# HG changeset patch # User Madarasi Peter # Date 1480021776 -3600 # Node ID b45bac51110897e7d8593f596ccf88ae35f284f0 # Parent a21760ed63d67771b2dd53891616db53110b15e7 Expanding PT part removed diff -r a21760ed63d6 -r b45bac511108 damecco.tex --- a/damecco.tex Wed Nov 23 21:45:11 2016 +0100 +++ b/damecco.tex Thu Nov 24 22:09:36 2016 +0100 @@ -402,7 +402,7 @@ \end{definition} \begin{definition} -Mapping M \textbf{covers} a node v, if there exists a pair in M, which +Mapping $M$ \textbf{covers} a node v, if there exists a pair in M, which contains v. \end{definition} @@ -435,42 +435,14 @@ (Pair(M,u),Pair(M,v))\in E_{large}$. \end{center} -\begin{definition} -A set of whole mappings is called \textbf{problem type}. -\end{definition} Throughout the paper, $\mathbf{PT}$ denotes a generic problem type -which can be substituted by any problem type. - -A whole mapping $W\mathbf{\ is\ of\ type\ PT}$, if $W\in PT$. Using -this notations, VF2 searches a whole mapping $W$ of type $PT$. - -For example the problem type of graph isomorphism problem is the -following. A whole mapping $W$ is in $\mathbf{ISO}$, iff the -bijection represented by $W$ satisfies Definition~\ref{sec:ismorphic}. -The subgraph- and induced subgraph matching problems can be formalized -in a similar way. Let their problem types be denoted as $\mathbf{SUB}$ +which can be substituted by any of $\mathbf{ISO}$, $\mathbf{SUB}$ and $\mathbf{IND}$. \begin{definition} -\label{expPT} -$PT$ is an \textbf{expanding problem type} if $\ \forall\ W\in -PT:\ \forall u_1,u_2\in V_{small}:\ (u_1,u_2)\in E_{small}\Rightarrow -(Pair(W,u_1),Pair(W,u_2))\in E_{large}$, that is each edge of -$G_{small}$ has to be mapped to an edge of $G_{large}$ for each -mapping in $PT$. -\end{definition} - -Note that $ISO$, $SUB$ and $IND$ are expanding problem types. - -This paper deals with the three problem types mentioned above only, -but the following generic definitions make it possible to handle other -types as well. Although it may be challenging to find a proper -consistency function and an efficient cutting function. - -\begin{definition} Let M be a mapping. A logical function $\mathbf{Cons_{PT}}$ is a \textbf{consistency function by } $\mathbf{PT}$, if the following -holds. If there exists whole mapping $W$ of type PT for which +holds. If there exists whole mapping $W$ of type $PT$ for which $M\subseteq W$, then $Cons_{PT}(M)$ is true. \end{definition} @@ -478,7 +450,7 @@ Let M be a mapping. A logical function $\mathbf{Cut_{PT}}$ is a \textbf{cutting function by } $\mathbf{PT}$, if the following holds. $\mathbf{Cut_{PT}(M)}$ is false if $M$ can be extended to a -whole mapping W of type PT. +whole mapping $W$ of type $PT$. \end{definition} \begin{definition} @@ -572,9 +544,7 @@ \subsection{The candidate set P(s)} \label{candidateComputingVF2} -$P(s)$ is the set of the candidate pairs for inclusion in $M(s)$. -Suppose that $PT$ is an expanding problem type, see -Definition~\ref{expPT}. +Let $P(s)$ be the set of the candidate pairs for inclusion in $M(s)$. \begin{notation} Let $\mathbf{T_{small}(s)}:=\{u \in V_{small} : u$ is not covered by @@ -974,7 +944,7 @@ Being aware of Claim~\ref{claim:claimCoverFromLeft}, the task is not to maintain the candidate set, but to generate the candidate nodes in $G_{large}$ for a given node $u\in V_{small}$. In -case of an expanding problem type and $M$ mapping, if a node $v\in +case of any of the three problem type and a mapping $M$, if a node $v\in V_{large}$ is a potential pair of $u\in V_{small}$, then $\forall u'\in V_{small} : (u,u')\in E_{small}\ and\ u'\ is\ covered\ by\ M\ \Rightarrow (v,Pair(M,u'))\in