndFor}
   871 \caption{\hspace{0.5cm}$The\ method\ of\ VF2++\ for\ determining\ the\ node\ order$}\label{alg:VF2PPPseu}
   872 \begin{algorithmic}[1]
   873 \Procedure{VF2++order}{} \State $\mathcal{M}$ := $\emptyset$
   874 \Comment{matching order} \While{$V_{small}\backslash \mathcal{M}
   875   \neq\emptyset$} \State $r\in$ arg max$_{deg}$ (arg
   876 min$_{F_\mathcal{M}\circ lab}(V_{small}\backslash
   877 \mathcal{M})$)\label{alg:findMin} \State Compute $T$, a BFS tree with
   878 root node $r$.  \For{$d=0,1,...,depth(T)$} \State $V_d$:=nodes of the
   879 $d$-th level \State Process $V_d$ \Comment{See Algorithm
   880   \ref{alg:VF2PPProcess1}} \EndFor
   881 \EndWhile \EndProcedure
   882 \end{algorithmic}
   883 \end{algorithm}
   884 
   885 \begin{algorithm}
   886 \algtext*{EndIf}
   887 \algtext*{EndProcedure}%ne nyomtasson ..
   888 \algtext*{EndWhile}
   889 \caption{\hspace{.5cm}$The\ method\ for\ processing\ a\ level\ of\ the\ BFS\ tree$}\label{alg:VF2PPProcess1}
   890 \begin{algorithmic}[1]
   891 \Procedure{VF2++ProcessLevel1}{$V_{d}$} \While{$V_d\neq\emptyset$}
   892 \State $m\in$ arg min$_{F_\mathcal{M}\circ\ lab}($ arg max$_{deg}($arg
   893 max$_{Conn_{\mathcal{M}}}(V_{d})))$ \State $V_d:=V_d\backslash m$
   894 \State Append node $m$ to the end of $\mathcal{M}$ \State Refresh
   895 $F_\mathcal{M}$ \EndWhile \EndProcedure
   896 \end{algorithmic}
   897 \end{algorithm}
   898 
   899 Algorithm~\ref{alg:VF2PPPseu} is a high level description of the
   900 matching order procedure of VF2++. It computes a BFS tree for each
   901 component in ascending order of their rarest $lab$ and largest $deg$,
   902 whose root vertex is the component's minimal
   903 node. Algorithm~\ref{alg:VF2PPProcess1} is a method to process a level of the BFS tree, which appends the nodes of the current level in descending
   904 lexicographic order by $(Conn_{\mathcal{M}},deg,-F_\mathcal{M})$ separately
   905 to $\mathcal{M}$, and refreshes $F_\mathcal{M}$ immediately.
   906 
   907 Claim~\ref{claim:MOclaim} shows that Algorithm~\ref{alg:VF2PPPseu}
   908 provides a matching order.
   909 
   910 
   911 \subsection{Cutting rules}
   912 \label{VF2PPCuttingRules}
   913 This section presents the cutting rules of VF2++, which are improved
   914 by using extra information coming from the node labels.
   915 \begin{notation}
   916 Let $\mathbf{\Gamma_{small}^{l}(u)}:=\{\tilde{u} : lab(\tilde{u})=l
   917 \wedge \tilde{u}\in \Gamma_{small} (u)\}$ and
   918 $\mathbf{\Gamma_{large}^{l}(v)}:=\{\tilde{v} : lab(\tilde{v})=l \wedge
   919 \tilde{v}\in \Gamma_{large} (v)\}$, where $u\in V_{small}$, $v\in
   920 V_{large}$ and $l$ is a label.
   921 \end{notation}
   922 
   923 \subsubsection{Induced subgraph isomorphism}
   924 \begin{claim}
   925 \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND.
   926 \end{claim}
   927 
   928 \subsubsection{Graph isomorphism}
   929 \begin{claim}
   930 \[LabCut_{ISO}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!\neq\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\  \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| \neq |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by ISO.
   931 \end{claim}
   932 
   933 \subsubsection{Subgraph isomorphism}
   934 \begin{claim}
   935 \[LabCut_{SUB}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\] is a cutting function by SUB.
   936 \end{claim}
   937 
   938 
   939 
   940 \subsection{Implementation details}
   941 This section provides a detailed summary of an efficient
   942 implementation of VF2++.
   943 \subsubsection{Storing a mapping}
   944 After fixing an arbitrary node order ($u_0, u_1, ..,
   945 u_{|G_{small}|-1}$) of $G_{small}$, an array $M$ is usable to store
   946 the current mapping in the following way.
   947 \[
   948  M[i] =
   949   \begin{cases} 
   950    v & if\ (u_i,v)\ is\ in\ the\ mapping\\ INVALID &
   951    if\ no\ node\ has\ been\ mapped\ to\ u_i.
   952   \end{cases}
   953 \]
   954 Where $i\in\{0,1, ..,|G_{small}|-1\}$, $v\in V_{large}$ and $INVALID$
   955 means "no node".
   956 \subsubsection{Avoiding the recurrence}
   957 The recursion of Algorithm~\ref{alg:VF2Pseu} can be realized
   958 as a \textit{while loop}, which has a loop counter $depth$ denoting the
   959 all-time depth of the recursion. Fixing a matching order, let $M$
   960 denote the array storing the all-time mapping. Based on Claim~\ref{claim:claimCoverFromLeft},
   961 $M$ is $INVALID$ from index $depth$+1 and not $INVALID$ before
   962 $depth$. $M[depth]$ changes
   963 while the state is being processed, but the property is held before
   964 both stepping back to a predecessor state and exploring a successor
   965 state.
   966 
   967 The necessary part of the candidate set is easily maintainable or
   968 computable by following
   969 Section~\ref{candidateComputingVF2}. A much faster method
   970 has been designed for biological- and sparse graphs, see the next
   971 section for details.
   972 
   973 \subsubsection{Calculating the candidates for a node}
   974 Being aware of Claim~\ref{claim:claimCoverFromLeft}, the
   975 task is not to maintain the candidate set, but to generate the
   976 candidate nodes in $G_{large}$ for a given node $u\in V_{small}$.  In
   977 case of an expanding problem type and $M$ mapping, if a node $v\in
   978 V_{large}$ is a potential pair of $u\in V_{small}$, then $\forall
   979 u'\in V_{small} : (u,u')\in
   980 E_{small}\ and\ u'\ is\ covered\ by\ M\ \Rightarrow (v,Pair(M,u'))\in
   981 E_{large}$. That is, each covered neighbour of $u$ has to be mapped to
   982 a covered neighbour of $v$.
   983 
   984 Having said that, an algorithm running in $\Theta(deg)$ time is
   985 describable if there exists a covered node in the component containing
   986 $u$, and a linear one other wise.
   987 
   988 
   989 \subsubsection{Determining the node order}
   990 This section describes how the node order preprocessing method of
   991 VF2++ can efficiently be implemented.
   992 
   993 For using lookup tables, the node labels are associated with the
   994 numbers $\{0,1,..,|K|-1\}$, where $K$ is the set of the labels. It
   995 enables $F_\mathcal{M}$ to be stored in an array. At first, the node order
   996 $\mathcal{M}=\emptyset$, so $F_\mathcal{M}[i]$ is the number of nodes
   997 in $V_{small}$ having label i, which is easy to compute in
   998 $\Theta(|V_{small}|)$ steps.
   999 
  1000 Representing $\mathcal{M}\subseteq V_{small}$ as an array of
  1001 size $|V_{small}|$, both the computation of the BFS tree, and processing its levels by Algorithm~\ref{alg:VF2PPProcess1} can be done inplace by swapping nodes.
  1002 
  1003 \subsubsection{Cutting rules}
  1004 In Section~\ref{VF2PPCuttingRules}, the cutting rules were
  1005 described using the sets $T_{small}$, $T_{large}$, $\tilde T_{small}$
  1006 and $\tilde T_{large}$, which are dependent on the all-time mapping
  1007 (i.e. on the all-time state). The aim is to check the labeled cutting
  1008 rules of VF2++ in $\Theta(deg)$ time.
  1009 
  1010 Firstly, suppose that these four sets are given in such a way, that
  1011 checking whether a node is in a certain set takes constant time,
  1012 e.g. they are given by their 0-1 characteristic vectors. Let $L$ be an
  1013 initially zero integer lookup table of size $|K|$. After incrementing
  1014 $L[lab(u')]$ for all $u'\in \Gamma_{small}(u) \cap T_{small}(s)$ and
  1015 decrementing $L[lab(v')]$ for all $v'\in\Gamma_{large} (v) \cap
  1016 T_{large}(s)$, the first part of the cutting rules is checkable in
  1017 $\Theta(deg)$ time by considering the proper signs of $L$. Setting $L$
  1018 to zero takes $\Theta(deg)$ time again, which makes it possible to use
  1019 the same table through the whole algorithm. The second part of the
  1020 cutting rules can be verified using the same method with $\tilde
  1021 T_{small}$ and $\tilde T_{large}$ instead of $T_{small}$ and
  1022 $T_{large}$. Thus, the overall complexity is $\Theta(deg)$.
  1023 
  1024 An other integer lookup table storing the number of covered neighbours
  1025 of each node in $G_{large}$ gives all the information about the sets
  1026 $T_{large}$ and $\tilde T_{large}$, which is maintainable in
  1027 $\Theta(deg)$ time when a pair is added or substracted by incrementing
  1028 or decrementing the proper indices. A further improvement is that the
  1029 values of $L[lab(u')]$ in case of checking $u$ is dependent only on
  1030 $u$, i.e. on the size of the mapping, so for each $u\in V_{small}$ an
  1031 array of pairs (label, number of such labels) can be stored to skip
  1032 the maintaining operations. Note that these arrays are at most of size
  1033 $deg$. Skipping this trick, the number of covered neighbours has to be
  1034 stored for each node of $G_{small}$ as well to get the sets
  1035 $T_{small}$ and $\tilde T_{small}$.
  1036 
  1037 Using similar tricks, the consistency function can be evaluated in
  1038 $\Theta(deg)$ steps, as well.
  1039 
  1040 \section{The VF2 Plus Algorithm}
  1041 The VF2 Plus algorithm is a recently improved version of VF2. It was
  1042 compared with the state of the art algorithms in \cite{VF2Plus} and
  1043 has proven itself to be competitive with RI, the best algorithm on
  1044 biological graphs.  \\ A short summary of VF2 Plus follows, which uses
  1045 the notation and the conventions of the original paper.
  1046 
  1047 \subsection{Ordering procedure}
  1048 VF2 Plus uses a sorting procedure that prefers nodes in $V_{small}$
  1049 with the lowest probability to find a pair in $V_{small}$ and the
  1050 highest number of connections with the nodes already sorted by the
  1051 algorithm.
  1052 
  1053 \begin{definition}
  1054 $(u,v)$ is a \textbf{feasible pair}, if $lab(u)=lab(v)$ and
  1055   $deg(u)\leq deg(v)$, where $u\in{V_{small}}$ and $ v\in{V_{large}}$.
  1056 \end{definition}
  1057 $P_{lab}(L):=$ a priori probability to find a node with label $L$ in
  1058 $V_{large}$
  1059 \newline
  1060 $P_{deg}(d):=$ a priori probability to find a node with degree $d$ in
  1061 $V_{large}$
  1062 \newline
  1063 $P(u):=P_{lab}(L)*\bigcup_{d'>d}P_{deg}(d')$\\ $M$ is the set of
  1064 already sorted nodes, $T$ is the set of nodes candidate to be
  1065 selected, and $degreeM$ of a node is the number of its neighbours in
  1066 $M$.
  1067 \begin{algorithm}
  1068 \algtext*{EndIf}%ne nyomtasson end if-et \algtext*{EndFor}%ne
  1069 nyomtasson ..  \algtext*{EndProcedure}%ne nyomtasson ..
  1070 \algtext*{EndWhile}
  1071 \caption{}\label{alg:VF2PlusPseu}
  1072 \begin{algorithmic}[1]
  1073 \Procedure{VF2 Plus order}{} \State Select the node with the lowest
  1074 $P$.  \If {more nodes share the same $P$} \State select the one with
  1075 maximum degree \EndIf \If {more nodes share the same $P$ and have the
  1076   max degree} \State select the first \EndIf \State Put the selected
  1077 node in the set $M$. \label{alg:putIn} \State Put all its unsorted
  1078 neighbours in the set $T$.  \If {$M\neq V_{small}$} \State From set
  1079 $T$ select the node with maximum $degreeM$.  \If {more nodes have
  1080   maximum $degreeM$} \State Select the one with the lowest $P$ \EndIf
  1081 \If {more nodes have maximum $degreeM$ and $P$} \State Select the
  1082 first.  \EndIf \State \textbf{goto \ref{alg:putIn}.}  \EndIf
  1083 \EndProcedure
  1084 \end{algorithmic}
  1085 \end{algorithm}
  1086 
  1087 Using these notations, Algorithm~\ref{alg:VF2PlusPseu}
  1088 provides the description of the sorting procedure.
  1089 
  1090 Note that $P(u)$ is not the exact probability of finding a consistent
  1091 pair for $u$ by choosing a node of $V_{large}$ randomly, since
  1092 $P_{lab}$ and $P_{deg}$ are not independent, though calculating the
  1093 real probability would take quadratic time, which may be reduced by
  1094 using fittingly lookup tables.
  1095 
  1096 \section{Experimental results}
  1097 This section compares the performance of VF2++ and VF2 Plus. Both
  1098 algorithms have run faster with orders of magnitude than VF2, thus its
  1099 inclusion was not reasonable.
  1100 \subsection{Biological graphs}
  1101 The tests have been executed on a recent biological dataset created
  1102 for the International Contest on Pattern Search in Biological
  1103 Databases\cite{Content}, which has been constructed of molecule,
  1104 protein and contact map graphs extracted from the Protein Data
  1105 Bank\cite{ProteinDataBank}.
  1106 
  1107 The molecule dataset contains small graphs with less than 100 nodes
  1108 and an average degree of less than 3. The protein dataset contains
  1109 graphs having 500-10 000 nodes and an average degree of 4, while the
  1110 contact map dataset contains graphs with 150-800 nodes and an average
  1111 degree of 20.  \\
  1112 
  1113 In the following, the induced subgraph isomorphism and the graph
  1114 isomorphism will be examined.
  1115 
  1116 This dataset provides graph pairs, between which all the induced subgraph isomorphisms have to be found. For run time results, please see Figure~\ref{fig:bioIND}.
  1117 
  1118 In an other experiment, the nodes of each graph in the database had been
  1119 shuffled, and an isomorphism between the shuffled and the original
  1120 graph was searched. The solution times are shown on Figure~\ref{fig:bioISO}.
  1121 
  1122 
  1123 
  1124 \begin{figure}[H]
  1125 \vspace*{-2cm}
  1126 \hspace*{-1.5cm}
  1127 \begin{subfigure}[b]{0.55\textwidth}
  1128 \begin{figure}[H]
  1129 \begin{tikzpicture}[trim axis left, trim axis right]
  1130 \begin{axis}[title=Molecules ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1131 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1132   west},scaled x ticks = false,x tick label style={/pgf/number
  1133   format/1000 sep = \thinspace}]
  1134 %\addplot+[only marks] table {proteinsOrig.txt};
  1135 \addplot table {Orig/moleculesIso.txt}; \addplot[mark=triangle*,mark
  1136   size=1.8pt,color=red] table {VF2PPLabel/moleculesIso.txt};
  1137 \end{axis}
  1138 \end{tikzpicture}
  1139 \caption{In the case of molecules, there is not such a significant
  1140   difference, but VF2++ seems to be faster as the number of nodes
  1141   increases.}\label{fig:ISOMolecule}
  1142 \end{figure}
  1143 \end{subfigure}
  1144 \hspace*{1.5cm}
  1145 \begin{subfigure}[b]{0.55\textwidth}
  1146 \begin{figure}[H]
  1147 \begin{tikzpicture}[trim axis left, trim axis right]
  1148 \begin{axis}[title=Contact maps ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1149 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1150   west},scaled x ticks = false,x tick label style={/pgf/number
  1151   format/1000 sep = \thinspace}]
  1152 %\addplot+[only marks] table {proteinsOrig.txt};
  1153 \addplot table {Orig/contactMapsIso.txt}; \addplot[mark=triangle*,mark
  1154   size=1.8pt,color=red] table {VF2PPLabel/contactMapsIso.txt};
  1155 \end{axis}
  1156 \end{tikzpicture}
  1157 \caption{The results are closer to each other on contact maps, but
  1158   VF2++ still performs consistently better.}\label{fig:ISOContact}
  1159 \end{figure}
  1160 \end{subfigure}
  1161 
  1162 \begin{center}
  1163 \vspace*{-0.5cm}
  1164 \begin{subfigure}[b]{0.55\textwidth}
  1165 \begin{figure}[H]
  1166 \begin{tikzpicture}[trim axis left, trim axis right]
  1167 \begin{axis}[title=Proteins ISO,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1168 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1169   west},scaled x ticks = false,x tick label style={/pgf/number
  1170   format/1000 sep = \thinspace}]
  1171 %\addplot+[only marks] table {proteinsOrig.txt};
  1172 \addplot table {Orig/proteinsIso.txt}; \addplot[mark=triangle*,mark
  1173   size=1.8pt,color=red] table {VF2PPLabel/proteinsIso.txt};
  1174 \end{axis}
  1175 \end{tikzpicture}
  1176 \caption{On protein graphs, VF2 Plus has a super linear time
  1177   complexity, while VF2++ runs in near constant time. The difference
  1178   is about two order of magnitude on large graphs.}\label{fig:ISOProt}
  1179 \end{figure}
  1180 \end{subfigure}
  1181 \end{center}
  1182 \vspace*{-0.6cm}
  1183 \caption{\normalsize{Graph isomomorphism on biological graphs}}\label{fig:bioISO}
  1184 \end{figure}
  1185 
  1186 
  1187 \begin{figure}[H]
  1188 \vspace*{-2cm}
  1189 \hspace*{-1.5cm}
  1190 \begin{subfigure}[b]{0.55\textwidth}
  1191 \begin{figure}[H]
  1192 \begin{tikzpicture}[trim axis left, trim axis right]
  1193 \begin{axis}[title=Molecules IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1194 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1195   west},scaled x ticks = false,x tick label style={/pgf/number
  1196   format/1000 sep = \thinspace}]
  1197 %\addplot+[only marks] table {proteinsOrig.txt};
  1198 \addplot table {Orig/Molecules.32.txt}; \addplot[mark=triangle*,mark
  1199   size=1.8pt,color=red] table {VF2PPLabel/Molecules.32.txt};
  1200 \end{axis}
  1201 \end{tikzpicture}
  1202 \caption{In the case of molecules, the algorithms have
  1203   similar behaviour, but VF2++ is almost two times faster even on such
  1204   small graphs.} \label{fig:INDMolecule}
  1205 \end{figure}
  1206 \end{subfigure}
  1207 \hspace*{1.5cm}
  1208 \begin{subfigure}[b]{0.55\textwidth}
  1209 \begin{figure}[H]
  1210 \begin{tikzpicture}[trim axis left, trim axis right]
  1211 \begin{axis}[title=Contact maps IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1212 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1213   west},scaled x ticks = false,x tick label style={/pgf/number
  1214   format/1000 sep = \thinspace}]
  1215 %\addplot+[only marks] table {proteinsOrig.txt};
  1216 \addplot table {Orig/ContactMaps.128.txt};
  1217 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1218         {VF2PPLabel/ContactMaps.128.txt};
  1219 \end{axis}
  1220 \end{tikzpicture}
  1221 \caption{On contact maps, VF2++ runs in near constant time, while VF2
  1222   Plus has a near linear behaviour.} \label{fig:INDContact}
  1223 \end{figure}
  1224 \end{subfigure}
  1225 
  1226 \begin{center}
  1227 \vspace*{-0.5cm}
  1228 \begin{subfigure}[b]{0.55\textwidth}
  1229 \begin{figure}[H]
  1230 \begin{tikzpicture}[trim axis left, trim axis right]
  1231   \begin{axis}[title=Proteins IND,xlabel={target size},ylabel={time (ms)},legend entries={VF2 Plus,VF2++},grid
  1232   =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1233     west},scaled x ticks = false,x tick label style={/pgf/number
  1234     format/1000 sep = \thinspace}] %\addplot+[only marks] table
  1235     {proteinsOrig.txt}; \addplot[mark=*,mark size=1.2pt,color=blue]
  1236     table {Orig/Proteins.256.txt}; \addplot[mark=triangle*,mark
  1237       size=1.8pt,color=red] table {VF2PPLabel/Proteins.256.txt};
  1238   \end{axis}
  1239   \end{tikzpicture}
  1240 \caption{Both the algorithms have linear behaviour on protein
  1241   graphs. VF2++ is more than 10 times faster than VF2
  1242   Plus.} \label{fig:INDProt}
  1243 \end{figure}
  1244 \end{subfigure}
  1245 \end{center}
  1246 \vspace*{-0.5cm}
  1247 \caption{\normalsize{Graph isomomorphism on biological graphs}}\label{fig:bioIND}
  1248 \end{figure}
  1249 
  1250 
  1251 
  1252 
  1253 
  1254 \subsection{Random graphs}
  1255 This section compares VF2++ with VF2 Plus on random graphs of a large
  1256 size. The node labels are uniformly distributed.  Let $\delta$ denote
  1257 the average degree.  For the parameters of problems solved in the
  1258 experiments, please see the top of each chart.
  1259 \subsubsection{Graph isomorphism}
  1260 To evaluate the efficiency of the algorithms in the case of graph
  1261 isomorphism, connected graphs of less than 20 000 nodes have been
  1262 considered. Generating a random graph and shuffling its nodes, an
  1263 isomorphism had to be found. Figure \ref{fig:randISO} shows the runtime results
  1264 on graph sets of various density.
  1265 
  1266 
  1267 
  1268 
  1269 \begin{figure}
  1270 \vspace*{-1.5cm}
  1271 \hspace*{-1.5cm}
  1272 \begin{subfigure}[b]{0.55\textwidth}
  1273 \begin{center}
  1274 \begin{tikzpicture}
  1275 \begin{axis}[title={Random ISO, $\delta = 5$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1276 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1277   west},scaled x ticks = false,x tick label style={/pgf/number
  1278   format/1000 sep = \space}]
  1279 %\addplot+[only marks] table {proteinsOrig.txt};
  1280 \addplot table {randGraph/iso/vf2pIso5_1.txt};
  1281 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1282         {randGraph/iso/vf2ppIso5_1.txt};
  1283 \end{axis}
  1284 \end{tikzpicture}
  1285 \end{center}
  1286 \end{subfigure}
  1287 %\hspace{1cm}
  1288 \begin{subfigure}[b]{0.55\textwidth}
  1289 \begin{center}
  1290 \begin{tikzpicture}
  1291 \begin{axis}[title={Random ISO, $\delta = 10$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1292 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1293   west},scaled x ticks = false,x tick label style={/pgf/number
  1294   format/1000 sep = \space}]
  1295 %\addplot+[only marks] table {proteinsOrig.txt};
  1296 \addplot table {randGraph/iso/vf2pIso10_1.txt};
  1297 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1298         {randGraph/iso/vf2ppIso10_1.txt};
  1299 \end{axis}
  1300 \end{tikzpicture}
  1301 \end{center}
  1302 \end{subfigure}
  1303 %%\hspace{1cm}
  1304 \hspace*{-1.5cm}
  1305 \begin{subfigure}[b]{0.55\textwidth}
  1306 \begin{center}
  1307 \begin{tikzpicture}
  1308 \begin{axis}[title={Random ISO, $\delta = 15$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1309 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1310   west},scaled x ticks = false,x tick label style={/pgf/number
  1311   format/1000 sep = \space}]
  1312 %\addplot+[only marks] table {proteinsOrig.txt};
  1313 \addplot table {randGraph/iso/vf2pIso15_1.txt};
  1314 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1315         {randGraph/iso/vf2ppIso15_1.txt};
  1316 \end{axis}
  1317 \end{tikzpicture}
  1318 \end{center}
  1319      \end{subfigure}
  1320      \begin{subfigure}[b]{0.55\textwidth}
  1321 \begin{center}
  1322 \begin{tikzpicture}
  1323 \begin{axis}[title={Random ISO, $\delta = 35$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1324 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1325   west},scaled x ticks = false,x tick label style={/pgf/number
  1326   format/1000 sep = \space}]
  1327 %\addplot+[only marks] table {proteinsOrig.txt};
  1328 \addplot table {randGraph/iso/vf2pIso35_1.txt};
  1329 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1330         {randGraph/iso/vf2ppIso35_1.txt};
  1331 \end{axis}
  1332 \end{tikzpicture}
  1333 \end{center}
  1334 \end{subfigure}
  1335 \begin{subfigure}[b]{0.55\textwidth}
  1336 \hspace*{-1.5cm}
  1337 \begin{tikzpicture}
  1338 \begin{axis}[title={Random ISO, $\delta = 45$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1339 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1340   west},scaled x ticks = false,x tick label style={/pgf/number
  1341   format/1000 sep = \space}]
  1342 %\addplot+[only marks] table {proteinsOrig.txt};
  1343 \addplot table {randGraph/iso/vf2pIso45_1.txt};
  1344 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1345         {randGraph/iso/vf2ppIso45_1.txt};
  1346 \end{axis}
  1347 \end{tikzpicture}
  1348 \end{subfigure}
  1349 \hspace*{-1.5cm}
  1350 \begin{subfigure}[b]{0.55\textwidth}
  1351 \begin{tikzpicture}
  1352 \begin{axis}[title={Random ISO, $\delta = 100$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1353 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1354   west},scaled x ticks = false,x tick label style={/pgf/number
  1355   format/1000 sep = \thinspace}]
  1356 %\addplot+[only marks] table {proteinsOrig.txt};
  1357 \addplot table {randGraph/iso/vf2pIso100_1.txt};
  1358 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1359         {randGraph/iso/vf2ppIso100_1.txt};
  1360 \end{axis}
  1361 \end{tikzpicture}
  1362 \end{subfigure}
  1363 \vspace*{-0.8cm}
  1364 \caption{IND on graphs having an average degree of
  1365   5.}\label{fig:randISO}
  1366 \end{figure}
  1367 
  1368 
  1369 
  1370 
  1371 
  1372 
  1373 
  1374 
  1375 
  1376 
  1377 Considering the graph isomorphism problem, VF2++ consistently
  1378 outperforms its rival especially on sparse graphs. The reason for the
  1379 slightly super linear behaviour of VF2++ on denser graphs is the
  1380 larger number of nodes in the BFS tree constructed in
  1381 Algorithm~\ref{alg:VF2PPPseu}.
  1382 
  1383 \subsubsection{Induced subgraph isomorphism}
  1384 This section provides a comparison of VF2++ and VF2 Plus in the case
  1385 of induced subgraph isomorphism. In addition to the size of the large
  1386 graph, that of the small graph dramatically influences the hardness of
  1387 a given problem too, so the overall picture is provided by examining
  1388 small graphs of various size.
  1389 
  1390 For each chart, a number $0<\rho< 1$ has been fixed and the following
  1391 has been executed 150 times. Generating a large graph $G_{large}$,
  1392 choose 10 of its induced subgraphs having $\rho\ |V_{large}|$ nodes,
  1393 and for all the 10 subgraphs find a mapping by using both the graph
  1394 matching algorithms.  The $\delta = 5, 10, 35$ and $\rho = 0.05, 0.1,
  1395 0.3, 0.6, 0.8, 0.95$ cases have been examined, see
  1396 Figure~\ref{fig:randIND5}, \ref{fig:randIND10} and
  1397 \ref{fig:randIND35}.
  1398 
  1399 
  1400 
  1401 
  1402 
  1403 \begin{figure}
  1404 \vspace*{-1.5cm}
  1405 \hspace*{-1.5cm}
  1406 \begin{subfigure}[b]{0.55\textwidth}
  1407 \begin{center}
  1408 \begin{tikzpicture}
  1409 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1410 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1411   west},scaled x ticks = false,x tick label style={/pgf/number
  1412   format/1000 sep = \space}]
  1413 %\addplot+[only marks] table {proteinsOrig.txt};
  1414 \addplot table {randGraph/ind/vf2pInd5_0.05.txt};
  1415 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1416         {randGraph/ind/vf2ppInd5_0.05.txt};
  1417 \end{axis}
  1418 \end{tikzpicture}
  1419 \end{center}
  1420      \end{subfigure}
  1421      \begin{subfigure}[b]{0.55\textwidth}
  1422 \begin{center}
  1423 \begin{tikzpicture}
  1424 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1425 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1426   west},scaled x ticks = false,x tick label style={/pgf/number
  1427   format/1000 sep = \space}]
  1428 %\addplot+[only marks] table {proteinsOrig.txt};
  1429 \addplot table {randGraph/ind/vf2pInd5_0.1.txt};
  1430 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1431         {randGraph/ind/vf2ppInd5_0.1.txt};
  1432 \end{axis}
  1433 \end{tikzpicture}
  1434 \end{center}
  1435 \end{subfigure}
  1436 \hspace*{-1.5cm}
  1437 \begin{subfigure}[b]{0.55\textwidth}
  1438 \begin{center}
  1439 \begin{tikzpicture}
  1440 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1441 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1442   west},scaled x ticks = false,x tick label style={/pgf/number
  1443   format/1000 sep = \space}]
  1444 %\addplot+[only marks] table {proteinsOrig.txt};
  1445 \addplot table {randGraph/ind/vf2pInd5_0.3.txt};
  1446 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1447         {randGraph/ind/vf2ppInd5_0.3.txt};
  1448 \end{axis}
  1449 \end{tikzpicture}
  1450 \end{center}
  1451      \end{subfigure}
  1452      \begin{subfigure}[b]{0.55\textwidth}
  1453 \begin{center}
  1454 \begin{tikzpicture}
  1455 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.6$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1456 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1457   west},scaled x ticks = false,x tick label style={/pgf/number
  1458   format/1000 sep = \space}]
  1459 %\addplot+[only marks] table {proteinsOrig.txt};
  1460 \addplot table {randGraph/ind/vf2pInd5_0.6.txt};
  1461 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1462         {randGraph/ind/vf2ppInd5_0.6.txt};
  1463 \end{axis}
  1464 \end{tikzpicture}
  1465 \end{center}
  1466 \end{subfigure}
  1467 \begin{subfigure}[b]{0.55\textwidth}
  1468 \hspace*{-1.5cm}
  1469 \begin{tikzpicture}
  1470 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1471 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1472   west},scaled x ticks = false,x tick label style={/pgf/number
  1473   format/1000 sep = \space}]
  1474 %\addplot+[only marks] table {proteinsOrig.txt};
  1475 \addplot table {randGraph/ind/vf2pInd5_0.8.txt};
  1476 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1477         {randGraph/ind/vf2ppInd5_0.8.txt};
  1478 \end{axis}
  1479 \end{tikzpicture}
  1480      \end{subfigure}
  1481      \hspace*{-1.5cm}
  1482      \begin{subfigure}[b]{0.55\textwidth}
  1483 \begin{tikzpicture}
  1484 \begin{axis}[title={Random IND, $\delta = 5$, $\rho = 0.95$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1485 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1486   west},scaled x ticks = false,x tick label style={/pgf/number
  1487   format/1000 sep = \thinspace}]
  1488 %\addplot+[only marks] table {proteinsOrig.txt};
  1489 \addplot table {randGraph/ind/vf2pInd5_0.95.txt};
  1490 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1491         {randGraph/ind/vf2ppInd5_0.95.txt};
  1492 \end{axis}
  1493 \end{tikzpicture}
  1494 \end{subfigure}
  1495 \vspace*{-0.8cm}
  1496 \caption{IND on graphs having an average degree of
  1497   5.}\label{fig:randIND5}
  1498 \end{figure}
  1499 
  1500 
  1501 \begin{figure}[H]
  1502 \vspace*{-1.5cm}
  1503 \hspace*{-1.5cm}
  1504 \begin{subfigure}[b]{0.55\textwidth}
  1505 \begin{center}
  1506 \hspace*{-0.5cm}
  1507 \begin{tikzpicture}
  1508 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1509 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1510   west},scaled x ticks = false,x tick label style={/pgf/number
  1511   format/1000 sep = \space}]
  1512 %\addplot+[only marks] table {proteinsOrig.txt};
  1513 \addplot table {randGraph/ind/vf2pInd10_0.05.txt};
  1514 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1515         {randGraph/ind/vf2ppInd10_0.05.txt};
  1516 \end{axis}
  1517 \end{tikzpicture}
  1518 \end{center}
  1519      \end{subfigure}
  1520      \begin{subfigure}[b]{0.55\textwidth}
  1521 \begin{center}
  1522      \hspace*{-0.5cm}
  1523 \begin{tikzpicture}
  1524 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1525 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1526   west},scaled x ticks = false,x tick label style={/pgf/number
  1527   format/1000 sep = \space}]
  1528 %\addplot+[only marks] table {proteinsOrig.txt};
  1529 \addplot table {randGraph/ind/vf2pInd10_0.1.txt};
  1530 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1531         {randGraph/ind/vf2ppInd10_0.1.txt};
  1532 \end{axis}
  1533 \end{tikzpicture}
  1534 \end{center}
  1535 \end{subfigure}
  1536 \hspace*{-1.5cm}
  1537 \begin{subfigure}[b]{0.55\textwidth}
  1538 \begin{center}
  1539 \begin{tikzpicture}
  1540 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1541 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1542   west},scaled x ticks = false,x tick label style={/pgf/number
  1543   format/1000 sep = \space}]
  1544 %\addplot+[only marks] table {proteinsOrig.txt};
  1545 \addplot table {randGraph/ind/vf2pInd10_0.3.txt};
  1546 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1547         {randGraph/ind/vf2ppInd10_0.3.txt};
  1548 \end{axis}
  1549 \end{tikzpicture}
  1550 \end{center}
  1551      \end{subfigure}
  1552      \begin{subfigure}[b]{0.55\textwidth}
  1553 \begin{center}
  1554 \begin{tikzpicture}
  1555 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.6$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1556 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1557   west},scaled x ticks = false,x tick label style={/pgf/number
  1558   format/1000 sep = \space}]
  1559 %\addplot+[only marks] table {proteinsOrig.txt};
  1560 \addplot table {randGraph/ind/vf2pInd10_0.6.txt};
  1561 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1562         {randGraph/ind/vf2ppInd10_0.6.txt};
  1563 \end{axis}
  1564 \end{tikzpicture}
  1565 \end{center}
  1566 \end{subfigure}
  1567 \hspace*{-1.5cm}
  1568 \begin{subfigure}[b]{0.55\textwidth}
  1569 \begin{tikzpicture}
  1570 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1571 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1572   west},scaled x ticks = false,x tick label style={/pgf/number
  1573   format/1000 sep = \space}]
  1574 %\addplot+[only marks] table {proteinsOrig.txt};
  1575 \addplot table {randGraph/ind/vf2pInd10_0.8.txt};
  1576 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1577         {randGraph/ind/vf2ppInd10_0.8.txt};
  1578 \end{axis}
  1579 \end{tikzpicture}
  1580      \end{subfigure}
  1581      \begin{subfigure}[b]{0.55\textwidth}
  1582 \begin{tikzpicture}
  1583 \begin{axis}[title={Random IND, $\delta = 10$, $\rho = 0.95$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1584 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1585   west},scaled x ticks = false,x tick label style={/pgf/number
  1586   format/1000 sep = \thinspace}]
  1587 %\addplot+[only marks] table {proteinsOrig.txt};
  1588 \addplot table {randGraph/ind/vf2pInd10_0.95.txt};
  1589 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1590         {randGraph/ind/vf2ppInd10_0.95.txt};
  1591 \end{axis}
  1592 \end{tikzpicture}
  1593 \end{subfigure}
  1594 \vspace*{-0.8cm}
  1595 \caption{IND on graphs having an average degree of
  1596   10.}\label{fig:randIND10}
  1597 \end{figure}
  1598 
  1599 
  1600 
  1601 \begin{figure}[H]
  1602 \vspace*{-1.5cm}
  1603 \hspace*{-1.5cm}
  1604 \begin{subfigure}[b]{0.55\textwidth}
  1605 \begin{center}
  1606 \begin{tikzpicture}
  1607 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.05$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1608 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1609   west},scaled x ticks = false,x tick label style={/pgf/number
  1610   format/1000 sep = \space}]
  1611 %\addplot+[only marks] table {proteinsOrig.txt};
  1612 \addplot table {randGraph/ind/vf2pInd35_0.05.txt};
  1613 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1614         {randGraph/ind/vf2ppInd35_0.05.txt};
  1615 \end{axis}
  1616 \end{tikzpicture}
  1617 \end{center}
  1618      \end{subfigure}
  1619      \begin{subfigure}[b]{0.55\textwidth}
  1620 \begin{center}
  1621 \begin{tikzpicture}
  1622 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.1$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1623 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1624   west},scaled x ticks = false,x tick label style={/pgf/number
  1625   format/1000 sep = \space}]
  1626 %\addplot+[only marks] table {proteinsOrig.txt};
  1627 \addplot table {randGraph/ind/vf2pInd35_0.1.txt};
  1628 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1629         {randGraph/ind/vf2ppInd35_0.1.txt};
  1630 \end{axis}
  1631 \end{tikzpicture}
  1632 \end{center}
  1633 \end{subfigure}
  1634 \hspace*{-1.5cm}
  1635 \begin{subfigure}[b]{0.55\textwidth}
  1636 \begin{center}
  1637 \begin{tikzpicture}
  1638 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.3$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1639 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1640   west},scaled x ticks = false,x tick label style={/pgf/number
  1641   format/1000 sep = \space}]
  1642 %\addplot+[only marks] table {proteinsOrig.txt};
  1643 \addplot table {randGraph/ind/vf2pInd35_0.3.txt};
  1644 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1645         {randGraph/ind/vf2ppInd35_0.3.txt};
  1646 \end{axis}
  1647 \end{tikzpicture}
  1648 \end{center}
  1649      \end{subfigure}
  1650      \begin{subfigure}[b]{0.55\textwidth}
  1651 \begin{center}
  1652 \begin{tikzpicture}
  1653 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.6$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1654 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1655   west},scaled x ticks = false,x tick label style={/pgf/number
  1656   format/1000 sep = \space}]
  1657 %\addplot+[only marks] table {proteinsOrig.txt};
  1658 \addplot table {randGraph/ind/vf2pInd35_0.6.txt};
  1659 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1660         {randGraph/ind/vf2ppInd35_0.6.txt};
  1661 \end{axis}
  1662 \end{tikzpicture}
  1663 \end{center}
  1664 \end{subfigure}
  1665 \hspace*{-1.5cm}
  1666 \begin{subfigure}[b]{0.55\textwidth}
  1667 \begin{tikzpicture}
  1668 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.8$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1669 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1670   west},scaled x ticks = false,x tick label style={/pgf/number
  1671   format/1000 sep = \space}]
  1672 %\addplot+[only marks] table {proteinsOrig.txt};
  1673 \addplot table {randGraph/ind/vf2pInd35_0.8.txt};
  1674 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1675         {randGraph/ind/vf2ppInd35_0.8.txt};
  1676 \end{axis}
  1677 \end{tikzpicture}
  1678      \end{subfigure}
  1679      \begin{subfigure}[b]{0.55\textwidth}
  1680 \begin{tikzpicture}
  1681 \begin{axis}[title={Random IND, $\delta = 35$, $\rho = 0.95$},width=7.2cm,height=6cm,xlabel={target size},ylabel={time (ms)},ylabel near ticks,legend entries={VF2 Plus,VF2++},grid
  1682 =major,mark size=1.2pt, legend style={at={(0,1)},anchor=north
  1683   west},scaled x ticks = false,x tick label style={/pgf/number
  1684   format/1000 sep = \thinspace}]
  1685 %\addplot+[only marks] table {proteinsOrig.txt};
  1686 \addplot table {randGraph/ind/vf2pInd35_0.95.txt};
  1687 \addplot[mark=triangle*,mark size=1.8pt,color=red] table
  1688         {randGraph/ind/vf2ppInd35_0.95.txt};
  1689 \end{axis}
  1690 \end{tikzpicture}
  1691 \end{subfigure}
  1692 \vspace*{-0.8cm}
  1693 \caption{IND on graphs having an average degree of
  1694   35.}\label{fig:randIND35}
  1695 \end{figure}
  1696 
  1697 
  1698 Based on these experiments, VF2++ is faster than VF2 Plus and able to
  1699 handle really large graphs in milliseconds. Note that when $IND$ was
  1700 considered and the small graphs had proportionally few nodes ($\rho =
  1701 0.05$, or $\rho = 0.1$), then VF2 Plus produced some inefficient node
  1702 orders (e.g. see the $\delta=10$ case on
  1703 Figure~\ref{fig:randIND10}). If these examples had been excluded, the
  1704 charts would have seemed to be similar to the other ones.
  1705 Unsurprisingly, as denser graphs are considered, both VF2++ and VF2
  1706 Plus slow slightly down, but remain practically usable even on graphs
  1707 having 10 000 nodes.
  1708 
  1709 
  1710 
  1711 
  1712 
  1713 \section{Conclusion}
  1714 In this paper, after providing a short summary of the recent
  1715 algorithms, a new graph matching algorithm based on VF2, called VF2++,
  1716 has been presented and analyzed from a practical viewpoint.
  1717 
  1718 Recognizing the importance of the node order and determining an
  1719 efficient one, VF2++ is able to match graphs of thousands of nodes in
  1720 near practically linear time including preprocessing. In addition to
  1721 the proper order, VF2++ uses more efficient consistency and cutting
  1722 rules which are easy to compute and make the algorithm able to prune
  1723 most of the unfruitful branches without going astray.
  1724 
  1725 In order to show the efficiency of the new method, it has been
  1726 compared to VF2 Plus, which is the best concurrent algorithm based on
  1727 \cite{VF2Plus}.
  1728 
  1729 The experiments show that VF2++ consistently outperforms VF2 Plus on
  1730 biological graphs. It seems to be asymptotically faster on protein and
  1731 on contact map graphs in the case of induced subgraph isomorphism,
  1732 while in the case of graph isomorphism, it has definitely better
  1733 asymptotic behaviour on protein graphs.
  1734 
  1735 Regarding random sparse graphs, not only has VF2++ proved itself to be
  1736 faster than VF2 Plus, but it has a practically linear behaviour both
  1737 in the case of induced subgraph- and graph isomorphism, as well.
  1738 
  1739 
  1740 
  1741 %% The Appendices part is started with the command \appendix;
  1742 %% appendix sections are then done as normal sections
  1743 %% \appendix
  1744 
  1745 %% \section{}
  1746 %% \label{}
  1747 
  1748 %% If you have bibdatabase file and want bibtex to generate the
  1749 %% bibitems, please use
  1750 %%
  1751 \bibliographystyle{elsarticle-num} \bibliography{bibliography}
  1752 
  1753 %% else use the following coding to input the bibitems directly in the
  1754 %% TeX file.
  1755 
  1756 %% \begin{thebibliography}{00}
  1757 
  1758 %% %% \bibitem{label}
  1759 %% %% Text of bibliographic item
  1760 
  1761 %% \bibitem{}
  1762 
  1763 %% \end{thebibliography}
  1764 
  1765 \end{document}
  1766 \endinput
  1767 %%
  1768 %% End of file `elsarticle-template-num.tex'.