1.1 --- a/damecco.tex Thu Nov 24 22:09:36 2016 +0100
1.2 +++ b/damecco.tex Fri Nov 25 23:47:31 2016 +0100
1.3 @@ -570,22 +570,21 @@
1.4 \]
1.5
1.6 \subsection{Consistency}
1.7 -This section defines the consistency functions for the different
1.8 -problem types mentioned in Section~\ref{sec:CommProb}.
1.9 +Suppose $p=(u,v)$, where $u\in V_{small}$ and $v\in V_{large}$, $s$ is
1.10 +a state of the matching procedure, $M(s)$ is consistent mapping by
1.11 +$PT$ and $lab(u)=lab(v)$. $Cons_{PT}(p,M(s))$ checks whether
1.12 +including pair $p$ into $M(s)$ leads to a consistent mapping by $PT$.
1.13 +
1.14 +For example, the consistency function of induced subgraph isomorphism is as follows.
1.15 \begin{notation}
1.16 Let $\mathbf{\Gamma_{small} (u)}:=\{\tilde{u}\in V_{small} :
1.17 (u,\tilde{u})\in E_{small}\}$\\ Let $\mathbf{\Gamma_{large}
1.18 (v)}:=\{\tilde{v}\in V_{large} : (v,\tilde{v})\in E_{large}\}$
1.19 \end{notation}
1.20 -Suppose $p=(u,v)$, where $u\in V_{small}$ and $v\in V_{large}$, $s$ is
1.21 -a state of the matching procedure, $M(s)$ is consistent mapping by
1.22 -$PT$ and $lab(u)=lab(v)$. $Cons_{PT}(p,M(s))$ checks whether
1.23 -including pair $p$ into $M(s)$ leads to a consistent mapping by $PT$.
1.24
1.25 -\subsubsection{Induced subgraph isomorphism}
1.26 $M(s)\cup \{(u,v)\}$ is a consistent mapping by $IND$ $\Leftrightarrow
1.27 (\forall \tilde{u}\in M_{small}: (u,\tilde{u})\in E_{small}
1.28 -\Leftrightarrow (v,Pair(M(s),\tilde{u}))\in E_{large})$.\newline The
1.29 +\Leftrightarrow (v,Pair(M(s),\tilde{u}))\in E_{large})$. The
1.30 following formulation gives an efficient way of calculating
1.31 $Cons_{IND}$.
1.32 \begin{claim}
1.33 @@ -596,74 +595,27 @@
1.34 consistency function in the case of $IND$.
1.35 \end{claim}
1.36
1.37 -\subsubsection{Graph isomorphism}
1.38 -$M(s)\cup \{(u,v)\}$ is a consistent mapping by $ISO$
1.39 -$\Leftrightarrow$ $M(s)\cup \{(u,v)\}$ is a consistent mapping by
1.40 -$IND$.
1.41 -\begin{claim}
1.42 -$Cons_{ISO}((u,v),M(s))$ is a consistency function by $ISO$ if and
1.43 - only if it is a consistency function by $IND$.
1.44 -\end{claim}
1.45 -\subsubsection{Subgraph isomorphism}
1.46 -$M(s)\cup \{(u,v)\}$ is a consistent mapping by $SUB$ $\Leftrightarrow
1.47 -(\forall \tilde{u}\in M_{small}:\\(u,\tilde{u})\in E_{small}
1.48 -\Rightarrow (v,Pair(M(s),\tilde{u}))\in E_{large})$.
1.49 -\newline
1.50 -The following formulation gives an efficient way of calculating
1.51 -$Cons_{SUB}$.
1.52 -\begin{claim}
1.53 -$Cons_{SUB}((u,v),M(s)):= (\forall \tilde{u}\in \Gamma_{small}(u)
1.54 - \ \cap\ M_{small}(s):\\(v,Pair(M(s),\tilde{u}))\in E_{large})$ is a
1.55 - consistency function by $SUB$.
1.56 -\end{claim}
1.57 -
1.58 \subsection{Cutting rules}
1.59 $Cut_{PT}(p,M(s))$ is defined by a collection of efficiently
1.60 verifiable conditions. The requirement is that $Cut_{PT}(p,M(s))$ can
1.61 be true only if it is impossible to extended $M(s)\cup \{p\}$ to a
1.62 whole mapping.
1.63 +
1.64 +As an example, the cutting function of induced subgraph isomorphism is presented.
1.65 \begin{notation}
1.66 -
1.67 Let $\mathbf{\tilde{T}_{small}}(s):=(V_{small}\backslash
1.68 M_{small}(s))\backslash T_{small}(s)$, and
1.69 \\ $\mathbf{\tilde{T}_{large}}(s):=(V_{large}\backslash
1.70 M_{large}(s))\backslash T_{large}(s)$.
1.71 \end{notation}
1.72 -\subsubsection{Induced subgraph isomorphism}
1.73 +
1.74 \begin{claim}
1.75 $Cut_{IND}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
1.76 |\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
1.77 \tilde{T}_{large}(s)| < |\Gamma_{small}(u)\cap
1.78 \tilde{T}_{small}(s)|$ is a cutting function by $IND$.
1.79 \end{claim}
1.80 -\subsubsection{Graph isomorphism}
1.81 -Note that the cutting function of induced subgraph isomorphism defined
1.82 -above is a cutting function by $ISO$, too, however it is less
1.83 -efficient than the following while their computational complexity is
1.84 -the same.
1.85 -\begin{claim}
1.86 -$Cut_{ISO}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| \neq
1.87 - |\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
1.88 - \tilde{T}_{large}(s)| \neq |\Gamma_{small}(u)\cap
1.89 - \tilde{T}_{small}(s)|$ is a cutting function by $ISO$.
1.90 -\end{claim}
1.91
1.92 -\subsubsection{Subgraph isomorphism}
1.93 -\begin{claim}
1.94 -$Cut_{SUB}((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
1.95 - |\Gamma_{small} (u)\ \cap\ T_{small}(s)|$ is a cutting function by
1.96 - $SUB$.
1.97 -\end{claim}
1.98 -Note that there is a significant difference between induced and
1.99 -non-induced subgraph isomorphism:
1.100 -
1.101 -\begin{claim}
1.102 -\label{claimSUB}
1.103 -$Cut_{SUB}'((u,v),M(s)):= |\Gamma_{large} (v)\ \cap\ T_{large}(s)| <
1.104 -|\Gamma_{small} (u)\ \cap\ T_{small}(s)| \vee |\Gamma_{large}(v)\cap
1.105 -\tilde{T}_{large}(s)| < |\Gamma_{small}(u)\cap \tilde{T}_{small}(s)|$
1.106 -is \textbf{not} a cutting function by $SUB$.
1.107 -\end{claim}
1.108
1.109 \section{The VF2++ Algorithm}
1.110 Although any total ordering relation makes the search space of VF2 a