# HG changeset patch # User Madarasi Peter # Date 1479933911 -3600 # Node ID a21760ed63d67771b2dd53891616db53110b15e7 # Parent d35847f1417843e13743ec03c6041799362424be Under 30 diff -r d35847f14178 -r a21760ed63d6 damecco.tex --- a/damecco.tex Wed Nov 23 21:15:26 2016 +0100 +++ b/damecco.tex Wed Nov 23 21:45:11 2016 +0100 @@ -508,8 +508,9 @@ \begin{algorithm} -\algtext*{EndIf}%ne nyomtasson end if-et \algtext*{EndFor}%ne -nyomtasson .. \algtext*{EndProcedure}%ne nyomtasson .. +\algtext*{EndIf}%ne nyomtasson end if-et +\algtext*{EndFor}%ne +\algtext*{EndProcedure}%ne nyomtasson .. \caption{\hspace{0.5cm}$A\ high\ level\ description\ of\ VF2$}\label{alg:VF2Pseu} \begin{algorithmic}[1] @@ -866,6 +867,7 @@ \algtext*{EndIf} \algtext*{EndProcedure} \algtext*{EndWhile} +\algtext*{EndFor} \caption{\hspace{0.5cm}$The\ method\ of\ VF2++\ for\ determining\ the\ node\ order$}\label{alg:VF2PPPseu} \begin{algorithmic}[1] \Procedure{VF2++order}{} \State $\mathcal{M}$ := $\emptyset$ @@ -922,7 +924,7 @@ \begin{claim} \[LabCut_{IND}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!<\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| < |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by IND. \end{claim} -The following claims can be proven similarly. + \subsubsection{Graph isomorphism} \begin{claim} \[LabCut_{ISO}((u,v),M(s))\!:=\!\!\!\!\!\bigvee_{l\ is\ label}\!\!\!\!\!\!\!|\Gamma_{large}^{l} (v) \cap T_{large}(s)|\!\neq\!|\Gamma_{small}^{l}(u)\cap T_{small}(s)|\ \vee\]\[\bigvee_{l\ is\ label} \newline |\Gamma_{large}^{l}(v)\cap \tilde{T}_{large}(s)| \neq |\Gamma_{small}^{l}(u)\cap \tilde{T}_{small}(s)|\] is a cutting function by ISO. @@ -998,12 +1000,6 @@ Representing $\mathcal{M}\subseteq V_{small}$ as an array of size $|V_{small}|$, both the computation of the BFS tree, and processing its levels by Algorithm~\ref{alg:VF2PPProcess1} can be done inplace by swapping nodes. -After a node $u$ gets to the next place of the node order, -$F_\mathcal{M}[lab[u]]$ has to be decreased by one, because there is -one less covered node in $V_{large}$ with label $lab(u)$, that is why -min selection sort is preferred which gives the elements from left to -right in descending order, see Algorithm~\ref{alg:VF2PPProcess1}. - \subsubsection{Cutting rules} In Section~\ref{VF2PPCuttingRules}, the cutting rules were described using the sets $T_{small}$, $T_{large}$, $\tilde T_{small}$