# HG changeset patch # User Madarasi Peter # Date 1479931180 -3600 # Node ID e73184c3928f4ec78735a2bdeb173c71d5ea290f # Parent 1e4a79cd8332fc039192f3ecd95820ecdb5999ca Proof of distinctness of cutting rules in case of IND and SUB diff -r 1e4a79cd8332 -r e73184c3928f damecco.tex --- a/damecco.tex Wed Nov 23 20:51:09 2016 +0100 +++ b/damecco.tex Wed Nov 23 20:59:40 2016 +0100 @@ -538,7 +538,7 @@ $\tilde{s}$. Otherwise, $\tilde{s}$ is not consistent by $PT$ or it can be proved that $s$ can not be extended to a whole mapping. -In order to make sure of the correctness see +In order to make sure of the correctness, see \begin{claim} Through consistent mappings, only consistent whole mappings can be reached, and all of the whole mappings are reachable through @@ -693,45 +693,6 @@ \tilde{T}_{large}(s)| < |\Gamma_{small}(u)\cap \tilde{T}_{small}(s)|$ is \textbf{not} a cutting function by $SUB$. \end{claim} -\begin{proof}$ $\\ -\vspace*{-0.5cm} - -\begin{figure} -\begin{center} -\begin{tikzpicture} - [scale=.8,auto=left,every node/.style={circle,fill=black!15}] - \node[rectangle,fill=black!15] at (4,6) {$G_{small}$}; \node (u4) at - (2.5,10) {$u_4$}; \node (u3) at (5.5,10) {$u_3$}; \node (u1) at - (2.5,7) {$u_1$}; \node (u2) at (5.5,7) {$u_2$}; - - \node[rectangle,fill=black!30] at (13.5,6) {$G_{large}$}; - \node[fill=black!30] (v4) at (12,10) {$v_4$}; \node[fill=black!30] - (v3) at (15,10) {$v_3$}; \node[fill=black!30] (v1) at (12,7) - {$v_1$}; \node[fill=black!30] (v2) at (15,7) {$v_2$}; - - - \foreach \from/\to in {u1/u2,u2/u3,u3/u4,u4/u1} \draw (\from) -- - (\to); \foreach \from/\to in {v1/v2,v2/v3,v3/v4,v4/v1,v1/v3} \draw - (\from) -- (\to); -% \draw[dashed] (\from) -- (\to); -\end{tikzpicture} -\caption{Graphs for the proof of Claim~\ref{claimSUB}} -\label{fig:proofSUB} -\end{center} -\end{figure} -Let the two graphs of Figure~\ref{fig:proofSUB} be the input -graphs. Suppose the total ordering relation is $u_1 \prec u_2 \prec -u_3 \prec u_4$,$M(s)\!=\{(u_1,v_1)\}$, and VF2 tries to add -$(u_2,v_2)\in P(s)$.\newline $Cons_{SUB}((u_2,v_2),M(s))=true$, so -$M\cup \{(u_2,v_2)\}$ is consistent by $SUB$. The cutting function -$Cut_{SUB}((u_2,v_2),M(s))$ is false, so it does not let cut the -tree.\newline On the other hand $Cut_{SUB}'((u_2,v_2),M(s))$ is true, -since\\$0=|\Gamma_{large}(v_2)\cap -\tilde{T}_{large}(s)|<|\Gamma_{small}(u_2)\cap -\tilde{T}_{small}(s)|=1$ is true, but still the tree can not be -pruned, because otherwise the -$\{(u_1,v_1)(u_2,v_2)(u_3,v_3)(u_4,v_4)\}$ mapping can not be found. -\end{proof} \section{The VF2++ Algorithm} Although any total ordering relation makes the search space of VF2 a